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UINMF performs mosaic integration of single-cell
multi-omic datasets using nonnegative matrix
factorization
April R. Kriebel1 & Joshua D. Welch 1,2✉

Single-cell genomic technologies provide an unprecedented opportunity to define molecular

cell types in a data-driven fashion, but present unique data integration challenges. Many

analyses require “mosaic integration”, including both features shared across datasets and

features exclusive to a single experiment. Previous computational integration approaches

require that the input matrices share the same number of either genes or cells, and thus can

use only shared features. To address this limitation, we derive a nonnegative matrix fac-

torization algorithm for integrating single-cell datasets containing both shared and unshared

features. The key advance is incorporating an additional metagene matrix that allows

unshared features to inform the factorization. We demonstrate that incorporating unshared

features significantly improves integration of single-cell RNA-seq, spatial transcriptomic,

SNARE-seq, and cross-species datasets. We have incorporated the UINMF algorithm into the

open-source LIGER R package (https://github.com/welch-lab/liger).
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Each cell type or state within an organism is distinguished by
its gene expression, epigenetic regulation, and spatial loca-
tion within a tissue. Single-cell sequencing technologies

measure each of these features in individual cells, allowing
researchers to classify cells in a data-driven manner. Determining
what features are common, or different, between each cell type
provides researchers insight into the function of the cell. Com-
paring the profiles of diseased cells with those of healthy cells also
reveals disease-related aberrant features. An ideal characterization
of a cell type goes beyond analyzing features such as epigenetic
and gene expression individually, instead examining their rela-
tionships. Jointly examining cellular features holds promise for
understanding gene regulatory mechanisms that control cell fates.

Current single-cell sequencing technologies cannot simulta-
neously measure all relevant aspects of cell state. Recently
developed multi-omics technologies are limited to capturing only
a couple of the modality measures that encompass cell identity1.
In particular, emerging techniques such as the Multiome assay
from 10X Genomics can measure gene expression and chromatin
accessibility from the same cell2–7, but do not generally capture
methylation or spatial features. Spatial transcriptomics, named
Method of the Year 2020 by Nature Methods8, encompasses a
rapidly growing suite of techniques9–12 that interrogate gene
expression patterns within intact tissue. However, protocols
for spatial measurements of epigenomic state are not widely
available.

The different types of features measured by different single-cell
technologies create unique computational data integration chal-
lenges. Some more recent methods, such as Seurat v4’s Weighted
Nearest Neighbor (WNN) algorithm13, are designed for datasets
containing multiple modalities measured within the same cells,
while other approaches focus on integrating modalities from dif-
ferent single cells into a shared latent space. Most existing com-
putational approaches for multi-omic data integration are designed
for either vertical or horizontal integration scenarios14,15. Vertical
integration approaches are useful for datasets measured across a
common set of samples or cells. Well-established methods for
multi-omic integration of bulk data, such as similarity network
fusion and iCluster16,17, fall into this category, as well as recent
methods for single-cell datasets with multiple modalities per cell
such as MOFA+, totalVI, and the Seurat v4 weighted nearest
neighbors algorithm18–20. Conversely, horizontal integration uses a
set of common variables or features to integrate over multiple
experiments, typically using shared genes as the anchors for inte-
gration. Batch effect correction approaches originally designed for
bulk sequencing data (e.g., RUV21,22 and ComBat23) solve a hor-
izontal integration problem. Similarly, dataset alignment algo-
rithms developed for single-cell data, such as Seurat v3, Harmony,
and our previous method LIGER18,24–26 also rely on shared fea-
tures and can thus be considered horizontal integration techniques.

A recent review of single-cell computational integration
approaches identified a third category of approaches as those for
diagonal integration, in which neither features nor cells are
assumed to be shared across datasets15. In this review, Argelauget
et al. also identified a type of problem that they call mosaic
integration–in which only some features or cells are shared across
datasets–and for which they did not identify any existing
approaches. Our work here aims to address some of the chal-
lenges of mosaic integration.

LIGER, Seurat v3, and Harmony are effective tools for a
number of single-cell integration tasks, and were chosen as the
best methods in a recent systematic comparison of 14 computa-
tional methods27. However, these three approaches are all con-
strained to integrate across features shared between datasets, and
require that the input matrices all contain a common set of genes
or features that are measured in all datasets. Thus, these methods

cannot incorporate features unique to one or more datasets, such
as intergenic epigenomic information.

Restricting single-cell integration analyses to features shared
across all datasets is problematic because it often necessitates dis-
carding pertinent information. For instance, scRNA-seq measures
transcriptome-wide gene expression within individual cells, but
spatial transcriptomic protocols often measure only a chosen subset
of all genes. Yet for many applications, we want to integrate scRNA-
seq and spatial transcriptomic datasets, which have neither the same
number of features (genes) nor the same number of observations
(cells). By integrating the datasets using only shared features, we fail
to capitalize on the higher resolution provided by the scRNA-seq
modality. When integrating cross-species datasets, the integration is
restricted to orthologous genes, disregarding all genes without
unambiguous one-to-one relationships between species. Likewise,
when integrating single-cell epigenomic data with single-cell tran-
scriptomic data, horizontal integration approaches do not take into
account the important epigenomic features from intergenic reg-
ulatory elements. As a final example, existing methods do not
provide a way to leverage paired epigenomic information when
integrating data types such as SNARE-seq2,5 or 10X Multiome with
single-cell or spatial transcriptomic datasets. Such integration ana-
lyses do not fit neatly into either the horizontal or vertical inte-
gration paradigm, requiring the development of different methods.

The critical need to include unshared features in single-cell
integration analyses motivated us to extend our previous
approach. We developed UINMF, a nonnegative matrix factor-
ization algorithm that allows the inclusion of both shared and
unshared features. UINMF can integrate data matrices with nei-
ther the same number of features (e.g., genes, peaks, or bins) nor
the same number of observations (cells). Furthermore, UINMF
does not require any information about the correspondence
between shared and unshared features, such as links between
genes and intergenic peaks. By incorporating unshared features,
UINMF fully utilizes the available data when estimating meta-
genes and matrix factors, significantly improving sensitivity for
resolving cellular distinctions. Note that UINMF is not designed
to jointly leverage multiple modalities from the same cell as in
Seurat v4 or MOFA; rather, the approach solves a problem more
like the Seurat v3 anchors approach.

Results
Integrative nonnegative matrix factorization algorithm for
partially overlapping feature sets. The key innovation of UINMF
is the introduction of an unshared metagene matrix U to the
iNMF objective function, incorporating features that belong to
only one, or a subset, of the datasets when estimating metagenes
and cell factor loadings. Previously, dataset integration using the
iNMF algorithm operated on features common to all datasets25.
Each dataset (Ei) was decomposed into dataset-specific metagenes
(Vi), shared metagenes (W), and cell factor loadings (Hi), and the
optimization problem was solved iteratively. By including an
unshared metagene matrix (Ui), we provide the capability to
include unshared features during each iteration of the optimiza-
tion algorithm (Fig. 1a). Intuitively, the shared features allow for
the identification of corresponding cells across datasets, while the
unshared features incorporated by Ui simultaneously allow for
clearer distinction among the cells within each dataset.

The unshared feature matrix can include extra genes,
intergenic features, non-orthologous genes, or any other data
type that is measured in one of the datasets. Importantly, UINMF
makes no assumptions about the relationship between the
unshared features and the shared features; for example, no prior
knowledge about linkages between intergenic peaks and genes is
required. Instead, such covariance among features is learned
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Fig. 1 Overview of the UINMF algorithm for integrating single-cell datasets with partially overlapping features. a Schematic representation of
the matrix factorization strategy (top) and optimization problem formulation (bottom). The addition of a factor matrix Ui allows for unshared features to be
utilized in joint matrix factorization. Each dataset (Ei) is decomposed into shared metagenes (W), dataset-specific metagenes constructed from shared
features (Vi), unshared metagenes (Ui), and cell factor loadings (Hi). The incorporation of the U matrix allows unshared features that occur in only one
dataset to inform the resulting integration. b UINMF can integrate data types such as scRNA-seq and snATAC-seq using both gene-centric features and
intergenic information. c UINMF can integrate targeted spatial transcriptomic data with simultaneous single-cell RNA and chromatin accessibility
measurements using both unshared epigenomic information and unshared genes.
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during the optimization process, as both shared and unshared
features contribute to the reconstruction of the original data
through the inferred latent factors. These properties allow for
the use of the UINMF algorithm across diverse contexts. For
example, Ui can incorporate intergenic information when
integrating single-cell transcriptomic and epigenetic datasets
(Fig. 1b). When analyzing spatial transcriptomic datasets
measuring only a few targeted genes, Ui can be used for genes
that are not in the targeted panel but are measured in
transcriptome-wide scRNA-seq data. With the advent of multi-
omic datasets, the flexible nature of Ui is a particular advantage.
We can jointly integrate single-modality data with multimodal
data, using all of the features present in the multimodal dataset
when performing the integration. In this scenario, the Ui matrix
can be used for the unshared multimodal data type, such as
chromatin accessibility, when integrating SNARE-seq data with
spatial transcriptomic or scRNA data (Fig. 1c). Another
application of the unshared matrix is the ability to include non-
orthologous genes into cross-species analyses, leveraging species-
specific genes in dataset integration. We demonstrate the
functionality of the UINMF algorithm in each of these four
possible scenarios, and anticipate that the approach will prove
useful for a wide variety of future applications.

The UINMF optimization algorithm has a reduced computa-
tional complexity per iteration compared to our previous iNMF
algorithm25 on a dataset of the same size (see Methods).
Furthermore, the addition of the unshared features in each
iteration of the matrix decomposition does not impose a
prohibitive increase in time or memory usage in practice. Rather,
UINMF demonstrates a moderate increase in time and memory
usage due to the unshared features while providing significant
benefits compared to algorithms incapable of incorporating
unshared features (Supplemental Fig. 1).

