
ARTICLE

HER2+ breast cancers evade anti-HER2 therapy
via a switch in driver pathway
Alison E. Smith1,2, Emanuela Ferraro1,3, Anton Safonov1,3, Cristina Bernado Morales4,

Enrique J. Arenas Lahuerta 4, Qing Li1, Amanda Kulick5, Dara Ross6, David B. Solit 1,2, Elisa de Stanchina5,

Jorge Reis-Filho 1,6, Neal Rosen 7, Joaquín Arribas 4, Pedram Razavi 1,2,3 & Sarat Chandarlapaty 1,2,3✉

Inhibition of HER2 in HER2-amplified breast cancer has been remarkably successful clinically,

as demonstrated by the efficacy of HER-kinase inhibitors and HER2-antibody treatments.

Whilst resistance to HER2 inhibition is common in the metastatic setting, the specific pro-

grams downstream of HER2 driving resistance are not established. Through genomic profiling

of 733 HER2-amplified breast cancers, we identify enrichment of somatic alterations that

promote MEK/ERK signaling in metastatic tumors with shortened progression-free survival

on anti-HER2 therapy. These mutations, including NF1 loss and ERBB2 activating mutations,

are sufficient to mediate resistance to FDA-approved HER2 kinase inhibitors including

tucatinib and neratinib. Moreover, resistant tumors lose AKT dependence while undergoing a

dramatic sensitization to MEK/ERK inhibition. Mechanistically, this driver pathway switch is a

result of MEK-dependent activation of CDK2 kinase. These results establish genetic activa-

tion of MAPK as a recurrent mechanism of anti-HER2 therapy resistance that may be

effectively combated with MEK/ERK inhibitors.
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The discovery and pharmacologic inhibition of the HER2/
neu oncogene in breast cancer represents a hallmark suc-
cess in targeted therapy in oncology. The efficacy of HER2-

targeted therapies specifically hinges upon their ability to inhibit
PI3K signaling1, despite activation of multiple other pathways by
the receptor, including the ERK pathway. Indeed, PI3K/AKT
inhibitors, but not MEK/ERK inhibitors, have major antitumor
effects in models of HER2-amplified breast cancer2–5. This
marked pathway dependence has been attributed to the entrain-
ment of multiple cell cycle regulators including cyclin D1 and p27
by AKT in this context6–12. More recently, combinations of anti-
HER2 therapies together with additional drugs to downregulate
the PI3K/AKT pathway (pertuzumab, alpelisib, everolimus) have
been advanced in the clinic on the basis of this work.

Despite the clinical success of HER2/HER3/PI3K-targeted
therapies in breast cancer treatment, de novo and acquired
resistance nonetheless occurs, particularly in the metastatic
setting13,14. Both preclinical and early clinical data have suggested
that activating mutations in the PI3K pathway (PIK3CA muta-
tion, PTEN loss, or ERBB3 mutation) reduce the efficacy of anti-
HER2 treatments15–20. Moreover, genomic alterations in the cell
regulators p2721, cyclin E22, and cyclin D/CDK423 have also been
implicated in resistance to HER2-targeted therapies. However,
these alterations have proven neither binary markers of sensitivity
nor sufficiently comprehensive to elucidate the basis for resistance
in the majority of patients.

Here, we define the genomic landscape of HER2+ breast
cancer including both primary, treatment-naïve tumors as well as
anti-HER2 treatment-refractory metastatic tumors. Intriguingly,
we find an enrichment of MAPK pathway mutations in advanced
cancers and demonstrate that these alterations can promote a
switch in pathway dependence from PI3K/AKT to MEK/ERK,
lead to resistance to anti-HER2 therapies, and sensitize these
cancers to MEK/ERK inhibitors.

Results
MAPK pathway alterations in advanced, treatment refractory
HER2+ breast cancer. To interrogate the signaling mechanisms
underlying resistance to HER2-targeted therapies, we performed
genomic sequencing analysis on a cohort of 733 ERBB2-amplified
primary and metastatic breast tumors (Fig. S1a). As expected, we
identified concurrent mutations in the PI3K/AKT pathway
including in PIK3CA (30%), PTEN (2.6%), and AKT1 (0.3%)18.
We also found a significant enrichment of mutations known to
activate RAS-MAPK signaling (Figs. 1a, S1b–d) in metastatic
samples as compared to primary tumors (p= 0.020) (Fig. 1b).
These alterations included genetic loss of the RAS-GAP NF1 (8%
of metastatic tumors) and activating mutations in ERBB2 (7% of
metastatic tumors). Enrichment analysis of the PI3K/AKT path-
way in metastatic samples did not reach statistical significance
(p= 0.07; OR 1.37 [0.97−1.84]). There were no positive asso-
ciation or mutual exclusivity noted between the PI3K/AKT and
MAPK pathways (p= 0.42; OR 1.20 [0.74–1.92].

