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Phosphoproteomic profiling of T cell acute
lymphoblastic leukemia reveals targetable kinases
and combination treatment strategies
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Protein kinase inhibitors are amongst the most successful cancer treatments, but targetable

kinases activated by genomic abnormalities are rare in T cell acute lymphoblastic leukemia.

Nevertheless, kinases can be activated in the absence of genetic defects. Thus, phosphopro-

teomics can provide information on pathway activation and signaling networks that offer

opportunities for targeted therapy. Here, we describe a mass spectrometry-based global

phosphoproteomic profiling of 11 T cell acute lymphoblastic leukemia cell lines to identify

targetable kinases. We report a comprehensive dataset consisting of 21,000 phosphosites on

4,896 phosphoproteins, including 217 kinases. We identify active Src-family kinases signaling

as well as active cyclin-dependent kinases. We validate putative targets for therapy ex vivo and

identify potential combination treatments, such as the inhibition of the INSR/IGF-1R axis to

increase the sensitivity to dasatinib treatment. Ex vivo validation of selected drug combinations

using patient-derived xenografts provides a proof-of-concept for phosphoproteomics-guided

design of personalized treatments.
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T cell acute lymphoblastic leukemia (T-ALL) is an aggressive
malignancy arising from aberrant proliferation of imma-
ture T cell progenitors and accounts for about 15% of

pediatric ALL cases1. The current risk-adapted, multiagent che-
motherapeutic regimen has led to an overall survival rate
exceeding 80%. Nevertheless, one out of five children with T-ALL
will relapse within 4 years after the start of therapy. Further
intensification of the current high-risk treatment protocols seems
not feasible due to serious and even fatal detrimental side effects,
such as toxicities and infections2. Relapsed T-ALL patients have a
poor prognosis and are refractory towards further treatment.
Therefore, the identification of novel therapeutic options for
refractory/relapsed patients remains an urgent need. Thanks to
extensive genome sequencing studies, the genetic drivers of
T-ALL have been identified as developmental transcription fac-
tors that are ectopically expressed due to chromosomal rearran-
gements (reviewed in Belver et al.3 and van der Zwet et al.4).
Unlike other leukemias, genomic rearrangements involving
kinase-coding genes are scarce in T-ALL. The most common
aberration involving a kinase-coding gene is the NUP214-ABL1
episomal amplification, which is found in less than 6% of T-ALL
patients at diagnosis and is often detected only in minor leukemic
sub-clones5. Recurrent activating mutations detected in kinase-
coding genes or kinase regulators involve the PI3K-AKT axis
(AKT1, PIK3CD, and PIK3R1), the JAK-STAT (IL7R, JAK1, and
JAK3 which is mutated in about 16% of T-ALL cases6), or the Ras
signaling pathways (PTPN11, NF1, N-RAS, and K-RAS), while in
some early T cell precursor (ETP)-ALL cases, Fms-like tyrosine
kinase (FLT3) mutations and/or overexpression are found7.
Additionally, other potentially druggable kinases reported for
T-ALL include the JAK-family member tyrosine kinase 2 (TYK2)
which can be activated either by rare gain-of-function mutations
or IL-10 signaling8,9, the cell cycle regulators Polo-like kinases
(PLKs) and Aurora kinases (AURKs)10,11, and the PIM1 kinase
which can be upregulated by active IL-7 signaling, upon
glucocorticoid-induced IL7RA expression, or in the presence of
IL-7R pathway mutations12,13.