UINMF, as well as iNMF, requires random initializations, and
is nondeterministic in nature. Therefore, unless otherwise noted,
we perform UINMF and iNMF with multiple initializations, and
use the model of best fit for each respective algorithm. In practice,
the use of a single initialization, set with a random seed, is
typically sufficient.

As an initial test of UINMF, we investigated how differing
numbers of shared and unshared features affect integration
quality. To do this, we integrated two single-cell transcriptomic
datasets taken from the mouse Primary Motor Area (MOp)13,
sequenced with two different protocols: SMART-seq and 10X
Genomics. Using a constant number of total genes (2500), we
progressively decreased the number of shared genes from 500 to
100. We then performed two UINMF integrations, one using the
SMART-seq data as the source for the unshared features, and the
other using the 10X dataset as the source for the unshared
features. We calculated the ARI and purity scores for each
resulting integration (Supplemental Fig. 2).

Our results indicate that using unshared genes from the
SMART-seq data, known to be higher quality than the 10X data,
consistently increases the quality of dataset integration, even with
a continued reduction in the number of shared genes. The 10X
data, while initially improving dataset integration, is more
dramatically impacted by the reduction of shared features.
Nevertheless, the benefit of using UINMF to include additional
features in dataset integrations is clear, with the amount of benefit
derived correlated with the quality of the dataset from which the
unshared features are being chosen.

Including intergenic peak information improves integration of
scRNA and snATAC datasets. We first investigated how the
inclusion of additional features might impact the integration of

scRNA and snATAC datasets. In our previous work, we summed
ATAC reads that fell within a gene to provide gene-centric ATAC
profiles, then used these shared features for integration, neglect-
ing intergenic information13. In contrast, UINMF uses the
unshared feature matrix to incorporate the ATAC reads present
between genes–intergenic peaks–when estimating the metagenes
(Fig. 2a). Single-nucleus ATAC data is extremely sparse, with
only 1–10% of peaks detected per cell, compared to the 10–45% of
genes captured per cell in scRNA sequencing methods28.
Including the intergenic snATAC data allows more of the
detected regions to be used from each cell, a distinct advantage in
such sparse datasets. Additionally, the intergenic chromatin peaks
provide information about the chromatin state of important cis-
regulatory elements, such as promoters and enhancers. We
hypothesized that the inclusion of this additional information
would better resolve molecular distinctions among cells when
integrating single-cell transcriptomic and epigenomic datasets.

To quantify how leveraging intergenic features improves
dataset integration, we analyzed a SNARE-seq dataset2, which
provides gene expression and chromatin accessibility information
from the same barcoded cell. Because the RNA and ATAC
information is measured within the same single cells, the joint
profiles provide ground truth cell correspondence information for
assessing integration performance. The RNA and ATAC profiles
can be preprocessed and integrated as if they come from separate
datasets. Subsequently, the success of the integration can be
measured by how closely the ATAC and RNA profiles for the
same cell are aligned.

We evaluated the quality of SNARE-seq integrations using the
Fraction of Samples Closer Than the True Match (FOSCTTM)3

metric. The FOSCTTM metric assesses how closely the RNA
barcoded cell is placed to its corresponding ATAC barcode in the
latent space. Lower FOSCTTM scores are better, indicating that
the RNA and ATAC profiles from the same cells have been
correctly placed near each other. We also calculated an alignment
metric; because the RNA and ATAC datasets come from identical
cells, perfect alignment is theoretically achievable and thus the
ideal performance is an alignment score of 1.

We assessed the benefit of incorporating intergenic peaks by
comparing the UINMF algorithm with our previously published
iNMF algorithm25, which uses only gene-centric features. Over
multiple random initializations, iNMF obtained an average
FOSCTTM score of 0.2977 and an average alignment score of
0.756 (Fig. 2b).

In contrast, UINMF achieved a significantly lower average
FOSCTTM score of 0.251 (P = 1.953 × 10−3, paired one-sided
Wilcoxon test), as well as a significantly higher average alignment
score of 0.812 (P = 1.953 × 10−3, paired one-sided Wilcoxon
test). These findings indicate that incorporating unshared features
from the chromatin accessibility data improves the integration of
scRNA and snATAC datasets.

We also compared UINMF with Seurat v3 and Harmony.
UINMF significantly outperforms Harmony in both alignment
(P = 9.766 × 10−4, paired one-sided Wilcoxon test) and
FOSCTTM score (P = 9.766 × 10−4, paired one-sided Wilcoxon
test). Compared to Seurat v3, UINMF had a significantly
improved alignment score (P = 1.953 × 10−3, paired one-sided
Wilcoxon test), however, Seurat v3 did have a significantly better
FOSCTTM score than UINMF (P = 0.01855, paired one-sided
Wilcoxon test).

We also confirmed that the RNA and ATAC profiles were
mapped to similar cell types. To do this, we manually annotated
the cell type labels using marker genes from the scRNA data only.
Before integration, the clusters separated much more clearly from
gene expression data alone than from chromatin accessibility data
alone (Fig. 2c, d). After UINMF integration, the cluster labels
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aligned well across datasets (Fig. 2e, f), indicating that UINMF
identified corresponding cell types even though the single-cell
correspondence information was not used by the algorithm. In
summary, including intergenic chromatin accessibility informa-
tion in the integration of scRNA and snATAC data significantly
improved the integration results.

To examine how the number of intergenic peaks used affected
the resulting integration, we assessed the FOSCTTM and alignment

scores for increasing numbers of unshared features. We began by
performing the analysis with 0 unshared features (iNMF), taking
the best of 5 initializations over 10 seeds, and calculating the
alignment and FOSCTTM scores. We then added the 1,000 most
variable intergenic bins, and repeated the analysis and metric
calculations. Iteratively, we added the next 1000 top variable
intergenic bins until we reached 7000 unshared features. As the
number of variable intergenic bins used increases, the alignment
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Fig. 2 Addition of intergenic peak information improves integration of RNA and ATAC datasets. a Schematic illustrating how the UINMF algorithm
incorporates intergenic peaks when separately integrating the RNA and ATAC measurements from a SNARE-seq dataset. We treat each data type as if it
came from an independent source, and perform an integration using regular iNMF and our proposed UINMF method, which incorporates intergenic peaks.
b Average alignment and FOSCTTM (Fraction of Samples Closer Than True Match) scores for iNMF, Seurat v3, Harmony, and UINMF. iNMF and UINMF
are both initialized 5 different times over ten random seeds, with UINMF including an additional 7,000 intergenic features into the analysis. For
nondeterministic algorithms, data are presented as mean values+/− SEM. To compare algorithm performance, we used a paired, one-sided Wilcoxon test
to compare UINMF’s alignment and FOSCTTM scores to iNMF (P = 1.953 × 10−3, P = 1.953 × 10−3), Seurat (P = 1.953 × 10−3, P = 0.01855), and
Harmony (P = 9.766 × 10−4, P = 9.766 × 10−4), with Seurat exhibiting a significantly lower FOSCTTM score. For each algorithm, we compare 10 pairs of
data points (n = 20). We factorize and cluster the cells using their RNA transcripts (c) and chromatin accessibility measures (d) separately. After
integration, we use the known cell correspondences to separately plot the gene expression (e) and chromatin accessibility datasets (f) from SNARE-seq,
colored by the same cell type labels. We assess the contribution of information contained within the intergenic peaks by assessing the alignment (g) and
FOSCTTM (h) scores across a range of included peaks, from 0 unshared features (iNMF) to 7000 unshared intergenic bins, adding 1000 unshared
features to each analysis. The bold line indicates the median data value, and the boundaries of each box are defined by the first and third data quartiles (25
and 75%, respectively). The upper (lower) whiskers extend from to highest (lowest) point within 1.5 of the interquartile range. Outliers beyond the
whiskers are plotted as points. We calculate FOSCTTM and alignment scores for ten random seeds for each number of unshared features (n = 10).
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(Fig. 2g) and FOSCTTM (Fig. 2h) scores show a corresponding
stepwise improvement, indicating that each additional set of
intergenic bins improves the overall integration. Moreover, the
increasingly refined metrics of integration suggest that there is a
substantial contribution of information even in the last 2000
variable bins added, as integrating with 7000 intergenic bins has less
variance in metric scores than integrating with 5000 intergenic bins.

Leveraging additional genes improves integration with tar-
geted spatial transcriptomic technologies. We expect the
UINMF algorithm to be especially effective for integrating tar-
geted spatial transcriptomic datasets, as the number of genes
measured in such datasets is often limited. Integrating such
datasets with scRNA-seq provides the opportunity to pair
transcriptome-wide profiles from dissociated cells with spatial
transcriptomic data. This mitigates the loss of sensitivity for
distinguishing cell types, while mapping cell types to their spatial
positions within a tissue.

To explore the utility of the UINMF algorithm for integrating
targeted spatial transcriptomics and scRNA-seq datasets, we
analyzed STARmap data10 and scRNA-seq data29. We used a
STARmap dataset that contains spatial position and transcription
level for 28 genes across 31,294 cells within a 3D block of tissue
from the mouse frontal cortex. To our knowledge, this dataset is
unique in that it is the only dataset of spatially resolved gene
expression for multiple genes within a 3D tissue block.

Even though the 28 genes are selected to distinguish among cell
types, the STARmap data fails to clearly separate cortical cell
types after matrix decomposition (Fig. 3b). Therefore, we
integrate the spatial transcriptomics data with scRNA sequencing
data from Saunders et al.29 and perform Louvain community
detection. We annotate the scRNA-seq cells using their previously
published cellular annotations29. We observe improved cluster
resolution using iNMF with only shared genes to integrate the
STARmap dataset with the scRNA-seq dataset (Fig. 3c), but some
distinct cell types are mixed together, while others are arbitrarily
split. The original cluster labels of the scRNA-seq data are not
very well-preserved in the resulting clusters. For example, no
distinct boundaries are apparent between the Layer 6, Layer 5,
and Layer 5B excitatory neurons. The mural cells are likewise ill-
defined. Using UINMF to incorporate 2775 more genes into the
integration allows the metagenes to be estimated from a broader
array of genes. Consequently, the addition of these unshared
features results in dramatically clearer clusters that much better
reflect the ground truth labels (Fig. 3d). The distinction between
the excitatory neuron subtypes become clear, and a defined
population of mural cells also becomes distinguishable. Thus,
using the unshared features, it is possible to identify cell types that
would not be otherwise distinguishable.