Given the known effect of PIK3CA mutation upon response to
anti-HER2 therapy15–18, we investigated the therapeutic con-
sequences of the RAS-MAPK pathway alterations identified in
this cohort. In an analysis of 145 patients with ERBB2-amplified
tumors sequenced prior to commencement of first-line anti-
HER2 therapy, we found a significant (p= 0.01) reduction in the
progression-free survival (PFS) of patients with MAPK-altered
cancers (Fig. 1c). Patients with ERBB2-amplified cancers without
mutations in MAPK pathway components had a median PFS on
first line HER2-targeted therapy of 21 months (95% Confidence
Interval [CI]: 17, 30 months), compared to 9.9 months for
MAPK-altered patients (95% CI: 5.5, 17 months), suggesting that

activation of MAPK signaling limits the efficacy of anti-HER2
agents and contributes to poor patient outcomes (Hazard Ratio
[HR]: 2.03, 95% CI: 1.18, 3.51; multivariate p= 0.011, univariate
log-rank p= 0.023). These results remained unchanged after
further adjustment of the models for PIK3CA, AKT1, and PTEN
alterations known to result in resistance to anti-HER2 therapy
(HR: 2.25; 95% CI: 1.29, 3.93; multivariate p= 0.0043), indicating
that this association is independent of the alterations involving
the PI3K pathway. This is further evidenced by the examination
of the mutational profile of paired patient pre-treatment and
post-progression tumor samples. In a representative case high-
lighted in Fig. 1d, a patient with de novo metastatic HER2+
invasive ductal carcinoma experienced lymph node progression
on anti-HER2 therapy after an initial response. Sequencing of the
lymph node sample revealed an NF1 intragenic inversion that was
not present in the pre-treatment tumor. This inversion is
predicted to result in loss of function of NF1 due to involvement
of the RAS GTPase domain (Fig. 1e) and thus points to a role for
RAS activation in anti-HER2 therapy-resistant disease.

MAPK pathway activation promotes resistance to anti-HER2
therapies. Our results identify an enrichment of mutations that
promote RAS activation among metastatic HER2+ breast can-
cers that respond poorly to anti-HER2 therapy, with biallelic NF1
loss the most common alteration. To determine whether NF1 loss
limits the efficacy of anti-HER2 therapy, we depleted NF1
expression in a panel of HER2+ breast cancer cell lines using
either short hairpin (sh) RNAs or CRISPR/Cas9 (Fig. S2a, b). We
then examined the impact NF1 loss has on response to the FDA-
approved HER2 kinase inhibitors lapatinib, neratinib, and tuca-
tinib. NF1 deficient HER2+ cell lines exhibited resistance to all
three agents (Figs. 2a-c, S2d, e) in both metabolic and colony
formation assays of cell growth compared to control lines.
Resistance to the growth inhibitory effects of HER2 kinase inhi-
bition manifested as early as 3-5 days (Fig. S2c) and was more
evident with prolonged treatment (>2 weeks, Fig. 2a-c).

Given that RAS activation can induce both the PI3K24 and
MAPK pathways, we investigated the effect of HER2 inhibition
(HER2i) on signaling in these isogenic pairs. Steady-state
activation of RAS and MEK/ERK was marginally increased in
shNF1 cells compared to shRenilla control (Fig. 2d). Treatment of
these cells with 500 nM lapatinib or 100 nM tucatinib led to
potent and durable inhibition of HER2 phosphorylation in both
shNF1 and shRenilla cells indicative of equivalent target
inhibition (Figs. 2d, S2f, g). Interestingly, inhibition of AKT
signaling was greater in the shNF1 cells compared to control. By
contrast, there was a failure to potently or durably suppress RAS-
GTP, phospho-MEK, or phospho-ERK in the shNF1 cells. These
data imply that NF1 loss renders the MAPK pathway, but not the
AKT pathway, insensitive to the effects of HER2 kinase inhibition
in HER2+ breast cancer cells.

To confirm that this observed resistance was specifically mediated
by loss of NF1, we first derived stable, anti-HER2 resistant NF1
deficient cell lines by continuous culture in HER2i. We then
transduced the shNF1 HER2-inhibitor resistant (HER2i-R) SKBR3
cells with a doxycycline-inducible NF1 expression vector. Re-
expression of NF1 (Fig. S2h) inhibited cell proliferation (Fig. 2e) and
increased sensitivity to HER2i as indicated by growth (Figs. 2e, S2i)
and Rb phosphorylation (Fig. S2h), demonstrating that resistance to
HER2i is driven by NF1 loss.

As our sequencing analysis of advanced HER2+ breast tumors
identified recurrent mutations in multiple MAPK pathway
members (Fig. 1a), we asked whether pathway activation through
mutational mechanisms other than NF1 loss also promotes
resistance to HER2i. Expression of the activated mutants HER2
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L755S, BRAF V600E, or KRAS G12V in SKBR3 cells all increased
proliferation under HER2 kinase inhibitor treatment (lapatinib,
tucatinib) as compared to vector control cells (Figs. 2f, S2j). These
results reveal that MAPK pathway mutations promote resistance
to HER2 inhibition in vitro and may do so through re-activation
of MAPK-signaling.