Nevertheless, genomic-guided targeted therapies can show
disappointing results due to the sub-clonal nature of these
mutations (i.e., leukemia heterogeneity)5,14. The treatment
pressure can drive the selection of minor resistant clones15,
induce the acquisition of novel mutations16 or activate alter-
native feedback loops that drive therapy resistance. Leukemic
cells rely on enhanced kinase signaling that promotes aberrant
proliferation and survival. Protein kinases can be activated in
the absence of gene fusions or mutations in their coding
sequences. In fact, except for mutations in JAK1/2 and FLT3, no
other somatic mutation in tyrosine kinase-coding genes were
found in 45 high-risk B-ALL cases, although the gene expres-
sion profiles indicated an active kinase signaling17. Therefore,
proteome analyses can provide additional insights into active
signaling pathways and kinases that could be exploited for
targeted therapy. Mass spectrometry (MS)-based phosphopro-
teomics importantly contributed to the identification of sig-
naling pathways and protein networks that can be targeted for
cancer therapy18–20. Recently, Frejno and colleagues performed
a large-scale proteome and phosphoproteome profiling of 125
cancer cell lines to create a proteomic activity landscape that
can predict drug sensitivity in vitro21. Moreover, additional
phosphoproteomic studies identified determinants of sensitivity
to clinical kinase inhibitors in acute myeloid leukemia (AML)
cell lines22 and primary cells23. In the context of T-ALL, reverse
phase protein array (RPPA)-based proteomic studies identified
highly active signaling pathways in ETP-ALL such as the
mTOR/STAT3 and LCK/calcineurin24. Additionally, Degryse
and colleagues applied phosphoproteomics to investigate the

signaling pathways downstream of mutant JAK3 in T-ALL25.
Recently, Franciosa and colleagues used proteomic analyses to
unravel the mechanisms of resistance to NOTCH1 inhibition in
T-ALL26. Nevertheless, to our knowledge, no unbiased, MS-
based phosphoproteomic study to predict drug sensitivity has
hitherto been performed in T-ALL. Here, we present an
exploratory MS-based, unbiased, global profiling of tyrosine,
serine, and threonine phosphorylation in a panel of T-ALL cell
lines and patient-derived xenografts (PDXs) to identify relevant
kinase signaling and to predict novel dependencies. We validate
highly active kinases as potential targets for therapy in vitro
using both cell lines and PDX models. Furthermore, we
demonstrate how the application of phosphoproteomics can
guide the ex vivo identification of synergistic combination
treatments, and the selection of the most appropriate ther-
apeutical strategy for personalized medicine.

Results
Unbiased analysis of the global phosphoproteome in T-ALL
cell lines. To explore the phosphoproteome of human T-ALL, we
performed global, unbiased mass spectrometry-based phospho-
proteomic profiling of protein extracts from 11 T-ALL cell lines
(Supplementary Table 1) as illustrated in Fig. 1a. Following
phospho-tyrosine (pY) peptide immunoprecipitation, we identi-
fied about 3800 phosphosites while the titanium dioxide (TiO2)-
based enrichment yielded over 17,000 phosphosites. The identi-
fication of phospho-tyrosine peptides was notably higher for
HSB-2 cells compared to the other cell lines (Supplementary
Fig. 1a). This higher recovery correlates with an enhanced overall
phospho-tyrosine signal in the unsupervised phosphopeptides
cluster analysis, which was also confirmed by western blotting
(Supplementary Fig. 1b, c).

To identify (hyper) active protein kinases that may be targeted
by small-molecule inhibitors, the Integrative iNferred Kinase
Activity (INKA) pipeline27 was used to infer highly active kinases
from phosphoproteomic data. This analysis pipeline provides a
numerical single score as a proxy for kinases activity detected in a
sample. The kinase ranking from the pY dataset revealed the
broad activation of the Src-family kinases (SFKs) LCK, SRC, and
FYN in all the cell lines analyzed, while other Src-family members
such as ABL1, LYN, and FGR were detected only in specific lines,
including PEER (ABL1), ALL-SIL (ABL1), MOLT-16 (LYN),
LOUCY (LYN), and HPB-ALL (FGR) (Fig. 1b and Supplemen-
tary Figs. 1d and 2a–f). Three cell lines present a known genetic
aberration that involves a kinase-coding gene, including the
TCRβ-LCK translocation in the HSB-2 line and the NUP214-
ABL1 fusions in the cell lines ALL-SIL and PEER. Correspond-
ingly, we identified LCK and ABL1 as the highest-ranking kinases
in these three lines, respectively (Fig. 1b). Nevertheless, LCK
shows high activation even in the absence of known genetic
alterations in the remaining lines. Other active kinases identified
include the cyclin-dependent kinases CDK1 and CDK2, the
housekeeping kinases GSK3Bα/β, the insulin receptor (INSR) and
the insulin-like growth factor receptor (IGF-1R) as illustrated in
Fig. 1b.