To quantify the advantage of the UINMF method, we calculated
Adjusted Rand Index (ARI) and purity metrics for multiple
initializations of the UINMF and iNMF algorithms across a range
of different Louvain resolution parameters (Fig. 3e, f). The
UINMF algorithm achieves significantly (P = 3.895 × 10−10),
paired one-sided Wilcoxon test) higher ARI and cluster purity
compared to the iNMF algorithm. UINMF also significantly
outperforms both Seurat v3 and Harmony in both ARI and purity
metrics (P = 3.895 × 10−10, paired one-sided Wilcoxon test). In
short, the addition of the unshared genes significantly improves
the integration of STARmap and single-cell RNA-seq data.

We next examined the contribution of each part of the matrix
decomposition (W, V1, V2, and U) for each factor (methods).
Both U and V are regularized in the UINMF objective to
encourage the reconstruction to come primarily from the shared
factors. Consistent with this regularization, we found that W, the

shared metagenes, contributed the most to the matrix reconstruc-
tion, and the dataset-specific V1 and V2 contributed the least
(Supplemental Fig. 3a). Intuitively, this allows the shared features
to compose the largest scaffold of integration, while the dataset-
specific metagenes absorb technical artifacts and biological
differences (which should have smaller effects than the shared
signals). Interestingly, U’s contributions to the matrix reconstruc-
tion are generally larger than the contributions from V, though
still much smaller than those from W.

To investigate whether the unshared features U highlight any
cell-type-specific effects, we ranked the contribution of U to each
factor, and selected the ten highest factors. We then annotated
each factor based on the cell type on which it had the highest
loading. The U factors with the 10 highest contributions to the
reconstructed matrix were primarily non-neuronal (Supplemental
Fig. 3b). We suspect that this may be because the selected genes
measured by STARmap were primarily marker genes for
neuronal cell types. Thus, the inclusion of unshared genes may
provide the most benefit for the non-neurons.

To verify that corresponding cell types were clustered together
across technologies, we examined the expression of several key
marker genes for each labeled cell type by dataset (Fig. 4a).
Generally, marker genes highly elevated in the cell types of the
STARmap dataset are also highly elevated in the corresponding
scRNA-seq cell type, indicating that the metagene definitions
reflect biological distinctions significant for both datasets. This
reinforces that the cell clusterings are not reflective of technical
artifacts specific to an individual dataset, nor are they formed
overwhelmingly by a single dataset. Rather, the clusters reflect
divisions significant to both datasets jointly. Additionally, as we
previously noted25, there is evidence that the STARmap gene
capture is somewhat non-specific compared to scRNA-seq for
some genes, such as Sulf2 and Mgp.

A key advantage of refining cell types in the STARmap dataset
is the ability to use these cell labels within a 3D tissue sample,
providing greater insight about how transcriptomic profiles are
arranged in vivo. Consequently, we used the derived cell type
labels from the UINMF algorithm within the context of 3D space,
allowing us to assess their validity on the basis of concordance
with known tissue architecture (Fig. 4b). This analysis confirms
that our cell type annotations accord well with the known
structure of the cortex, such as the clear laminar arrangement
of excitatory neurons (Fig. 4c). It has also been previously
established that MGE interneurons originate from the more
rostral region of the brain, and the CGE neuron center lies caudal
to the MGE center30. Likewise, the MGE and CGE determined
cell types establish a gradient such that the CGE interneurons
increase in more cranial regions of the cortex slice (Fig. 4d). The
region of white matter that lies beneath the cortex, composed
primarily of oligodendrocyte cells, is also identifiable (Fig. 4e).
Playing a significant role in supporting the brain’s vascular
systems31, endothelial cells compose portions of the blood-brain
barrier, and the UINMF results indicate that endothelial tip cells
are located near the outer surface of the brain (Fig. 4f).

Additionally, we highlight one of the advantages of integrating
the STARmap data with scRNA-seq data by imputing values for
genes not originally measured in the STARmap assay, e.g., the
Trf and Dcn genes. Trf is a recognized marker gene of
oligodendrocytes32, and Dcn has previously been found in three
types of vascular leptomeningeal cells (VLMCs)33, which are
known to comprise vascular structures. Using KNN imputation,
we are able to visualize the imputed gene expression within the
3D volume (Supplemental Fig. 4). The expression of Trf is
primarily confined to the white matter, a region known to be
oligodendrocyte-rich, and elevated Dcn expression values are
visible at the blood-brain barrier.
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We further demonstrate the advantages of UINMF for spatial
transcriptomic datasets by integrating an osmFISH dataset (5185
cells and 33 genes)12 from the mouse somatosensory cortex with
the DROPviz scRNA-seq dataset from the frontal cortex (70,020
cells). Using iNMF to integrate the osmFISH and DROPviz
datasets utilizes the 33 genes measured in the osmFISH protocol
as the shared features (Fig. 5a). The iNMF integration successfully
aligns the two data types, but, similar to the STARmap analysis,
leads to both mixing and oversplitting of cell types. The
intermixing of cell types, especially the excitatory neurons, fails
to resolve a distinct cluster for the Layer 5B Excitatory neurons
(Fig. 5b). Using UINMF to incorporate an additional 2000
variable genes from the scRNA-seq dataset allows the metagenes
to be estimated from many more features, resulting in much more
clearly resolved clusters (Fig. 5c). A distinct cluster of Layer 5B
Excitatory neurons can now be distinguished. Including addi-
tional features into the integration not only categorizes broad cell
types more effectively, it also allows for the identification of more
minute subclasses of cells.

As with the STARmap data, we then plotted the derived
UINMF labels within their corresponding spatial context (Fig. 5d).
The excitatory cells again show a clear laminar arrangement, with
layer 6 excitatory neurons forming the innermost layer of the

cortex, and layer 5 and layer 2/3 neurons above. Interestingly,
layer one contains a number of cells identified as astrocytes
(Fig. 5d), a finding that has previously been observed experi-
mentally and which has been proposed as evidence for the
interaction of glial cells in neuronal signaling34. The white matter
region, located inferior to layer 6 and known to be composed of
oligodendrocytes and polydendrocytes35,36, is likewise observable.
Lastly, the presence of the caudoputamen and internal capsula
region can be identified by the small grouping of inhibitory
neurons lateral to the white matter12.

To quantify the advantage of using UINMF, we measured the
ARI and purity scores for both UINMF and iNMF over multiple
initializations and multiple clustering resolutions (Fig. 5e, f).
UINMF performed significantly better in terms of both ARI
(P < 2.2 × 10−16, paired one-sided Wilcoxon test) and purity (P =
7.078 × 10−8, paired one-sided Wilcoxon test) metrics across the
whole range of clustering resolutions. A similar improvement was
observed when comparing the UINMF performance to Seurat v3
and Harmony. Note that only a single value is shown for Seurat
v3 and Harmony at each resolution because these algorithms are
deterministic. UINMF performed significantly better than Seurat
v3 and Harmony in both ARI (P = 2.505 × 10−9, P = 2.982 ×
10−5) and purity (P < 2.2 × 10−16, P = 1.744 × 10−15) metrics.
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UINMF improves integration of multimodal and spatial
transcriptomic datasets. Single-cell multimodal technologies
measure epigenomic and transcriptomic profiles from the same
cell, providing an exciting opportunity to define cell types from
multiple molecular modalities. However, many applications
require integrating such multimodal measurements with single-
modality datasets. In such applications, the ability of UINMF to
incorporate unshared features allows us to capitalize on the
multimodal information, rather than using only shared features.

To demonstrate the advantages of such an approach, we used
UINMF to integrate STARmap and SNARE-seq data. The
STARmap dataset provides gene expression data for 2522 cells
across 1020 genes while preserving the 2D spatial coordinates
for each cell. The SNARE-seq dataset (10,309 cells) provides
simultaneous chromatin accessibility and gene expression levels
from the same barcoded cells.

We first integrated the STARmap data and SNARE-seq gene
expression measurements only by performing iNMF on the 944
genes shared between the datasets, omitting the unshared genes
and completely neglecting the chromatin information. We
annotated the cells by using the original annotations from both
datasets to jointly define the resulting clusters (Fig. 6a). When
integrating the datasets with UINMF, we were able to add an
additional 2688 highly variable genes present in the SNARE-seq
dataset when calculating the metagene loadings. Because the

SNARE-seq data is multiomic, we also incorporated the available
chromatin accessibility information by including the top 1431
variable chromatin accessibility features within the U matrix
(Fig. 6b). Thus, the UINMF integration incorporated a total of
4119 features not measured in the STARmap dataset (Fig. 6c).

Next, we investigated that the integrity of each individual
dataset had been maintained by examining the STARmap and
SNARE-seq cells individually by their original labels (Fig. 6d, e).
There is clear alignment between the original cell labels of each
dataset, indicating that the integration defined the metagenes
relevant to specific cell populations for both datasets. This suggests
that the unshared features can be included into the integration
without unduly dominating the metagene calculations.

To quantify the derived benefit of including the additional
features into the analysis, we then calculated the purity and ARI
scores for ten initializations (Fig. 7a, b). UINMF significantly
outperformed the iNMF algorithm on both ARI (P = 5.934 ×
10−15, paired one-sided Wilcoxon test) and purity (P = 1.046 ×
10−11, paired one-sided Wilcoxon test). The iNMF algorithm has
an ARI competitive with that of UINMF at only a single louvain
resolution (0.7). At this resolution, UINMF still has a superior
purity score, substantiating the benefit of including additional
features using the UINMF algorithm.