MAPK activating mutations confer MEK/ERK hypersensitiv-
ity. HER2+ breast cancers are dependent upon PI3K-AKT
signaling4 and insensitive to MEK/ERK inhibition3. However,
we observed NF1 loss to specifically render the MAPK pathway

insensitive to the effects of HER2 inhibition, raising questions
about the ‘driver pathway’ in this context. We therefore assessed
the response of HER2 inhibitor-resistant (HER2i-R, Fig. 3a)
shNF1 SKBR3 cells to selective inhibitors of either pathway.
Compared to shRenilla control cells, shNF1 HER2i-R cells were
markedly resistant to AKT inhibition (MK2206 IC50 shift from
197 to 4475 nM). Moreover, shNF1 HER2i-R cells were sensitized
to MEK (trametinib IC50 from 738 to 13 nM) and ERK (IC50

from 2851 to 250 nM) inhibition (Fig. 3a, b), indicating a switch
in pathway dependence from AKT to MAPK. In contrast, we
found that inhibition of MAPK signaling via SHP2 inhibition did
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Fig. 1 MAPK activating mutations are enriched in metastatic HER2-amplified breast cancers and predict poor response to HER2-targeted therapy. (a)
Pattern and frequency of MAPK pathway activating mutations (OncoKb annotated) in 733 ERBB2-amplified breast tumors, stratified based on tumor type.
(b) Frequency of MAPK alterations from (a) in metastatic and primary tumor samples, p < 0.05 by two-sided Fisher exact test. (c) Kaplan-Meier curve
displaying progression-free survival of patients receiving first-line anti-HER2 therapy. Analysis was restricted to patients for whom genomic profiling was
performed on a tumor specimen prior to starting first-line therapy, n= 145. Tumors with functional alterations in MAPK signaling members are shown in
green, and tumors without MAPK alterations are shown in blue. P < 0.05, two-sided log-rank test. (d) The emergence of an NF1- loss of function alteration
after exposure to anti-HER2 targeted therapy. This is a case of a 38-year-old female patient with de novo metastatic HER2-positive invasive ductal
carcinoma of the left breast, who received first-line treatment with docetaxel, trastuzumab, and pertuzumab (THP), followed by maintenance with
trastuzumab and pertuzumab (HP). She experienced a partial response (PR) after 6 months of therapy, which was maintained on HP for 31.5 months
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exons 14-58 of NF1; this is predicted to result in loss of function due to involvement and complete inversion of the RAS GTPase domain. Abbreviations: IDC:
invasive ductal carcinoma; ER: estrogen receptor: PR: progesterone receptor; POD: progression of disease; PR: partial response; PET: positron emission
tomography; CT: computed tomography.
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not block the proliferation of HER2i-R cells (Fig. S3b), likely due
to poor inhibition of phospho-MEK and phospho-ERK (Fig. S3c).
More complete inhibition of signaling, via MEKi/ERKi (Fig. S3d),
is required to block growth in MAPK activated HER2i-resistant
cells. KRAS- and HER2- mutant-expressing cells were also sen-
sitized to MEK inhibition (trametinib IC50 shift from 868 nM to
24 nM and 16 nM, respectively) to a degree comparable to NF1
deficient cells (19 nM) (Fig. 3c).

To test whether this striking MEK sensitization was held
in vivo, we implanted BT-474 shRenilla and shNF1 HER2i-R
xenografts and treated them with vehicle or 1 mg/kg trametinib
daily for four weeks (Fig. S3a). While shRen and shNF1 HER2i-R
tumors grew at a comparable rate, only the shNF1 tumors
exhibited a partial response (37% growth inhibition) to single-
agent MEK inhibition while the shRenilla tumors were unaffected

(non-significant % change in volume) (Fig. 3d). Immunohisto-
chemistry staining of phospho-ERK indicated elevated MAPK
activity in shNF1 HER2i-R tumors that was potently inhibited by
single-agent trametinib treatment (Figs. 3e, S3e). To further
examine the sensitivities of NF1 deficient tumors in a more
clinically relevant context, we treated a HER2+NF1 null patient-
derived xenograft (PDX) model derived from a patient with
trastuzumab-refractory breast cancer with trastuzumab, trameti-
nib, or the combination. Tumor growth was unaffected (n.s.) by
trastuzumab treatment but potently inhibited by MEK inhibition
(70% growth inhibition) (Fig. 3f). ERK phosphorylation was fully
ablated in tumors exposed to the MEK inhibitor as compared to
trastuzumab (Fig. 3g), correlating with the observed difference in
tumor growth. Taken together, our findings indicate RAS
activation via NF1 loss promotes a switch in pathway dependence
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NF1. Data are means+ /- SD of six biological replicates. (b) Proliferation of shRenilla and shNF1 expressing SKBR3 cells exposed to 50 nM neratinib or
100 nM tucatinib. Data are means of 6 biological replicates ± SD. (c) Crystal violet staining of shRenilla and shNF1 SKBR3 cells exposed to 500 nM lapatinib
(HER2i) over 30 days. (d) Immunoblots of indicated hosphor (p) and total proteins in shRen and shNF1 SKBR3 cells were treated with 500 nM lapatinib
and collected at specified times. Densitometric quantification values are provided below immunoblots. Phospho-signal intensities were normalized to
respective total protein signals. Data are representative of 3 biological replicates. (e) Proliferation of lapatinib resistant (HER2i-R) shNF1 SKBR3 cells
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from AKT to MAPK, resulting in resistance to anti-HER2 therapy
and MEK sensitivity both in vitro and in vivo.