The INKA ranking obtained from the TiO2 dataset confirmed
high activation of the cell cycle regulators CDK1 and CDK2 as a
general hallmark for all lines. Additionally, INKA uncovered
other potentially relevant kinases such as the dual-specificity
kinase CLK1, the p21-activated kinases PAK1 and PAK2, and
AKT1 (Fig. 1c and Supplementary Fig. 3). Interestingly, some cell
lines showed a modest mTOR activity, while Jurkat cells had high
MAPK/ERK activity, with MAPK1 and MAPK3 ranking 5 and
12, respectively in the TiO2-INKA plot (Fig. 1c). To assess the
reproducibility of our pipeline, two biological replicates for
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LOUCY and CCRF-CEM were included for both phospho-
enrichment procedures. As illustrated in Fig. 1d, the biological
duplicates showed high correlation (R2 ≥ 0.76) among INKA
scores for the pY and the TiO2 datasets. Similarly, a high
correlation (R2 ≥ 0.89) was found between technical duplicates for
the TiO2 enrichment in eight other lines (Supplementary Fig. 4).

We then compared the T-ALL INKA scores with the INKA scores
of a published AML phosphoproteomic dataset22. We identified
differential (FDR < 0.1) kinase activities that characterize the
myeloid and lymphoid lineages, further highlighting the relevance
of the acquired phosphoproteome data. Both types of leukemia
have high activation of SFKs. However, while T-ALL shows high
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activity of LCK, SRC, ABL1, YES1, and FYN, AML cells show
activation of LYN and HCK only (Fig. 1e). Interestingly, the ETP-
ALL-like cell line LOUCY and the LMO2-rearranged MOLT-16
cells show activation of LYN and HCK as well (Fig. 1b, e),
indicating that subsets of T-ALL cells can present myeloid-like
signaling features, along with the expression of known immature
markers such as CD34. Furthermore, we could identify other
subtype-specific kinases such as the Bruton Tyrosine Kinase BTK
and FLT3 for AML, while ITK and ZAP70 were identified for
T-ALL (Fig. 1e). These activities reflect active signaling pathways
and can arise independently from known activating mutations in
kinase-coding genes in these lines. Therefore, our data give a
comprehensive overview of kinase activation in T-ALL cell line
models and points to several potentially targetable activities that
could represent novel leukemia vulnerabilities.

The CDK1/2 inhibitor milciclib effectively induces G1-cell
cycle arrest in T-ALL cell lines in vitro. Based on the kinases
identified in our phosphoproteome profiling study, we tested the
sensitivity of the cell lines to multiple kinase inhibitors in vitro
(Supplementary Table 2) to uncover signaling dependencies that
can be exploited for targeted therapy. Despite the high ranking of
CLK1 (Top7 TiO2-INKA ranking in every cell line, Fig. 1c), the
CLK1 inhibitor TG-003 had only limited cytotoxic efficacy in
these lines (Supplementary Fig. 5a). In addition, the PAK1/2
inhibitor FRAX597 showed some effects in ALL-SIL and HSB-2
cells, with IC50 values around 400 nM, but was less effective in the
other cell lines (IC50 values above 1 µM; Supplementary Fig. 5b).
Therefore, CLK1 or PAK1/2 inhibition alone does not suffice to
effectively impair T-ALL cell survival. Similar results were
obtained with the AKT inhibitor ipatasertib (Supplementary
Fig. 5c). Despite the low ranking of mTOR activity, the mTOR
inhibitor sirolimus significantly reduced cell viability at nano-
molar concentrations in five cell lines (Supplementary Fig. 5d). Of
note, no effect was seen upon mTOR inhibition in healthy human
thymocytes (Supplementary Fig. 5e). Jurkat cells showed high
ERK activity (MAKP1 and MAPK3), but cells were insensitive to
the MEK inhibitor selumetinib, indicating that Jurkat cells do not
essentially depend on ERK signaling for survival (Supplementary
Fig. 5f). In the TiO2-INKA dataset, CDK1 and CDK2 were the
top2 ranking kinases in all cell lines analyzed (Fig. 1c). Interest-
ingly, the CDK1/2 inhibitor milciclib induced an effective
reduction of cell survival in all lines tested, with IC50 values
between 50 nM and 1 µM (Fig. 2a). To investigate the mechanism
of action, we performed cell cycle analysis that highlighted an
induction of G1-arrest upon milciclib treatment (Fig. 2b).
Annexin V/PI staining revealed that induction of apoptosis only
occurs at higher drug concentrations (1 µM) with a drastic effect
in HSB-2 cells and a less pronounced effect in the remaining lines,
indicating that milciclib mainly acts as a cytostatic drug (Fig. 2c).
To investigate potential cytotoxic mechanisms in HSB-2 cells, we
looked for possible off-target effects of milciclib. Thus, we