Next, we benchmarked the UINMF method against Seurat v3
and Harmony. In comparison to Seurat v3, UINMF has a
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significantly better ARI score across resolutions (P =
0.0004184). Additionally, UINMF also has superior purity over
Seurat v3 across all tested resolutions (P = 2.2 × 10−16, paired
one-sided Wilcoxon test). Similarly, UINMF has a significantly
higher purity score (P = 2.2 × 10−16) at all Louvain resolution
in comparison to Harmony. UINMF also has a significantly
higher average ARI score than Harmony at all Louvain
resolutions (P = 0.002927). While Harmony does achieve
higher ARI scores at the higher Louvain resolutions, it is critical
to note that these are clearly not optimal values for this dataset.
Taken together, these results show that the use of UINMF to
incorporate added features to the data integration significantly
improves the integration of single-cell multimodal data and
spatial transcriptomic data.

Because a key motivation for integrating the multimodal and
spatial transcriptomic data was bringing enhanced resolution
within the context of spatial coordinates, we next plotted the
results of the UINMF integration in space. Applying the cell type
labels from UINMF to STARmap replicate one (973 cells, Fig. 7c)

and replicate two (1549 cells, Fig. 7d), we found that the UINMF
results accord well with the cortical structure. The excitatory
neurons are arranged in layers, with L6, L5, and L2/3 clearly
visible. Likewise, we also can identify the oligodendrocyte-rich
white-matter below the cortex. Additionally, the vascular cell
population, which contains endothelial and mural cells, comprise
the outermost group of cortical cells.

The SNARE-seq and STARmap integration leverages two
distinct types of unshared features, as the U matrix contains both
unshared genes as well as snATAC-seq peak information. To
determine how the unshared features from each modality
contribute to the integration, we repeated the integration using
only one type of unshared data. Specifically, we integrated the
SNARE-seq and STARmap datasets using UINMF, and only the
unshared genes (2688 genes) as unshared features. We also
integrated the SNARE-seq and STARmap datasets using UINMF,
and only the unshared peaks (1431 peaks) as unshared features
(Supplementary Fig. 5). The results indicate that the unshared
genes contribute most substantially to the improvement in data
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integration, but that using the peak data individually and
additively enhances the final integration result.

Incorporating nonorthologous genes improves the integration
of cross-species data. Previous integrations of cross-species
datasets have been limited to genes that are orthologous between
species, as non-orthologous genes, by definition, are not shared
between datasets25. Yet, non-orthologous genes can be key
marker genes within a species, providing crucial information for
distinguishing cell populations. Using UINMF, we were able
explore the potential benefits of including non-orthologous genes
in cross-species integration. For this cross-species analysis, we
integrated scRNA data (4187 cells) from the pallium of the
bearded dragon lizard (Pogona vitticeps)37 with scRNA data from
the mouse frontal cortex (71,639 cells)29. We first selected 1979
variable genes that were annotated as one-to-one orthologs
between the two species. Then we selected an additional 166
non-orthologous variable genes from the lizard dataset. We
integrated the datasets using UINMF, with the one-to-one

orthologs as shared features, and the non-orthologous genes
from the lizard as unshared features (Fig. 8a). UINMF success-
fully aligned the two datasets, as illustrated by the overlapping
distributions of the two datasets within the UMAP space
(Fig. 8b). To confirm the correspondence between the cell types
of the two species, we plotted only the mouse cells (Fig. 8c) and
only the lizard cells (Fig. 8d), colored by their originally pub-
lished labels. Strong correspondence between cell types, includ-
ing excitatory neurons, inhibitory neurons, and non-neuronal
cells, can be observed.

To examine the additional benefit of including non-
orthologous genes when performing cross-species integrations,we
performed the integration using iNMF to establish a baseline. The
baseline iNMF integration was limited to the 1979 orthologous
genes, and resulted in a lower quality integration (Supplemental
Fig. 6). The mural cell populations had decreased alignment
between the two species, and many of the astrocytes were
misaligned to the excitatory neuron clusters. Furthermore, the
lizard’s excitatory neuron subtypes were not distinctly separated.
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In order to quantify the advantage of UINMF over iNMF in
cross-species integrations, we compared the purity and ARI
scores of the two algorithms across ten initializations. To ensure
that any differences observed were consistent for both species, we
used both the published mouse cell labels, as well as the published
lizard labels, to benchmark the algorithms. Including the non-
orthologous genes using UINMF resulted in a significant increase
in both the ARI (P = 3.626 × 10−9, paired one-sided Wilcoxon
test) and the purity (P = 6.258 × 10−4, paired one-sided
Wilcoxon test) of the mouse dataset (Fig. 8e, f). We also noted a
significant increase in the ARI (P = 1.145 × 10−6, paired one-
sided Wilcoxon test) of the lizard data set (Fig. 8g). Although
UINMF does not show a significant increase in the purity (P =
0.07157, paired with one-sided Wilcoxon test) of the lizard
dataset, UINMF is able to achieve a higher maximum purity score
at most resolutions (Fig. 8h), and shows significant improvement
in all other measures of integration quality.

We also compared the Purity and ARI scores of UINMF to
those achieved by Seurat v3 and Harmony. UINMF shows a
significant improvement in purity scores over Seurat v3 using
both mouse (P < 2.2 × 10−16, paired one-sided Wilcoxon test)
and lizard (P < 2.2 × 10−16, paired one-sided Wilcoxon test)
labels. When comparing ARI scores, there is not a significant
difference between Seurat v3 and UINMF using the lizard labels
(P = 0.8148, paired one-sided Wilcoxon test); however, the
mouse labels show a significant improvement (P = 3.047 × 10−11,
paired one-sided Wilcoxon test). Therefore, UINMF significantly
outperforms Seurat v3 on three out of the four measures assessed.
When examining the difference in performance between UINMF
and Harmony, Harmony shows significantly improved ARI (P <
2.2 × 10−16, paired one-sided Wilcoxon test) and purity (P =
2.815 × 10−12, paired one-sided Wilcoxon test) scores using
the mouse labels. However, UINMF has superior performance
when comparing the ARI (P = 1.674 × 10−5, paired one-sided
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Wilcoxon test) and purity (P < 2.2 × 10−16, paired one-sided
Wilcoxon test) scores using the lizard labels. Harmony’s increased
performance using the mouse labels, but decreased performance
when using the lizard labels, leads us to believe that Harmony has
learned principal components driven primarily by the mouse
dataset, neglecting to learn factors that likewise distinguish the
lizard cells. The large difference in dataset size between the mouse

(71,639 cells) and lizard (4187 cells) supports this hypothesis.
UINMF innovatively learns joint metagene factors, resulting in a
final integration that respects biological factors in both datasets.

A nice property of UINMF is its flexibility for a range of
types of integration analyses, including those with more than
two datasets. To demonstrate a case where this is useful, we
performed a cross-species integration of the excitatory neurons of

da

b

M
ou

se
 

Li
za

rd

C
el

ls

C
el

ls

C
el

ls

scRNA-seq 

Targeted Spatial 

C
el

ls

Orthologous 
Genes

Lizard scRNA-seq 

Mouse scRNA-seq

Orthologous 
Genes

Non-Orthologous 
Genes

h

gAstrocyte

CGE

Claustrum Endothelial_Stalk
Endothelial_TipLayer 5

Layer 5B

Layer 6

Layer2/3

MGE

Microglia/Macrophage

Mural

Oligodendrocyte

Polydendrocyte

Lizard

Mouse

Ependymoglial

Excitatory 1

Excitatory 2

Excitatory 3

Excitatory 4

Inhibitory 1

Inhibitory 2

Leukocytes

Microglia

Mural

Neural 
progenitors

Mature
Olig

Olig 
Precursors

Vascular 
Endothelial

c

e

f

0.40

0.45

0.50

0.55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resolution

AR
I

iNMF

Seurat

UINMF

Harmony

Li
za

rd

n.s.**

**

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resolution

AR
I

****

**
* **

*

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resolution

***

**

**
**

M
ou

se
 

Pu
rit

y

0.74

0.75

0.76

0.77

0.78

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resolution

Pu
rit

y

****
***

*

n.s.

**

n.s.

**
**

**

Lizard, Mouse; UINMF

Lizard; UINMF

Mouse; UINMF

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28431-4

12 NATURE COMMUNICATIONS |          (2022) 13:780 | https://doi.org/10.1038/s41467-022-28431-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the primary motor cortex data of the human (7805 cells), mouse
(8242 cells), and the marmoset (8166 cells)38.

Using 2757 orthologous genes shared between all three species
as shared features, we then selected 353 non-orthologous mouse
genes, 290 non-orthologous marmoset genes, and 671 non-
orthologous human genes as unshared features. UINMF success-
fully aligned the three datasets (Supplemental Fig. 7a), while
preserving the originally labeled cell types of each species
(Supplemental Fig. 7b–d). Interestingly, however, there were
two distinct populations of mouse neurons, L5 ET and L5/6 NP,
that do not align to the primate data.

We further investigated these clusters to understand why they
did not align. The original publication similarly identified
primate-specific features of L5 neurons. Specifically, the L5 ET
neurons for all species showed cell-type-specific expression of
certain ion channel subunits, but the L5 ET neurons of the
primates had increased cell-type-specific expression of potassium
and calcium channels compared to the mouse L5 neurons. It was
hypothesized that these differences drove the observable differ-
ences in physiological response between the mouse and primate
ET neurons. We thus checked whether our non-aligning clusters
reflect these species differences in ion channel expression. We
compared the mouse cells that successfully aligned with the
primate L5 ET neurons (Cluster 9), with those L5 ET mouse cells
that were unaligning (Cluster 13). We observed that the ion
channel subunits previously annotated38 as showing conserved
expression across mouse and primates were again consistent in
expression, regardless of their alignment status (Supplemental
Fig. 7e). However, for genes previously identified as showing
primate-specific enrichment in L5 ET cells38, we saw a distinct
difference in the expression levels between the unaligning and
aligning mouse cells, providing biological support for the
algorithmic separation of these clusters (Supplemental Fig. 7f).