Cell cycle regulation underlies HER2-inhibitor resistance and
MEK dependence. HER2 inhibition impedes tumor growth by
affecting several hallmarks of cancer including suppression of cell
cycle progression25–27, induction of apoptosis28, and inhibition of
cap-dependent translation29,30. To determine how NF1 loss
drives resistance to HER2 inhibition, we investigated which of
these “outputs” were rendered HER2 independent and MEK
dependent. Upon HER2i, cleavage of PARP, caspase 3, and cas-
pase 7, as well as inhibition of mTOR activity (substrate

phosphorylation) were similar in both control and shNF1 SKBR3
cells (Fig. S4a). In contrast, the inhibition of pRb phosphorylation
and G1 cyclin expression by HER2 blockade was weaker and less
durable in NF1 deficient cells than in control cells (Figs. 4a, S4a),
and was tightly correlated with the observed rebound of MAPK
activity (Fig. 2d). We hypothesized that RAS may be driving G1/S
phase cell cycle progression to promote resistance to HER2i, and
therefore examined the cell cycle distribution of HER2i-resistant
cells treated with HER2, AKT, or MEK inhibitors using FACS.
The percentage of shNF1 HER2i-R cells in the S-phase was
unaffected by either HER2 or AKT inhibition but was reduced
from 23% to 18% upon MEK inhibition (Fig. 4b). The inverse was
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Fig. 4 A switch in cell cycle control underlies HER2-inhibitor resistance and MEK dependence of MAPK-activated HER2+ breast cancer cells. (a)
Immunoblots of indicated cell cycle regulatory proteins in shRenilla control and shNF1 SKBR3 cells treated with 500 nM lapatinib (HER2i) for 0, 24, 48, 72,
and 96 h. Images are representative of 3 biological replicates. Quantification normalized to beta-actin levels. (b) The cell cycle distribution of SKBR3 shRen
control and shNF1 HER2i-R cells treated with DMSO, 500 nM lapatinib (HER2i), 50 nM trametinib (MEKi), or 2 uM MK2206 (AKTi) as measured by
fluorescence-activated cell sorting, plotted as % of cells in S phase. Data are means± SD of three independent experiments. (p= 1.833 × 10−5, 1.03 × 10−3,
2.9 × 10−5, two-sided student’s t-tests). (c and d) Immunoblots of indicated proteins in cells from (b) treated with 50 nM trametinib (MEKi, c) or 2 uM
MK2206 (AKTi, d) and collected at 0, 2, 6, 24, and 48 h. Images are representative of 3 biological repeats. (e) Inhibition of proliferation of shRenilla
and shNF1 HER2i-R SKBR3 cells treated with increasing doses of indicated CDK inhibitors. Data points represent the mean of 6 biological replicates. (f)
Immunoblots of phospho-Rb, cyclin E2, CDK2, and β-actin in SKBR3 shRen and shNF1 HER2i-R cells transduced with dox-inducible shRNAs against cyclin
E2 or renilla, cultured in dox and 500 nM lapatinib for 48 h. (g) Graphical overview of CDK2 immunoprecipitation (IP) kinase assay. CDK2 (or IgG control)
was immunoprecipitated from shRen control and shNF1 HER2i-R cells treated with DMSO or 50 nM trametinib (MEKi) for 48 h and incubated in an in vitro
kinase assay using recombinant Rb1 substrate. (h) Western blot analyses of results of the IP kinase assay described in (g) and assay input. Source data for
all assays are provided as a Source Data file.
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true of shRen control cells where the percent of cells in S-phase
was reduced by HER2i (from 22% to 9%)/AKTi (to 12%) and
unchanged by MEKi (26%), implying that NF1 loss shifts reg-
ulation of the G1/S checkpoint from the AKT to MEK pathway.

To confirm these findings, we assessed protein levels of cell
cycle regulators over the course of treatment with 50 nM MEKi
(Fig. 4c) or 2 uM AKTi (Fig. 4d). MEK inhibition of shNF1
HER2i-R cells resulted in diminished pRb phosphorylation,
decreased cyclin E2, A2, and D1 expression, and induction of p27
levels. In control cells, these proteins, with the exception of cyclin
D1, were unaffected by MEK inhibition. Conversely, AKT
inhibition reduced Rb phosphorylation and cyclin A/E levels
and induced p27 expression in control cells but not in
shNF1 cells. Thus, control of the G1- to S-phase cell cycle
transition switches from AKT to MEK/ERK in NF1 deficient
HER2+ cells, resulting in MAPK dependence.