browsed the publicly available chemical proteomic database
ProteomicsDB28,29 (https://www.proteomicsdb.org/) and found
that milciclib can also inhibit LCK (EC50 1.4 µM). We validated
the reduced phosphorylation of SFKs, including LCK, upon
milciclib treatment by western blot (Fig. 2d). Since HSB-2 cells
present a driver TCRβ-LCK translocation that induces ectopic
LCK expression, cells highly depend on LCK signaling for their
survival. Therefore, milciclib efficacy in T-ALL could be higher in
LCK-dependent cells. Eventually, we confirmed milciclib treat-
ment efficacy in four T-ALL patient-derived xenografts treated
ex vivo (Supplementary Fig. 5g, h).

T-ALL cell lines show limited sensitivity to SRC-family kinases
inhibition in vitro. To further investigate the potential of LCK as
therapeutical target, we analyzed the pY dataset. A predominant
role of Src-family members emerged among the detected tyrosine
kinases, in particular LCK and SRC (Fig. 1b). Despite the ranking
of SRC and LCK as Top2 pY-kinases in most lines (Fig. 1b and
Supplementary Fig. 2a, b), only HSB-2 and ALL-SIL cells were
highly sensitive to ATP-competitive SRC/ABL inhibitors (dasa-
tinib, ponatinib, bosutinib, nilotinib, and imatinib) with IC50

values below 100 nM. These lines are characterized by a TCRβ-
LCK translocation or a NUP214-ABL1 fusion, respectively
(Fig. 3a). The PEER cell line, also described as a NUP214-ABL1
fusion-positive line, had a low sensitivity to SKFs inhibition (IC50

for SRC/ABL inhibitors above 1 µM except for ponatinib, 834 nM,
Fig. 3a). The remaining cell lines responded to increasing doses of
SRC/ABL inhibitors, but at concentrations beyond the clinically
relevant concentrations that are achieved in patient’s plasma
(Supplementary Fig. 6a–e). Similar results were obtained with the
LCK inhibitor A-420983 (Fig. 3a). Given the broad activation of
SFKs detected, we then investigated the effects of dasatinib
treatment. Western blotting confirmed high expression of both
SRC and LCK in the cell line panel (Fig. 3b), and the lines with
the highest LCK and SRC expression were used to investigate the
effect of dasatinib in vitro. Dasatinib treatment (100 nM) for
three days induced an effective decrease of phospho-LCK and
phospho-SRC in all these lines as well as an apparent down-
regulation of total LCK expression (Fig. 3c), without affecting the
cell viability (Fig. 3a and Supplementary Fig. 6f) while HSB-2 cells
show induction of apoptosis already after 16 h of dasatinib
treatment (Supplementary Fig. 6g). Thus, our data suggest that
LCK and SRC are highly active in T-ALL, but the pharmacolo-
gical inhibition of these activities is only effective in HSB-2 and
ALL-SIL that harbor rearrangements in LCK or NUP214-ABL1,
respectively. Remarkably, dasatinib-resistant T-ALL cell lines also
downregulate LCK upon dasatinib treatment, indicating their
limited dependency on LCK activity for their survival. Therefore,
the inhibition of LCK alone seems not a universal effective
treatment for every T-ALL, possibly due to the activation of
alternative signaling routes.