Discussion
We have extended our previous integrative nonnegative matrix
factorization algorithm25 by adding an unshared feature matrix.
This addition accommodates features that are not present in all
datasets and increases the amount of information that is used to
define the metagenes. We showed that the inclusion of unshared
features provides clear advantages across four different types of
integration analyses. First, UINMF can be used to incorporate
intergenic information when integrating transcriptomic and epi-
genomic datasets. Second, UINMF can incorporate genes not
measured in targeted spatial transcriptomic datasets, allowing
better resolution of fine cellular subtypes within a spatial coor-
dinate frame. Third, UINMF can utilize all of the information
present in single-cell multimodal datasets when integrating with
single-modality datasets. Additionally, UINMF can accommodate
non-orthologous genes in cross-species integration analyses.

A recent preprint described MultiMAP, another single-cell data
integration approach that can incorporate unshared features.
Our approach differs from MultiMap in several key ways. First,
MultiMAP uses singular value decomposition followed by

nonlinear dimensionality reduction39. Therefore, the resulting
reduced dimensions are not biologically interpretable. In contrast,
UINMF learns factor loadings that represent metagenes, groups
of genes that often reflect an underlying biological process or
technical artifact. Second, MultiMAP makes a key assumption
that the data is uniformly distributed on the latent manifold.
While this assumption may hold at times when the datasets to be
integrated are sampled from the same tissue, several common
integration scenarios violate this assumption. For example,
nuclear isolation protocols and whole-cell dissociation protocols
each have different cell-type-specific biases, leading to different
cell type distributions. Similarly, cross-species integrations may
present a challenge if the proportions of homologous cell types
are different. In contrast, UINMF does not rely on the uniform
distribution assumption.

With the rapid development of multimodal and spatial tran-
scriptomic technologies, we anticipate that the UINMF algorithm
will prove useful for a wide variety of analyses. As the additional
U matrix can incorporate any type of cellular features, with no
assumptions about their relationship to gene-centric features, the
algorithm is inherently flexible to accommodate a variety of data
types and modalities. Future applications could examine the
incorporation of data types such as Hi-C40 measurements, as well
as the potential to use UINMF on a diverse collection of in situ
hybridization and immunohistochemistry datasets with limited
numbers of genes. We expect that, as additional experimental
methods for single-cell measurement are developed, our approach
will prove increasingly useful for a broad variety of single-cell
integration tasks.

Methods
We extend our previously published ANLS algorithm for solving the iNMF
problem25 so that we can now incorporate unshared features when integrating
across datasets. The unshared feature matrix can accommodate any type of
unshared feature, whether gene-centric or otherwise. In this paper, we incorporated
intergenic peaks from snATAC-seq data and additional genes not measured in all
datasets, although many other applications are possible.

For each data set E1, E2, ....En, we normalize the data, and select m variable genes
(shared across all datasets), and zi variable features (not shared across all datasets),
such that after scaling Ei ϵRþ

ni ´ ðmþziÞ (i = 1,....,N). For a given K, the user-defined
number of metagenes, and λi, the UINMF optimization problem is:

argminHi ≥ 0;W ≥ 0;Vi ≥ 0;Ui ≥ 0 ∑
d

i
EiPi
� �� Hi W0ð Þ þ ViUi

� �� ��� ��2
F
þ λi ∑

d

i
kHi ViUi
� �k2F ð1Þ

where Pi is the unshared feature matrix, Hi are the cell factor loadings, W is the
shared metagenes, Vi are the dataset-specific, shared metagenes, and Ui are the
dataset-specific, unshared metagenes.

We then derive a coordinate block descent (BCD) algorithm41 for solving the
UINMF optimization problem. The BCD approach divides the parameters into
blocks, and then finds the optimal parameters by updating each block while
holding the others fixed. Because each block-wise optimization sub-problem is
convex, iterating these updates is guaranteed to converge to a local minimum41. To
solve the UINMF optimization problem, we use matrix blocks, one block for each
of HiϵRþ

ni ´ k , WϵRþ
k´m , ViϵRþ

k´m , and UiϵRþ
k´ zi ði ¼ 1; ::::;NÞ:

Each sub-problem is a nonnegative least squares optimization, which we solve
numerically using an efficient C++ implementation of the block principal pivoting

Fig. 8 The inclusion of non-orthologous genes improves the integration of cross-species data. We use UINMF to include both orthologous and non-
orthologous genes when integrating the datasets (a), and demonstrate the alignment between the two datasets (b). We also confirmed cell type
correspondence by examining only the mouse cells (c) and only the lizard cells (d), both labeled with their published cell labels. To show the advantage of
including the non-orthologous genes, we show the difference in ARI (e) and purity (f) scores using the originally published mouse labels, comparing
UINMF performance to iNMF (P = 3.626 × 10−9, P = 6.258 × 10−4), Seurat (P < 2.2 × 10−16, P = 3.047 × 10−11), and Harmony (P < 2.2 × 10−16, P =
2.815 × 10−12). We compare algorithm performance using a paired, one-sided Wilcoxon test, where n = 200 ARI (purity) measures. We also confirm a
similar trend in the ARI (g) and purity (h) scores using the original lizard labels to assess performance differences between UINMF and iNMF (P = 1.145 ×
10−6, P = 0.07157), Seurat (P < 2.2 × 10−16, P = 0.8148), and Harmony (P = 1.674 × 10−5, P < 2.2 × 10−16). For nondeterministic algorithms, data are
presented as mean values +/− SEM.
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algorithm42. To update Hi, we solve

Hi ¼ argminH ≥ 0

WT

0z
i ´ k

 !
þ ViT

UiT

 !

ffiffiffiffi
λi

p ViT

UiT

 !
0
BBBBB@

1
CCCCCAHiT � Ei

0ni ´ mþzið Þ
� �T

�����������

�����������

2

F

ð2Þ

while holding the other parameters fixed. Similarly, to update the other parameters,
we solve the following subproblems:

W ¼ argminW ≥ 0

H1

Hi

� �
W � E1 � H1V1
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Vi ¼ argminV ≥ 0
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We iterate these updates until convergence, which we determine by calculating the
decrease in the objective function at the conclusion of each iteration (Supplemental
Fig. 8). We consider the algorithm to have converged when the decrease in the
objective value function between the previous and current iteration, weighted by
dividing by their mean, is less than the epsilon parameter set by the user. For all
UINMF analyses in this paper, we set the convergence threshold to ε = 1.0 × 10−10

and set the maximum number of iterations to 30 for each analysis, unless
otherwise noted.

Note that iNMF uses a constant penalty term λ for all datasets. When imple-
menting UINMF, however, we introduced a separate λi parameter for each dataset,
such that the penalty applied to E is weighted by λ1, E2 has a regularization weight
of λ2, etc. The inclusion of λi allows for the tuning of dataset penalization at the
user’s discretion. We found that in some cases, using a different penalty value for
different datasets could improve results. However, we simply used λi = 5 (the
default value in our iNMF and UINMF implementations) for all analyses except the
STARmap and DROPviz integration. The STARmap and DROPviz integration
does achieve the best results with different λ values for each dataset.

Increase in Computational Complexity. The difference in computational com-
plexity between UINMF and iNMF increases with the number of unshared features
used in UINMF, but the difference between the runtime of the two algorithms is
not prohibitive in practice (Supplemental Figs. 9, 10). To assess the theoretical
difference in computational complexity between the algorithms, assume the same
total number of features are present in the datasets input into each algorithm. Let
iNMF operate on a dataset that has g shared features, and let g = m + z, where m is
the number of shared features and z is the number of unshared features of the
UINMF dataset. Let K be the user-defined number of metagenes. For each iteration,
UINMF solves for Uz × K and Vi

m × K separately, but iNMF performs the same
number of calculations to solve for Vi

g ´K , since g = m + z. When solving for the
shared metagene matrix, W, iNMF solves the optimization problem for a g × K
matrix, whereas UINMF must only solve a m × K matrix. Because the shared
metagene matrix has less features in UINMF (g > m), each iteration of the algo-
rithm actually constitutes less computational complexity than iNMF given the
same total number of features.

Evaluating Time and Memory Usage. To benchmark the memory usage and run
time of UINMF in comparison to current methods, we measured the performance
of Seurat v3, Harmony, iNMF, and UINMF when integrating datasets of 20,000,
40,000, 60,000, 80,000, and 100,000 cells. To obtain datasets with these cell
populations, we sampled equivalent numbers of cells from the Dropviz scRNA-seq
and STARmap datasets. As there are only 32,845 cells in the STARmap dataset, for
the 80,000 and 100,000 cells data integrations, we sampled the remaining cells all
from the DROPviz dataset. The integrations for the four algorithms were per-
formed on the same sample datasets. We used the 28 shared genes between the
datasets as the shared features for all four algorithms. We set λ = 5 and K = 27 as
the parameter for both algorithms. Using UINMF, we incorporated an additional
2775 unshared genes when performing the dataset integration. We ran each iNMF
and UINMF analysis 5 times to assess run-to-run variation in time and memory
usage but found that these numbers were very stable. For the Seurat v3 integration,
the number of dimensions was set to 27 for both the FindIntegrationAnchors
(Seurat 4.0.0) as well as the IntegrateData (Seurat 4.0.0) functions. The number of
principal components within RunPCA (Seurat 4.0.0) was also set to 27 for Har-
mony as well as Seurat v3 (Supplemental Fig. 1).

Evaluation Metrics. The alignment score, based on Butler et al. (9), is a measure
that captures how well two samples align uniformly within a latent space. A score
closer to zero indicates a poor alignment, or mixing of the two samples, whereas a
score closer to one is indicative of datasets that share underlying cell types.