As our data implicate a rewiring of the G1/S checkpoint in
promoting resistance to HER2i, we sought to identify the CDK
responsible by first evaluating the consequences of selective
inhibition of CDK2 and CDK4/6 in these models. We found
shNF1 HER2i-R cells to be resistant (equally or more so than
control cells) to CDK4/6 inhibition, but more sensitive to CDK2
or CDK2/4/6 inhibition (MK-8776 IC50 shift from 7883 to
597 nM, PF-06873600 shift from 45 to 15 nM) (Fig. 4e). This was
also true of cells expressing HER2 L755S, which were sensitive to
CDK2, not CDK4/6 inhibition (Fig. S4b). Genetic ablation of
CDK2 activity via shRNA knockdown of cyclin E2 expression in
shNF1 HER2i-R cells also reduced Rb phosphorylation to levels
comparable to control cells treated with lapatinib (Fig. 4f), again
pointing to the role of cyclin E/CDK2 in mediating resistance to
HER2 inhibition.

To further establish the impact of MAPK activation upon
CDK2/Cyclin E, we examined CDK2 kinase activity. We
immunoprecipitated CDK2 (Fig. S4c) from control and resistant
(shNF1 HER2i-R) cells treated with a MEK inhibitor or DMSO
and performed in vitro kinase assays using recombinant
pRb1 substrate (Fig. 4g). CDK2 activity in the resistant cells, as
indicated by phosphorylation of pRb1, was substantially reduced
by MEK inhibitor treatment (80% reduction, Fig. 4h) and
correlated with a marked (6-fold) induction of p27 abundance
(Fig. 4h). By contrast, CDK2 activity in the control cells was
unaffected (± 10%) implying a shift in CDK2 regulation as a
result of MAPK activation in the resistant cells. These data
demonstrate that MAPK activation in HER2+ breast cancers
promotes a switch in cell cycle control from AKT to MAPK that
drives resistance to HER2-targeted agents but also enforces a
strong and targetable dependence on MEK/ERK signaling.

Discussion
In this study, we utilize metastatic tumor sequencing analyses and
preclinical models to demonstrate that MAPK-activating muta-
tions comprise a unique mode of acquired resistance to HER2-
targeted therapies. While previous studies have reported the
uncommon presence of MAPK pathway alterations in HER2+
breast cancer31–35, we utilize a cohort of both primary and
metastatic tumors to demonstrate that these mutations are enri-
ched in advanced cancers with prior exposure to HER2-targeted
therapies. In this context, the alterations predict poorer outcomes
on treatment suggesting that they may be directly contributing to
anti-HER2 therapy resistance but also raising the possibility that
they may be vulnerable to MAPK pathway targeted therapeutics.

Given the profound dependence of HER2+ breast cancers on
PI3K/AKT signaling and the previous reports implicating PI3K
activation in trastuzumab/HER2i resistance, we anticipated RAS
activation in this context would also serve to reactivate PI3K and

promote further dependence upon AKT. Instead, we found that
MAPK pathway activating mutations switched HER2+ breast
cancer models from AKT- to MEK/ERK-dependent both in vitro
and in vivo. This suggests that while HER2 amplification and
subsequent ERK activation does not engender MEK dependence,
“second hits” in the pathway may be sufficient to overcome
feedback suppression of signaling and elicit “output” from the
MAPK pathway sufficient to drive tumor growth. These findings
are in accordance with studies done in melanoma and non-small
cell lung cancer which define the feedback networks responsible
for limiting MEK dependence in these cancers and the pathway
mutations capable of disabling these networks3,36–40. In HER2-
amplified breast cancer, it has been reported that PTEN deletion
causing MAPK hyperactivation is one such mutation41, and here
we demonstrate that NF1 loss, ERBB2, and KRAS activating
mutations, among others, also suffice. Whether this downstream
activation of MAPK signaling can elaborate additional pheno-
types such as metastatic progression is unknown and will be
important to address in future studies. While the rewiring of
signaling downstream of HER2 upon mutational activation of
MAPK signaling does result in resistance to HER2-targeted
therapies, it also represents a targetable vulnerability in refractory
HER2+ breast cancer. Patients with MAPK pathway-altered
cancers who have progressed on standard therapies may benefit
from the addition of a MEK/ERK inhibitor to their treatment
regimen.