Fig. 1 Phosphoproteomic profiling and INKA analysis identify active kinases in T-ALL. a Experimental overview. Protein extracts from 11 T-ALL cell lines
were enriched for phosphopeptides by anti-phosphotyrosine immunoprecipitation (IP) and titanium dioxide (TiO2)-enrichment. Phosphorylated proteins
were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kinase activities were inferred and ranked using the INKA pipeline27

and selected kinase inhibitors were tested in vitro. b Top20 INKA kinases inferred from the phospho-tyrosine (pY) dataset. Each bar plot illustrates the
highest 20 active kinases in each cell line ranked on their INKA score. Red, LCK; blue, ABL1; gray, SRC; orange, INSR/IGF-1R; striped pattern, myeloid-
lineage kinases (LYN and HCK). c Top20 INKA kinases inferred from the TiO2 dataset. Each bar plot illustrates the highest 20 active kinases in each cell
line ranked on their INKA score (each graph is representative of a technical duplicate). Purple, CDK1/2; dark green, PAK1/2; light green, AKT; yellow,
mTOR; pink, MAPK; red, LCK, Blue: ABL1. d INKA scores correlation plots for biological duplicates in pY and TiO2 datasets. Each plot shows the correlation
of the INKA scores between biological duplicates for LOUCY and CCRF-CEM cell lines in both the pY and TiO2 datasets (Pearson’s correlation, two-sided
Student’s t-test, p < 0.001). e Heatmap illustrating significantly different (FDR < 0.1) kinases based on INKA scores in T-ALL (pY dataset) and AML (pY
dataset22); cell lines. Source data are provided as a Source Data file.
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Inhibition of the INSR/IGF-1R axis sensitizes T-ALL cells to
dasatinib treatment in vitro. To further investigate the role and
the possible targeting of Src-family kinases in T-ALL, we looked
for possible upstream kinases or receptors that can explain the
activation of LCK and the other SFKs. Interestingly, INSR and
IGF-1R were amongst the top 20-activated kinases in the pY-
INKA profiles for nine out 11 lines (Figs. 1b and 4a). Therefore,
we tested the sensitivity of these lines to the INSR/IGF-1R

inhibitor BMS-754807. ALL-SIL, HPB-ALL, and MOLT-16
demonstrated sensitivity to single BMS-754807 treatment with
IC50 values below 300 nM while most of the other cell lines had
IC50 values around 1 µM (Fig. 4b). SUP-T1 and Jurkat cells were
resistant to BMS-754807 treatment (IC50 approximately 10 µM)
despite the predicted INSR/IGF-1R activity (Fig. 4b) possibly due
to alternative survival signaling pathways. Since SRC can act as
signal transducer downstream of several membrane-receptors, we
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Fig. 2 The CDK1/2 inhibitor milciclib induces G1 arrest in T-ALL cell lines. a Dose-response curves of milciclib treatment in 11 T-ALL cell lines. Cells were
treated with increasing concentrations of milciclib (3.2 nM–32 µM range) in triplicate and cell viability was assessed after 72 h using the colorimetric MTT
assay. Cell survival was calculated in comparison to the untreated control. Each point represents the mean and standard deviation of the triplicate. The
green box shows the corresponding clinical concentration range of milciclib used in patients enrolled in clinical trials51. b Cell cycle analysis upon milciclib
treatment. Cells were treated with either 100 nM or 1 µM milciclib for 72 h and cell cycle analysis was performed via Hoechst-DNA staining and FACS
analysis. The graphs show the average and standard deviation of three independent experiments. Significance was determined using a paired, two-tailed
Student’s t-test and annotated as “ns” (not significant, p≥ 0.05), * (p < 0.05), ** (p < 0.01). c Detection of apoptotic cells upon milciclib treatment. Cells
were treated with either 100 nM or 1 µM milciclib for 72 h and Annexin V/ Propidium Iodide (PI) staining was used to detect apoptosis. Apoptotic cells
were identified as the sum of the Annexin V+ cells and Annexin V+/PI+ cells. The percentage of apoptotic cells is calculated compared to untreated
control cells. The graphs show the average and standard deviation of three independent experiments. Significance was determined using a paired, two-
tailed Student’s t-test and annotated as *(p < 0.05), **(p < 0.01), ****(p < 0.0001). If not annotated, the results were not significant (p≥ 0.05). d Western
blot analysis upon milciclib treatment. HSB-2 cells and P12-ICHIKAWA cells were treated with 100 nM milciclib for 72 h and 20 µg of protein was used for
each condition. The image is representative of three independent experiments. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28682-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1048 | https://doi.org/10.1038/s41467-022-28682-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