Fraction of Samples Closer Than the True Match (FOSCTTM) scores measures
how closely two measurements of the same cell are placed within the latent space3.
We calculate the FOSCTTM score by finding the distance between the scRNA-seq
cell and the snATAC-seq label for each barcode. We then divide by the total
number of barcoded cells to derive the average FOSCTTM score.

Cluster purity is calculated based on a reference clustering. Each cluster is
assigned a type based on the predominant label for that cluster. The cells that
correspond correctly to this label are counted. We calculate purity by summing the
correct number of labels across all clusters, and dividing by the total number of
labeled cells present. Consequently, a score closer to 0 indicates that the cells are
not being accurately grouped into clusters by cell types, and a score of 1 indicates
perfect grouping by cell type.

To calculate the Adjusted Rand Index (ARI), we measured the similarity
between two clusterings by whether we observe matching or non-matching
clustering between pairs of samples. The ARI score can range from 0 (no matches)
to 1 (perfect matching).

Integration of RNA and ATAC profiles from SNARE-seq. For a baseline, we
integrated the scRNA and snATAC datasets that resulted from the original
SNARE-seq publication2 with iNMF, using the top 2589 variable genes and their
associated snATAC peaks. We took the best optimization of 5 random initializa-
tions, each performed with K = 30 and λ = 5, across ten random seeds. We
performed quantile normalization with parameter knn_k = 20. We then calculated
the average FOSCTTM and alignment scores for each of the 10 random seeds. To
assess the additive properties of including the intergenic peaks into the integration,
we used the U-matrix to hold 1000, 2000, 3000, 4000, 5000, 6000, and 7000 of the
top variable intergenic bins. To select these bins, we binned the genome into
sections of 100,000 bp. We counted the number of peaks within each bin, where a
peak was considered to be inside a bin if over 50% of the peak’s base pairs over-
lapped the bin. We then filtered the bins, removing bins that were empty, or
overlapping with ENCODE Blacklisted regions43, genes or promoters. After nor-
malization, we then used the FindVariableFeatures function (Seurat 4.0.0) to select
the top variable bins. We saw the greatest improvement in performance using 7000
intergenic bins, as this allowed the capture of a large amount of the data variance,
without oversaturating the factor loadings with noise. We performed UINMF with
K = 30, λ = 5, and knn_k = 20. Using a paired, one-sided Wilcoxon test, we
compared the FOSCTTM and alignment scores of UINMF and iNMF.

To compare UINMF performance to that of Seurat v3 and Harmony, we
integrated the two datasets using the 2589 shared features. For Seurat v3, we used a
PCA dimension of 30. To compare UINMF and Seurat v3 performance, we
performed a paired, one-sided Wilcoxon test on the alignment and FOSCTTM
scores of UINMF and Seurat v3.

Similarly, to run Harmony, we used the 2589 shared features and 30 principal
components for RunPCA (Seurat 4.0.0). We also used 30 neighbors for the
FindNeighbors function. We calculated the alignment and FOSCTTM, and then
performed a paired, one-sided Wilcoxon test to assess the difference between
UINMF and Harmony performance. To cluster just the RNA and ATAC cells, we
similarly used K = 30, λ = 5, knn_k = 100, and a Louvain resolution of 1. To
derive ground truth cell type labels, we clustered and annotated the RNA-seq cell
barcodes using marker genes. We use these consistent labels as ground truth labels
for each UMAP presented in Fig. 2.

Integration of scRNA-seq and STARmap. We integrated the STARmap spatial
transcriptomic dataset (31,294 cells, filtered for hippocampus and claustrum cells)
and a scRNA-seq dataset (70,514 cells (1125 removed for non-expressing)) using
iNMF. For this iNMF analysis, we were limited to the 28 genes measured in the
STARmap dataset. Both iNMF and CCA/PCA (used by Seurat v3) are limited to no
more components than the number of genes, while UINMF can estimate more
dimensions because it also incorporates unshared genes. We thus used K = 27
dimensions for both iNMF and Seurat v3. For iNMF we also used λ = 5, and a
quantile normalization with K-nearest neighbors of 20. Using UINMF, we included
an additional 2775 of the most variable genes. The parameters for the UINMF
integration were K = 40 and λ = 10 for the STARmap data and λ = 1 for the
scRNA-seq data; knn_k = 20 for the quantile normalization; and Louvain reso-
lution of 1. For both iNMF and UINMF, we perform 5 initializations with the same
random seed and pick the best one. We calculate the cluster purity for both
algorithms using the scRNA-seq labels, and use the highest number of cells present
to annotate the clusters by cell type. These annotations were then applied within
the context of 3D space using the originally provided STARmap coordinates. For
five different random seeds, we measured the difference between the cluster purity
and ARI of iNMF and UINMF using a paired, one-sided Wilcoxon test.

For Seurat v3, we similarly used the 28 shared genes and a PCA dimension of
27. We then calculated the Purity and ARI scores at each Louvain resolution from
0.1 to 1, in increments of 0.1. We performed a paired, one-sided Wilcoxon test to
assess the difference between UINMF and Seurat v3 performance quantified by
purity and ARI scores.

Similarly, to run Harmony, we used the 28 shared genes and 27 principal
components for RunPCA (Seurat 4.0.0). We also used 27 as the number of
dimensions used for the FindNeighbors function. For each Louvain resolution from
0.1 to 1, in increments of 0.1, we calculated the purity and ARI scores. We then
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performed a paired, one-sided Wilcoxon test to assess the difference between
UINMF and Harmony performance quantified by purity and ARI scores.

To analyze the effect of the additional features on the memory usage and run
time of the algorithm, we performed five initializations for 0, 1000, 2000, 3000, and
4000 extra features (Supplemental Fig. 9). For consistency, we used λ = 5 and K =
27 for all time and memory analyses.

After performing the dataset integration, it was possible to use imputeKNN,
with knn_k = 20, to impute gene values for genes originally unmeasured by the
STARmap technology. By using the gene profiles of the closest scRNA cells to
impute probable gene expression values for the STARmap cells, we are able to
predict expression for genes not originally assayed with the 3D tissue space.
Specifically, we show the results of KNN imputation for the Trf and Dcn genes
(Supplemental Fig. 4.)

To examine the individual contribution of each factor (Vi, U, W) to the matrix
reconstruction, we develop the calcNormLoadings function. Since WϵRþ

k ´m ,
ViϵRþ

k ´m , and UiϵRþ
k ´ zi are characterized by different numbers of features,

we standardize the factor loadings by dividing by the number of features pertinent
to each matrix. For each factor l in K, we measure the contribution to
reconstruction as

Ul ¼ jjH½; l� ´Ui½l; �jj2F=zi ð6Þ

Wl ¼ jjH½; l� ´Wl ½l; �jj2F=m ð7Þ

V1
l ¼ jjH½; l� ´V1½l; �jj2F=m ð8Þ

V2
l ¼ jjH½; l� ´V2½l; �jj2F=m ð9Þ

The resulting ranked norms provide intuition as to which factors each matrix
contributes most strongly to (Supplemental Fig. 3).

Integration of scRNA-seq and osmFISH. Using the osmFISH dataset (33 genes,
6471 cells) we excluded hippocampal and cells from the top left of the tissue slice
originally labeled “excluded” in the original osmFISH publication, as well as cells
with zero detected genes. A total of 5185 cells passed these filtering criteria. The
scRNA-seq dataset, originally 71,639 cells, was reduced to 70,020 (1,619 cells non-
expressing for the 33 genes of interest were removed). We ran the iNMF algorithm
using the 33 shared genes, λ = 5, K = 32, and took the best optimization of 5
random initializations for each of the 10 seeds. Note that, as with the STARmap
data, iNMF and Seurat v3 are limited to no more components than the number of
genes, while UNIMF can estimate more factors due to the use of unshared genes.
Using UINMF, we integrated the osmFISH spatial transcriptomic data with the
scRNA-seq using the 33 shared genes as well as the 2000 most variable unshared
genes. We used 10 different random seeds, with λ = 5 and K = 40, and took the
best optimization of 5 random initializations for each seed. We calculated the
Purity and ARI for each algorithm at Louvain resolutions 0.1 through 1.0, in 0.1
increments. We used the published DROPviz labels as our reference clustering, and
assessed the significance of our findings using a paired, one-sided Wilcoxon test.
We used knn_k = 150 for the quantile_norm function (rliger 1.0.0), n_neighbors =
150 for the runUMAP function (rliger 1.0.0), and a resolution of 0.5 for Louvain
community detection (rliger 1.0.0).

For the Seurat v3 integration, we also used the 33 shared genes and a PCA
dimension of 32. Using louvain resolutions from 0.1 to 1.0 in 0.1 increments, we
assessed the performance of Seurat v3 using purity and ARI scores. We compared
Seurat v3 and UINMF using a paired, one-sided Wilcoxon test.

Using Harmony, we integrated the two datasets using the 33 shared genes and
32 as the number of principal components and dimensions for the RunPCA and
FindNeighbors functions (Seurat 4.0.0). We quantified Harmony performance by
calculating purity and ARI scores for louvain resolutions from 0.1 to 1.0 in 0.1
increments, and compared the results against UINMF using a paired, one-sided
Wilcoxon test.

Cross-Species Integration. The Lizard Pallium dataset37 originally had 4202 cells,
but we limited the cells used to the 4187 cells deemed high quality in the original
publication. We integrated this dataset with the scRNA-seq dataset from the mouse
brain29 (71,639 cells). We used the original publication’s 1-to-1 ortholog labels to
select orthologs common to both the mouse and lizard dataset. Using these as our
shared features, we normalized and scaled the data. We then selected 1979 shared
genes, using a variance threshold of 0.3. For UINMF, we used the same variance
threshold to select 166 non-orthologous genes from the lizard. We optimized
UINMF and iNMF with K = 30, λ = 5, and took the best of 5 random initi-
alizations for 10 random seeds. We performed quantile normalization for each
optimized object using the mouse dataset as a reference. To ensure that any dif-
ferences in purity and ARI score were not driven by a single species, we calculated
the ARI and Purity scores using both the lizard and the mouse cell labels separately
as ground truth. We performed these calculations for each of the ten seeds at
louvain resolutions from 0.1 to 1.0 in increments of 0.1. To examine the difference
between UINMF and iNMF performance, we performed a paired, one-sided
Wilcoxon test between the ARI and Purity values, for the mouse and lizard labels,

respectively. When generating the UMAPs shown, we used the default louvain
resolution of 0.25, and the default nearest neighbors of 10.