We interrogated the mechanism underlying the acquired MEK
sensitivity of our MAPK-activated models and found control of the
G1/S checkpoint to be shifted from AKT to MEK control. Given the
success of CDK4/6 inhibitors in treating estrogen receptor (ER)-
positive breast cancers42, there has been increasing interest in tar-
geting the G1/S checkpoint in HER2+ tumors. Preclinical studies
establishing cyclin D/CDK4 as a key effector of AKT signaling and as
a potential driver of HER2i resistance23 support this notion, and a
number of clinical trials combining CDK4/6 inhibitors with anti-
HER2 therapy are underway43–45. Our results, however, point to
CDK2 as the CDK mediating MEK-dependent cell cycle progression
and HER2i resistance. Consistent with findings in other cancers46,
MAPK activation promotes insensitivity to CDK4/6 inhibition,
whereas our models acquire marked sensitivity to CDK2 inhibition.
Cyclin E amplification (and the resulting elevated CDK2 activity) is a
well-described if uncommon potential mode of acquired resistance to
trastuzumab and CDK2 inhibition has been proposed as a method of
countering this resistance22. Our findings lend credence to this
proposition as we establish CDK2 as the primary effector of MAPK
in HER2-inhibitor-resistant breast cancer cells. Early results from
trials in HER2+ breast cancers suggest CDK4/6 inhibition may have
limited activity in ER-negative47 or heavily pre-treated48 tumors. We
speculate that CDK2 may be more active in treatment-refractory
HER2-amplified cases, and patients may derive greater benefit from
CDK2 inhibition than CDK4/6i.

Beyond the implications for the treatment of HER2+ breast
cancers, our results emphasize the plasticity of growth factor
signaling networks. Mutations acquired under the selective
pressure of targeted therapy are capable of profoundly shifting
not just the driver, but also the downstream pathway depen-
dencies of tumors, disabling feedback suppressive mechanisms,
and rewiring signaling input to effector pathways like the cell
cycle. While preclinical efforts are useful in delineating the
mechanistic consequences of acquired mutations, extensive
sequencing of tumors pre- and post-treatment is required to fully
comprehend the scope of these signaling phenomena. Identifi-
cation of such modes of resistance should enable development of
effective combinations of the driver and the downstream path-
ways that can yield more durable antitumor responses in the
clinic.
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Methods
Human subjects. A total of 733 breast tumor specimens from 664 patients with
HER2+metastatic breast cancer who underwent prospective clinical genomic
profiling between April 2014 and February 2021. This study was approved by the
Memorial Sloan Kettering Cancer Center Institutional Review Board (IRB) and all
patients provided written informed consent for tumor sequencing and review of
patient medical records for detailed demographic, pathologic, and treatment
information (NCT01775072). Detailed treatment history data were obtained for
each patient and included all lines of systemic therapy from the time of diagnosis of
invasive carcinoma to the study data lock in February 2021. The exact regimen as
well as the dates of start and stop of therapy were recorded for each treatment line.

To assess the effect of MAPK alterations on response to anti-HER2 therapy, we
identified a subgroup of patients who received first line standard of care taxanes
plus trastuzumab and pertuzumab (THP) and underwent tumor sequencing on a
sample that was collected prior to start of therapy. The final cohort suitable for
survival analysis included 145 patients.

Prospective sequencing and analysis. For all 733 patients, tumor and patient-
matched normal DNA samples were extracted respectively form formalin-fixed
paraffin-embedded (FFPE) tumor biopsy samples and matched nucleated cells
from peripheral blood. All specimens underwent next-generation sequencing in a
CLIA-certified laboratory using MSK-IMPACT, a hybridization capture-based
next-generation sequencing assay, which analyzes all protein-coding exons and
selected intronic and regulatory regions of 341 to 505 cancer-associated genes, all as
previously described34,49,50. The average sequencing coverage across all tumors was
663X. Somatic mutations, DNA copy number alterations, and structural rearran-
gements were identified as previously described49 and all mutations were manually
reviewed. In addition to the gene-level amplification and deletion calls generated by
the clinical laboratory pipeline, genome-wide total and allele-specific DNA copy
number were determined using the FACETS51. Purity, average ploidy, and allele-
specific integer-copy number for each segment were then determined by maximum
likelihood. Loss of heterozygosity (LOH) was determined based on the allele-
specific integer-copy numbers for tumor suppressors.

MAPK alterations. For each gene in the genes involved in the MAPK pathway
(ERBB2, EGFR, NF1, KRAS, BRAF, and MAP2K) oncogenic relevance of specific
variants and copy number changes was assessed using the latest versions of the
OncoKB (www.oncokb.org)52 and only somatic mutations that were annotated to
be pathogenic were included in the analysis.

Statistical analysis. We determined the association between genomic alterations
and progression-free survival (PFDS) on the first line THP from the time of the
start of therapy to the time of disease progression or patient death. We used
univariate and multivariate Cox proportional hazard models to determine the
association between genomic alterations involving the MAPK pathway and PFS.
The multivariate models were further for sample type (metastatic vs primary
tumor), tumor hormone receptor status (positive vs negative), and whether ERBB2
amplification was identified by MSK-IMPACT. The models were also adjusted for
the presence or absence of pathogenic alterations involving the PI3k pathway (i.e.
PIK3CA, AKT1, and PTEN). We tested the proportionality assumption of the Cox
regression model through time-dependency analysis of selected genetic alterations
(cox.zph function of the R package survival). We rejected the null hypotheses with
a two-sided α= 0.05. The association between categorical variables were assessed
using the chi-square test or Fisher Exact test as appropriate.