questioned whether lines with active SRC, LCK, and INSR/IGF-
1R signaling could benefit from combined SFKs and INSR/IGF-
1R signaling inhibition. Therefore, we evaluated the effect of the
addition of a low BMS-754807 dose (IC20) to the dasatinib
treatment in vitro. The lowest dose of dasatinib tested (3.2 nM) in
combination with low concentrations of BMS-754807
(30–300 nM) showed a synergistic and superior effect compared
to the single treatments (Fig. 4c, d). For SUP-T1 cells, the addi-
tion of 30 nM BMS-754807 to the dasatinib treatment strongly
enhanced the cytotoxic effects (CI < 0.1; Fig. 4d). As validation of
the combined treatment strategy, two other INSR/IGF-1R inhi-
bitors were tested in SUP-T1 cells, linsitinib (OSI-906) and GSK-

4529A, respectively. Like the BMS-754807 single treatment, SUP-
T1 cells showed low sensitivity to both INSR/IGF-1R inhibitors as
monotherapy (Supplementary Fig. 7a, b). However, the combi-
nation of a low dose (IC20) of linsitinib or GSK-4529A to the
dasatinib treatment in vitro confirmed the synergism of simul-
taneous SRC/LCK and INSR/IGF-1R inhibition (Fig. 4e). To
investigate the mechanisms for the synergistic efficacy of this
drug combination, we performed western blotting using SUP-T1
cells after treatment with dasatinib, BMS-754807, or their com-
bination. Single 3.2 nM dasatinib treatment reduced the phos-
phorylation of SFKs and ERK1/2 while single 30 nM BMS-754807
treatment reduced the phosphorylation of IGF-1Rβ as well as
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Fig. 3 T-ALL cell lines show limited sensitivity to SFKs inhibition in vitro. a Dose-response curves of SFKs inhibitors treatment in 11 T-ALL cell lines. Cells
were treated with increasing concentrations of different SFKs inhibitors: dasatinib, bosutinib, A-420983, ponatinib, imatinib and nilotinib (3.2 nM–32 µM
range) in duplo and cell viability was assessed after 72 h using the ATPLite assay (PerkinElmer). Cell survival was calculated in comparison to the untreated
control. Each point represents the mean and standard deviation of the duplicate. The green box shows the range of clinical concentrations either derived
from pharmacodynamics studies or based on drug dosages used in current clinical trials52–55. b Western blot analysis showing LCK and SRC expression in
untreated T-ALL cell lines. 30 µg of protein input was used for each sample. The image is representative of two independent experiments.
c Western blot analysis upon dasatinib treatment. Cell lines expressing high levels of LCK and/or SRC were treated with 100 nM dasatinib for 72 h and
30 µg of protein was used per sample. The image is representative of two independent experiments. Source data are provided as a Source Data file.
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Fig. 4 IGF-1R inhibition can sensitize cells to dasatinib treatment. a Bar plots of the INKA scores inferred from the pY dataset for IGF-1R and INSR in each
cell line. b Dose-response curves of BMS-754807 treatment in 11 T-ALL cell lines. Cells were treated with increasing concentrations of the INSR/IGF-1R
inhibitor BMS-754807 (3.2 nM–32 µM range) in duplicates. Cell survival after 72 h was calculated in comparison to the untreated control. Each point
represents the mean and the standard deviation of the duplicates. c Sensitivity to dasatinib, BMS-754807 and the combination of 3.2 nM dasatinib with the
IC20 concentration of BMS-754807 (30–300 nM) for SUP-T1, Jurkat and KARPAS-45 cells. Data is shown as mean and standard deviation of two
independent experiments performed in triplicate. d Dose-response curves of dasatinib, BMS-754807 and combination of dasatinib and a fixed
concentration of BMS-754807 treatment in SUP-T1 cells. Cells were treated for 72 h with increasing concentrations of either dasatinib or BMS-754807
alone or with a combination of dasatinib (3.2 nM–32 µM range) with a fixed concentration of BMS-754807 (30 nM, corresponding to the IC20 of the single
treatment for SUP-T1 cells indicated by the dotted line), in triplicate. Cell survival was calculated in comparison to the untreated control. The graph is
representative of three independent experiments. CI combination index. e Dose-response curves of dasatinib, linsitinib, GSK-4524A and combination of
dasatinib and a fixed concentration of either linsitinib or GSK-4529A treatment in SUP-T1 cells. Cells were treated for 72 h with increasing concentrations
of dasatinib or linsitinib/GSK-4529A alone or with a combination of dasatinib (3.2 nM–32 µM range) with a fixed concentration of linsitinib (500 nM,
corresponding to the IC20 of the single treatment for SUP-T1 cells indicated by the dotted line) or GSK-4529A (60 nM, corresponding to the IC20 of the
single treatment for SUP-T1 cells indicated by the dotted line), in triplicate. Cell survival was calculated in comparison to the untreated control. The graph is
representative of three independent experiments. CI combination index. Source data are provided as a Source Data file.
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AKT (S473) (Fig. 5a). No effect was detected on phospho-mTOR
or phospho-p70 S6 kinase upon BMS-754807 treatment (Fig. 5a),
indicating that the IGF-1R signaling converges mainly on AKT.
Interestingly, upon IGF-1R inhibition, a slight increase in phos-
phorylation of SFKs was noticed (phospho-SRC family Y416),
further pointing to a potential cross-talk between IGF-1R and
SFKs. In fact, the combination of 3.2 nM dasatinib and 30 nM
BMS-754807 showed a further decrease in the activation of IGF-
1R (phospho-IGF-1Rβ Y1135), phospho-AKT (S473), and
phospho-SFKs (Fig. 5a). To further validate a role for AKT in
IGF-1R and SFKs signaling, we tested the cytotoxic effects of the
ATP-competitive AKT inhibitor ipatasertib and its combination
with dasatinib treatment. Addition of 100 nM ipatasertib to the
dasatinib treatment enhanced the cytotoxic effects (CI= 0.3;
Fig. 5b). Thus, our data show that co-targeting of activated IGF-
1R/AKT and SFKs (summarized in Fig. 5c) can extend the
potential usage of dasatinib in T-ALL.