For Seurat v3 integration, we used the 1979 highly variable, orthologous genes
identified between the datasets, and a PCA dimension of 30. Using louvain
resolutions from 0.1 to 1.0 in 0.1 increments, we assessed the performance of Seurat
v3 using purity and ARI scores with both the lizard and mouse annotations. To
compare the performance of Seurat v3 and UINMF, we used a paired, one-sided
Wilcoxon test.

Similarly, when evaluating the performance of Harmony in integrating the two
datasets, we use the same 1979 orthogolous genes. We use 30 as the number of
principal components and dimensions for the RunPCA and FindNeighbors
functions (Seurat 4.0.0). We quantified Harmony performance by calculating
purity and ARI scores for louvain resolutions from 0.1 to 1.0 in 0.1 increments, and
compared the results against UINMF using a paired, one-sided Wilcoxon test.

Integration of SNARE-seq and STARmap. To integrate the multi-omic SNARE-
seq dataset (10,309 cells) with the spatial transcriptomic STARmap dataset (2522
cells), we used the number of shared genes (944 genes), as well as 4,119 unshared
features. To generate the unshared features, we selected genes with a variance
threshold higher than that of 0.1, and then removed genes shared between datasets,
for a total number of 2688 unshared genes. We selected the chromatin accessibility
peaks with a variance greater than 0.01 (1431 peaks). For iNMF benchmarking, we
used only the 944 shared genes. We optimized UINMF and iNMF with K = 30, λ
= 5, and took the best of 5 random initializations for 10 random seeds. We
performed quantile normalization for each optimized object using the SNARE-seq
dataset as a reference. Using the SNARE-seq cell labels as ground truth, we cal-
culated the ARI and Purity scores for each of the ten seeds at louvain resolutions
from 0.1 to 1.0 in increments of 0.1. We set nearest neighbors to 100 when
generating the UMAPs shown, and the louvain resolution to 1. To assess the
difference between UINMF and iNMF functioning, we performed a paired, one-
sided Wilcoxon test between the ARI and purity values. The UMAPs shown have a
louvain resolution of 1.0, and are labeled by jointly examining the original
STARmap and SNARE-seq cell labels.

To quantify the contribution of each type of unshared feature to the resulting
improvement in dataset integration quality, we also performed the UINMF
integration using only the 1431 snATAC-seq peaks, and using only the 2688
unshared genes. For each analysis, we optimized the UINMF optimization equation
using K = 30, λ = 5, and took the best of 5 random initializations for 10 random
seeds. We performed quantile normalization for each optimized object using the
SNARE-seq dataset as a reference. Using the SNARE-seq cell labels as ground
truth, we calculated the ARI and purity scores for each of the ten seeds at louvain
resolutions from 0.1 to 1.0 in increments of 0.1 (Supplemental Fig. 5).

To assess the performance of Seurat v3, we used the 944 shared genes, and set
the PCA dimensions equal to 30. We then calculated the purity and ARI scores for
each Louvain resolution from 0.1 to 1.0, in increments of 0.1. We conducted a
paired, one-sided Wilcoxon test between UINMF and Seurat v3 performance in
terms of ARI and purity scores.

Using Harmony to perform the integration, we used the 944 shared genes and
the default 30 principal components for RunPCA (Seurat 4.0.0). Similarly, we used
the default (30) for the number of dimensions in the FindNeighbors function
(Seurat 4.0.0). Using louvain resolutions from 0.1 to 1.0 in 0.1 increments, we
assessed the performance of Harmony using purity and ARI scores. We compared
Harmony and UINMF using a paired, one-sided Wilcoxon test on both the purity
and ARI scores.

We assessed the impact of the additional features on runtime and memory
usage by performing UINMF using 0, 1000, 2000, 3000, and 4000 extra features
(Supplemental Fig. 10). Note that performing UINMF with 0 unshared features is
equivalent to performing iNMF. For consistency, we used λ = 5 and K = 30 for all
time and memory analyses.

Assessing the contribution of unshared features. In order to better quantify
how the number of shared and unshared features used within an analysis interact
to produce the observable differences in the quality of integration, we perform a
stepwise analysis. We select two single-cell transcriptomic datasets taken from the
mouse Primary Motor Area (MOp)13, with two different protocols: SMART-seq
and TenX. We then randomly downsampled the TenX dataset such that the
datasets had an equivalent number of cells (6288 cells). We then defined the 2500
most variable genes between datasets.

From these 2500 most variable genes, we randomly sampled a set of 500 genes.
Using these as shared features, we integrated the datasets using iNMF, letting K =
30, and λ = 5, selecting the best optimization score from three random
initializations. After performing matrix decomposition, we performed quantile
normalization using the SMART-seq dataset as our reference, and performed
Louvain community detection with a resolution of 0.1. Using the SMART-seq
labels as ground truth, we calculated the resulting purity and ARI scores. We then
decreased the number of shared genes by 100, and repeated the integration, and
metric calculations. We continued this process for 500, 400, 300, 200, and
100 shared genes. We repeated this process for ten different sets of randomly
selected held-out genes.
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To assess how including the unshared features benefits the dataset integration, we
integrate the datasets using UINMF. The same 500 shared genes are used as shared
features, and the remaining 2000 variable genes not selected are used as unshared
features for the SMART-seq dataset. For consistency, we use K = 30, λ = 5 as the
parameters for UINMF optimization, selecting the optimal optimization of three
initializations. Similarly, we perform quantile-normalization with SMART-seq as the
reference dataset, and calculate the Louvain community detection with a resolution
of 0.1. After calculating the purity and ARI scores, we repeat the UINMF analysis for
the same 400, 300, 200, and 100 shared genes, adding the unshared genes to the
unshared features, such that the number of total features for the SMART-seq
dataset always totals to the 2500 top variable genes. We repeat this process for the ten
sets of randomly selected held-out genes used for the iNMF analysis.

Lastly, we repeat the UINMF analysis, except instead of including the unshared
features from the SMART-seq dataset, we include the unshared features as part of
the TenX dataset. We also repeat this process for the ten sets of randomly selected
held-out genes used for the iNMF analysis (Supplemental Fig. 2a, b). Using
n_neighbors = 20, we plotted the resulting UMAPS from each analysis using
500 shared features and only 100 shared features (Supplemental Fig. 2c–f).

Selecting K and λ. The default parameter settings for iNMF are K = 30 and λ = 5.
To allow for a fair comparison between iNMF and UINMF, we used these para-
meters settings for both algorithms when performing the SNARE-seq integration
with intergenic peaks, the SNARE-seq integration with the 1020 gene STARmap
dataset, and the cross-species analysis. For the spatial transcriptomic dataset
integrations using osmFISH (33 genes) and STARmap (28 genes), iNMF required
the selected K to be less than the number of genes. Since one of the advantages of
our algorithm is that it does not have this constraint, we selected a value of K = 40
for both spatial transcriptomics integrations, the largest K we could select without
severely impacting the alignment scores (Supplemental Fig. 11). To select λ for the
spatial transcriptomics datasets, we selected λ = (10,1) for the STARmap inte-
gration with the scRNA-seq data. The higher penalty is assigned to the STARmap
data, and the use of the vectorized lambda showed improved alignment scores over
five initializations (Supplemental Fig. 12). We also showed the results of using λ =
5 for the osmFISH dataset in order to highlight that default choice of lambda still
provides a significant improvement compared to iNMF, and that the results were
not driven by the use of a vectorized λ (Supplemental Fig. 12).

Integration of three species. To illustrate the extensibility of the UINMF algo-
rithm to accommodate multiple datasets of unshared features, we performed a
cross-species integration of the primary motor cortex data of the human, mouse,
and marmoset, sequenced with droplet-based Chromium v3. To elucidate repro-
ducibility and consistency, we downsampled the available excitatory neuron
population from each species following the methods of the original publication38.
This sampling technique resulted in the selection of 8242 mouse excitatory neu-
rons, 8166 marmoset excitatory neurons, and 7805 human excitatory neurons.

To identify non-orthologous and orthologous genes, we downloaded the NCBI
table of orthologous genes between species, and identified genes listed as
orthologous between all three species, resulting in 14,448 orthologous genes
between datasets. Using a variable gene threshold of 0.2, we selected 2757 shared,
orthologous genes between the species. To select unshared orthologous genes, we
used a threshold of 0.3 for the human data, 0.25 for the mouse, and 0.2 for the
marmoset dataset. We used a variable threshold for the non-orthologous genes
such that we could retain a relevant population of unshared features for each
dataset, despite the differences in sequencing quality and depth. These thresholds
resulted in the selection of 353 non-orthologous mouse genes, 290 non-orthologous
marmoset genes, and 671 non-orthologous human genes.

We then performed the integration with 3 distinct initializations, keeping the
best optimization value, using K = 20, λ = 10. For quantile normalization, we used
the human dataset as a reference, as this was previously reported to have the
highest median neuronal gene detection38, and used knn_k = 50. For Louvain
community detection, we used a resolution of 0.25.