Cell lines and reagents. All cell lines used in this study were obtained from ATCC
and maintained in a humidified atmosphere with 5% CO2 at 37 °C. SKBR3, BT-
474, MDA-MB-361, and HCC1954 cell lines were maintained in DMEM/
F12 supplemented with 10% FBS, 4 mM glutamine, 100 U/mL penicillin, and 100
ug/mL streptomycin. 293 T cells were maintained in DMEM containing the
aforementioned supplements. All cell lines tested negative for mycoplasma.
Lapatinib resistant (HER2i-R) cells were established via continuous culture in
500 nM lapatinib. Lapatinib, neratinib (HKI272), trametinib (GSK1120212),
MK8776, SCH772984, and PD0332991 were purchased from Selleck Chemicals.
MK2206 was obtained from Merck. LY2835219 was provided by Eli Lilly.
PF06873600 was purchased from ProbeChem. All compounds were dissolved in
DMSO for in vitro studies.

Plasmids and viral transduction. All short hairpin RNA sequences and expres-
sion vectors were gifts from Johannes Zuber53. shNF1 #1 (TATATCATGAACATC
AACATTG) and shNF1 #2 (TATATCATGAACATCAACATTG) were cloned into
SGEP (addgene #111170). shCCNE2 #1 (TAAAATAGTAGTGAGGCCGCTT) and
shCCNE2 #2 (TATCACTTTGACACTGTCCTTA) were cloned into LT3REVIN.
RTTA expression was achieved via pLenti CMV rtTA3 Blast (addgene #26429).
Single guide RNAs against NF1 for CRISPR/Cas9 knockout were designed using
crispr.mit.edu (discontinued). sgNF1 #1 GGTCAGCCGCTTCGACGAGC and
sgNF1 #2 CGCGCACAGGCCGGTGGAAT were cloned into lentiCRISPR v2
(addgene #52961) with lentiCRISPR - CNTRL sgRNA (addgene #70662) used as a
control. For inducible expression of NF1, gateway entry clone R777-E140 Hs.NF1-

nostop (addgene #70424, resistant to sh and sgRNAs) was introduced into pIn-
ducer20 (addgene #44012). Stable overexpression of cyclin E2 was achieved by
cloning the insert from pcDNA3-HA-cyclin E2 (addgene #19935) into pLenti
CMV Puro DEST (addgene #17452). pLX302 and pLX302-HER2 L755S expression
vectors were gifts from Maurizio Scaltriti. Kras (G12V)-pcw107 (addgene #64602)
and pHAGE-BRAF-V600E (addgene #116204) were utilized for mutant KRAS and
BRAF expression, respectively. To transduce target HER2+ cell lines, the above
lentiviral vectors were transfected into 293 T cells along with VSVG and psPAX2
packaging vectors. Viral supernatant was collected, filtered, and applied to target
cells (plus polybrene) prior to selection with the appropriate antibiotic.

Proliferation assays. For resazurin-based proliferation assays, 500-2,000 cells were
plated per well of a 96-well plate with six replicates per condition. After 24 h, cells
were treated with inhibitors (Day 0). For long-term culture (>10 days), media (plus
inhibitors) was changed weekly. Plates were measured as indicated in figures or for
IC50 calculations, on day 5, by adding 25 uL resazurin (R&D Systems) to each well
and incubating plates at 37 °C for 4 h. Fluorescence (560 nm excitation, 590 nm
emission) was read on a SpectraMax M5 plate reader, normalized to media blank.
Growth and dose inhibition curves were plotted and analyzed using Graphpad
Prism 8. Half maximal inhibitory concentrations (IC50) were determined by
nonlinear regression analysis of plots of percentage growth inhibition vs log
inhibitor concentration. For crystal violet assays, 5 × 105 cells were plated in 6 well
plates in triplicate per condition, treated with HER2i, and stained and imaged at
time points indicated in figure legends.