INKA-guided ex vivo drug screenings identify synergistic
combinations in T-ALL patient-derived xenografts. To validate
our approach, we performed phosphotyrosine proteome profiling
followed by INKA prediction of active kinases using human
T-ALL blasts that were obtained from four different murine

patient-derived xenografts (Fig. 6a). INKA prediction of active
tyrosine kinases highlighted SFKs activation (LCK, SRC, FYN,
and YES1) in all the PDXs analyzed, as well as activation of the
INSR/IGF-1R axis in two PDXs (PDX-01 and PDX-02) and to a
lesser extent in PDX-04 that presented only INSR activity with a
low ranking (Fig. 6b). All PDXs showed sensitivity to dasatinib
treatment ex vivo with IC50 values lower than 100 nM while
PDX-01 showed also high sensitivity to the BMS-754807 single
treatment with an IC50 of 234 nM (Fig. 6c). To further validate
the SFKs and INSR/IGF-1R combined inhibition as a putative
treatment strategy, blasts obtained from the four different T-ALL
PDXs were treated with either dasatinib, BMS-754807 or the
combination of both drugs ex vivo using a 10-by-10 drug com-
bination matrix as illustrated in Fig. 6a. Zero-Interaction Potency
(ZIP) analysis30 of the drug matrix identified synergy between
dasatinib and BMS-754807 treatment in one out of four PDXs
(PDX-02) already at nanomolar concentrations, as illustrated in
Fig. 6d. PDX-01 showed already high sensitivity to both single
treatments (Fig. 6c) with the drug combination treatment yielding
only an additive effect (ZIP synergy scores lower than 10).
However, PDX-02 which had lower sensitivity to BMS-754807
single treatment (IC50 675 nM), showed high synergy upon
combined dasatinib and BMS-754807 treatment, indicating that
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Fig. 5 Concomitant inhibition of SFKs and IGF-1R inhibits AKT. a Western blot of SUP-T1 cells treated with dasatinib, BMS-754807 or combination
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c Graphical summary of the potential targeting of the INSR/IGF-1R axis and the SFKs signaling.
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an active INSR/IGF-1R axis is a targetable vulnerability. Impor-
tantly, none of the PDXs carried any somatic mutation in the
INSR or IGF1R gene (Supplementary Data 1), highlighting the
power of phosphoproteomics in uncovering non-genomic targets
for therapy. Consistent with a lack of INSR/IGF-1R activity
(Fig. 6b), PDX-03 did not benefit from the combination