Statistics. All statistical analyses were performed using R (4.0.0). P values were
calculated using one-sided paired Student T-tests or one-sided paired Wilcoxon
Rank Sum Tests, as indicated. P-values are reported throughout, with statistical
significance considered P < 0.05. All error bars represent standard error, with the
exception of the box plots in Fig. 2g, h, and Supplementary fig. 2a, b, where the bars
represent the highest (lowest) point within 1.5 of the interquartile range.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used in this paper are previously published and freely available. Mouse
Frontal Cortex SNARE-seq cells from Chen et al.2 are in the GEO database under
accession code “GSE126074”. Mouse frontal cortex spatial transcriptomic cells from
“Moffit et al. [https://www.starmapresources.org/data]”10. Mouse cells from the
“somatosensory cortex [http://linnarssonlab.org/osmFISH/]”12. Adult mouse brain cells

from Saunders et al.29 [http://dropviz.org/]. The data is also in the GEO database under
accession code “GSE116470”. Lizard Pallium cells from “Tosches, et. al. [https://
public.brain.mpg.de/Laurent/ReptilePallium2018/]”37. Mouse Primary Motor Cortex
(10X and SMARTseq datasets) from “Yao et al. [https://assets.nemoarchive.org/dat-
ch1nqb7]”13. Mouse, Marmoset, and Human Primary Motor Cortex from “Bakken et al.
[http://data.nemoarchive.org/publication_release/Lein_2020_M1_study_analysis/
Transcriptomics/sncell/10X/]”38. All other relevant data supporting the key findings of
this study are available within the article and its Supplementary Information files or from
the corresponding author upon reasonable request. Source data are provided with
this paper.

Code availability
An R implementation of the UINMF algorithm is available as part of the “LIGER package
[https://github.com/welch-lab/liger]”. The package is also available on the
Comprehensive R Archive Network (CRAN). The package version used for the analyses
in the paper has been assigned a citable DOI through Zenodo: https://doi.org/10.5281/
zenodo.5762770.

Received: 9 April 2021; Accepted: 21 January 2022;

References
1. Method of the Year 2019: Single-cell multimodal omics. Nat. Methods 17, 1

(2020).
2. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the

transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37,
1452–1457 (2019).

3. Liu, J., Huang, Y., Singh, R., Vert, J. P. & Noble, W. S. Jointly embedding
multiple single-cell omics measurements. BioRxiv (2019).

4. Ma, S. et al. Chromatin Potential Identified by Shared Single-. Cell Profiling
RNA Chromatin. Cell 183, 1103–1116.e20 (2020).

5. Genomics, 10x. Chromium Next GEM Single Cell Multiome ATAC + Gene
Expression Reagent Kits User Guide. (2020).

6. Li, G. et al. Joint profiling of DNA methylation and chromatin architecture in
single cells. Nat. Methods 16, 991–993 (2019).

7. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility
DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

8. Method of the Year 2020: spatially resolved transcriptomics. Nat. Methods 18,
1 (2021).

9. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the
hypothalamic preoptic region. Science 362, eaau5324 (2018).

10. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell
transcriptional states. Science 361, eaat5691 (2018).

11. Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for
spatially resolved transcriptomics in human and mouse brain tissue. Nucleic
Acids Res. 48, e112 (2020).

12. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed
by osmFISH. Nat. Methods 15, 932–935 (2018).

13. Yao, Z. et al. An integrated transcriptomic and epigenomic atlas of mouse
primary motor cortex cell types. bioRxiv https://doi.org/10.1101/
2020.02.29.970558 (2020).

14. Richardson, S., Tseng, G. C. & Sun, W. Statistical Methods in Integrative
Genomics. Annu Rev. Stat. Appl 3, 181–209 (2016).

15. Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Computational
principles and challenges in single-cell data integration. Nat. Biotechnol. 39,
1202–1215 (2021).

16. Shen, R., Olshen, A. B. & Ladanyi, M. Integrative clustering of multiple
genomic data types using a joint latent variable model with application to
breast and lung cancer subtype analysis. Bioinformatics 25, 2906–2912 (2009).

17. Wang, B. et al. Similarity network fusion for aggregating data types on a
genomic scale. Nat. Methods 11, 333–337 (2014).

18. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-
cell transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. 36, 411–420 (2018).

19. Argelaguet, R. et al. MOFA+: a statistical framework for comprehensive
integration of multi-modal single-cell data. Genome Biol. 21, 111 (2020).

20. Gayoso, A. et al. Joint probabilistic modeling of single-cell multi-omic data
with totalVI. Nat. Methods 18, 272–282 (2021).

21. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data
using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902
(2014).

22. Jacob, L., Gagnon-Bartsch, J. A. & Speed, T. P. Correcting gene expression
data when neither the unwanted variation nor the factor of interest are
observed. Biostatistics 17, 16–28 (2016).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28431-4

16 NATURE COMMUNICATIONS |          (2022) 13:780 | https://doi.org/10.1038/s41467-022-28431-4 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074
https://www.starmapresources.org/data
http://linnarssonlab.org/osmFISH/
http://dropviz.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116470
https://public.brain.mpg.de/Laurent/ReptilePallium2018/
https://public.brain.mpg.de/Laurent/ReptilePallium2018/
https://assets.nemoarchive.org/dat-ch1nqb7
https://assets.nemoarchive.org/dat-ch1nqb7
http://data.nemoarchive.org/publication_release/Lein_2020_M1_study_analysis/Transcriptomics/sncell/10X/
http://data.nemoarchive.org/publication_release/Lein_2020_M1_study_analysis/Transcriptomics/sncell/10X/
https://github.com/welch-lab/liger
https://doi.org/10.5281/zenodo.5762770
https://doi.org/10.5281/zenodo.5762770
https://doi.org/10.1101/2020.02.29.970558
https://doi.org/10.1101/2020.02.29.970558
www.nature.com/naturecommunications


23. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

24. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data
with Harmony. Nat. Methods 16, 1289–1296 (2019).

25. Welch, J. D. et al. Single-Cell Multi-omic Integration Compares and Contrasts
Features of Brain Cell Identity. Cell 177, 1873–1887.e17 (2019).

26. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20,
257–272 (2019).

27. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for
single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

28. Jain, M. S. et al. MultiMAP: Dimensionality Reduction and Integration of
Multimodal Data. bioRxiv https://doi.org/10.1101/2021.02.16.431421 (2021).

29. Chen, H. et al. Assessment of computational methods for the analysis of
single-cell ATAC-seq data. Genome Biol. 20, 241 (2019).

30. Saunders, A. et al. Molecular Diversity and Specializations among the Cells of
the Adult Mouse Brain. Cell 174, 1015–1030.e16 (2018).

31. Touzot, A., Ruiz-Reig, N., Vitalis, T. & Studer, M. Molecular control of two
novel migratory paths for CGE-derived interneurons in the developing mouse
brain. Development 143, 1753–1765 (2016).

32. Lippmann, E. S. et al. Derivation of blood-brain barrier endothelial cells from
human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

33. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and
oligodendrocytes: a new resource for understanding brain development and
function. J. Neurosci. 28, 264–278 (2008).

34. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical
areas. Nature 563, 72–78 (2018).

35. Takata, N. & Hirase, H. Cortical layer 1 and layer 2/3 astrocytes exhibit
distinct calcium dynamics in vivo. PLoS One 3, e2525 (2008).

36. Nishiyama, A., Suzuki, R. & Zhu, X. NG2 cells (polydendrocytes) in brain
physiology and repair. Front. Neurosci. 8, 133 (2014).

37. Hamanaka, G., Ohtomo, R., Takase, H., Lok, J. & Arai, K. White-matter
repair: Interaction between oligodendrocytes and the neurovascular unit.
Brain Circ. 4, 118–123 (2018).

38. Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell
types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888
(2018).

39. Bakken, T. E. et al. Evolution of cellular diversity in primary motor cortex of
human, marmoset monkey, and mouse. bioRxiv https://doi.org/10.1101/
2020.03.31.016972 (2020).

40. Belton, J.-M. et al. Hi-C: a comprehensive technique to capture the
conformation of genomes. Methods 58, 268–276 (2012).

41. Kim, J., He, Y. & Park, H. Algorithms for nonnegative matrix and tensor
factorizations: a unified view based on block coordinate descent framework. J.
Glob. Optim. 58, 285–319 (2014).

42. Kim, J. & Park, H. Toward Faster Nonnegative Matrix Factorization: A New
Algorithm and Comparisons. In 2008 Eighth IEEE International Conference
on Data Mining 353–362 (2008).

43. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist:
Identification of Problematic Regions of the Genome. Sci. Rep. 9, 1–5 (2019).

Acknowledgements
This work was supported by NIH grants R01 AI149669, R01 HG010883, RF1 MH123199
(JDW), as well as the Genome Science Training Program T32 HG000040 (ARK).

Author contributions
J.D.W. conceived the idea of UINMF. J.D.W. and A.R.K. developed and implemented the
UINMF algorithm. A.R.K. carried out data analyses. J.D.W. and A.R.K. wrote the paper.
All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28431-4.

Correspondence and requests for materials should be addressed to Joshua D. Welch.

Peer review information Nature Communications thanks Ricard Argelaguet and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28431-4 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:780 | https://doi.org/10.1038/s41467-022-28431-4 | www.nature.com/naturecommunications 17

https://doi.org/10.1101/2021.02.16.431421
https://doi.org/10.1101/2020.03.31.016972
https://doi.org/10.1101/2020.03.31.016972
https://doi.org/10.1038/s41467-022-28431-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization
	Results
	Integrative nonnegative matrix factorization algorithm for partially overlapping feature sets
	Including intergenic peak information improves integration of scRNA and snATAC datasets
	Leveraging additional genes improves integration with targeted spatial transcriptomic technologies
	UINMF improves integration of multimodal and spatial transcriptomic datasets
	Incorporating nonorthologous genes improves the integration of cross-species data

	Discussion
	Methods
	Increase in Computational Complexity
	Evaluating Time and Memory Usage
	Evaluation Metrics
	Integration of RNA and ATAC profiles from SNARE-seq
	Integration of scRNA-seq and STARmap
	Integration of scRNA-seq and osmFISH
	Cross-Species Integration
	Integration of SNARE-seq and STARmap
	Assessing the contribution of unshared features
	Selecting K and λ
	Integration of three species
	Statistics

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