Immunoblotting. Cell lysates were prepared on ice by washing cells once with PBS,
resuspending in 1X cell lysis buffer (Cell Signaling Technology #9803) supple-
mented with Halt protease inhibitor cocktail (Thermo Scientific #78430), and
sonicating for 30 s. Lysates were cleared by centrifugation (maximum speed, 10 m)
and protein concentration determined by BCA assay (Pierce). 20-60 ug of lysate
was loaded on to 4-12% Bis-Tris gels (NuPAGE, Invitrogen) for electrophoresis
and immunoblotting. The following antibodies were purchased from Cell Signaling
Technology and utilized at 1:5000 dilution: p-AKT (S473) (#4060), AKT (#4691),
β-actin (#4970), ERK (#4695), p-ERK (T202/204) (#4370), HER2 (#4290), p-HER2
(Y1221/1222) (#2243), p-PRAS40 (T246) (#13175), p-Rb (S780) (#8180), p-Rb
(S807/811) (#8516), p27 (#3686), Rb (#9309), p-S6 (S240/244) (#5364), p-EGFR
(Y1068) (#3777). The following antibodies were purchased from Cell signaling
Technology and utilized at 1:1000 dilution: CDK2 (#2546), Cyclin A2 (#4656),
Cyclin D1 (#55506), Cyclin D3 (#2936), Cyclin E1 (#4129), Cyclin E2 (#4132),
E2F1 (#3742), HA (#2367), MEK (#4694),, p-CDK substrate (#9477), p-CDK2
(T160) (#2561),, p-MEK (S217/221) (#9154), p-p90 RSK (S380) (#9341), p-
FOXO1/3a/4 (#2599), p-CRAF (S338) (#9427), p-p70 S6K (T389) (#9234),
p-4EBP1 (S65) (#9456) (T37/46) (#2855), Cleaved caspase 3 (#9664), Cleaved
caspase 7 (#8438), Cleaved PARP (#5625). NF1 antibody was purchased from
Abcam (#ab17963) and used at 1:1000 dilution. Active RAS was detected using
Thermo Scientific kit #16117. Uncropped immunoblot scans are provided in the
Source Data file.

Xenograft models and in vivo experiments. Animal studies were performed in
the MSKCC animal facility in compliance with institutional guidelines under an
IACUC approved protocol (MSKCC No. 12-10-016). Health checks were per-
formed daily. To establish BT-474 xenografts, sustained release 0.72 mg 17β-
estradiol pellets were implanted subcutaneously into the flanks of six- to eight-
week-old athymic female mice at least 3 days prior to cell injection. 10 million BT-
474 cells were suspended in Matrigel and injected subcutaneously. Treatment with
vehicle (0.5% HPMC, 0.2% Tween80 in H2O pH 8.0) or trametinib was initiated
when tumors reached 175 mm3. Animals were euthanized at treatment end, or
upon observation of excessive tumor burden or other welfare concerns.

PDX (ER-/PR-/HER23+) comes from a primary tumor and has been established
at VHIO following institutional guidelines. The IRBs at Vall d’Hebron Hospital
provided approval for this study in accordance with the Declaration of Helsinki.
Written informed consent was obtained from all patients who provided tissue
samples. Fragments of patient samples were implanted into the fat pad of NOD.
CB17-Prkdcscid [nonobese diabetic (NOD)/severe combined immunodeficient
(SCID)] (#SM-NOD-5S-F, Janvier) mice, and and 17b-estradiol (1 mM) (#E8875-
1G, Sigma-Aldrich) was added to drinking water. In the experiment, once tumor
size reached 200-300 mm3, animals were treated either with vehicle, trastuzumab
(10 mg/ml), trametinib (1 mg/kg), or both trastuzumab and trametinib. Tumor
xenografts were measured with calipers two times per week, and tumor volume was
determined using the following formula: (length x width2) x (pi/6).

Immunohistochemistry. Immunohistochemistry was performed on formalin-fixed
paraffin-embedded tumor specimens from cell-derived xenografts. A standard
multimer/diaminobenzidine (DAB) detection protocol was performed on Ventana
BenchMark ULTRA Automated stainer as previously described54, with appropriate
negative and positive controls. Phospho-Erk1/2 antibody (Cell Signaling Tech-
nology #9101, 1:200 dilution) was used. Images were taken under Leica DMi8
microscope.
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In vitro kinase assays. Cells were washed once with ice-cold PBS, suspended in
1X cell lysis buffer (Cell Signaling #9803) supplemented with protease inhibitor
cocktail, and incubated on ice for 5 m followed by sonication for 5 s three times.
Lysates were cleared and protein concentration quantified as described above. 500
ug lysate was incubated rotating overnight at 4 °C with CDK2 antibody (CST
#2546, 1:50 dilution) or IgG control (CST #3900, concentration matched). The
following day, 25 uL ChIP-grade protein A/G magnetic beads (Pierce #26162) per
sample were pre-washed twice with cell lysis buffer. Immunocomplexes were
transferred to the tubes containing the bead pellets and incubated with rotation at
room temperature for 20 m. Beads were then pelleted and washed three times with
1X cell lysis buffer and two times with 1X kinase buffer (CST #9802) on ice. After
the final wash, pellets were resuspended in 40 uL of kinase buffer supplemented
with 200 uM ATP and 0.25 ug recombinant human Rb substrate (Abcam
#ab56270). Kinase reactions were carried out for 30 m at 30 °C and terminated with
the addition of sample buffer. Supernatants containing phosphorylated substrate
were transferred to new tubes for western blot analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genomic sequencing data generated in this study underlying Figs. 1 and S1 are
publicly available via the cBioPortal for cancer genomics (https://cbioportal.org/study/
summary?id=brca_mapk_hp_msk_2021). The raw data is available under restricted
access, access can be obtained by contacting the corresponding author. The remaining
data are available within the Article, Supplementary Information, or Source Data
File. Source data are provided with this paper.
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