treatment (Fig. 6d). For PDX-04, INKA analysis predicted only
INSR activity with a low ranking (16/20; Fig. 6b) indicating that
INSR is not one of the dominant activities and thus explaining the
lack of synergy upon combination treatment. Nevertheless, PDX-
04 presented high Janus kinases (JAKs) activity which was absent
in the other PDXs (Fig. 6b). Interestingly, the high JAK3 activity
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correlated with the presence of an activating JAK3M511I mutation
(Supplementary Data 1). Therefore, we tested whether the com-
bination of the JAK inhibitor ruxolitinib with dasatinib could be
an effective treatment option for this specific T-ALL case. As
shown in Fig. 6e, PDX-04 was the only sample sensitive to rux-
olitinib ex vivo (IC50 < 100 nM) while the other PDXs remained
completely insensitive to the treatment (IC50 > 10 µM). Moreover,
ZIP analysis of the drug combination matrix identified synergy
between ruxolitinib and dasatinib only when high JAK activity
was predicted (PDX-04, Fig. 6f). Thus, the prediction of highly
active kinases from phosphoproteomic data can guide the ex vivo
evaluation of effective drug combination treatments, which can
differ from patient to patient.

Discussion
The identification of new targeted drugs is urgently needed to
prevent relapses, overcome therapy resistance, and avoid exces-
sive toxicities for T-ALL patients. Genomic-guided therapy has
thus far not led to the wide implementation of targeted agents in
T-ALL31,32. However, protein analyses can provide useful insights
for the identification of cellular dependencies that translates into
targetable leukemia vulnerabilities4. In this study, we performed
an exploratory, global, unbiased phosphoproteome profiling to
identify targetable kinases in T-ALL and to establish a proteome
platform that can complement genomic analyses for the investi-
gation of leukemia dependencies. In our initial analysis of 11
T-ALL cell lines, we identified highly active tyrosine kinases
(LCK, SRC, FYN, YES1, LYN, INSR, and IGF-1R) as well as
serine/threonine kinases (CDK1/2, AKT, and PAK1/2). More-
over, the comparison of the phosphoproteomes of T-ALL and
AML revealed active kinases that reflect differences in their
hematopoietic lineages of origin, independently of the presence of
known signaling mutations, highlighting the additional value of
MS-based phosphoproteome profiling. Next, we screened several
clinical kinase inhibitors in vitro and found that the CDK1/CDK2
inhibitor milciclib has a cytostatic effect in T-ALL cells. Milciclib
is under clinical investigation for the treatment of thymoma and
hepatocellular carcinoma33. Currently, clinical studies are inves-
tigating other CDKs inhibitors (ribociclib and palbociclib) for the
treatment of relapsed T-ALL12 and milciclib may be an additional
treatment option.

Cells with ABL1 or LCK driving oncogenic aberrations showed
high sensitivity to SRC/ABL inhibitors, including dasatinib, while
the remaining cell lines had a limited response, despite the pre-
diction of highly active Src-family members. Therefore, elevated
LCK activity seems not to translate into cellular dependency in all
T-ALL specimens. In 2017, Frismantas and colleagues showed
that up to 30% of T-ALLs were sensitive to dasatinib ex vivo in

the absence of ABL1 abnormalities. This dasatinib-responsiveness
correlated with higher levels of phosphorylated SRC in sensitive
cells34. In line with this previous study, our PDX models showed
high sensitivity to dasatinib ex vivo in the absence of LCK or SRC
mutations (Supplementary Data 1), underscoring the potential
use of this drug for T-ALL treatment. Recently, a pharmacoge-
nomic study on pediatric T-ALL identified LCK, but not SRC, as
driver of dasatinib sensitivity in up to 40% of pediatric T-ALL
cases. The observed LCK activity correlated with pre-TCR sig-
naling and relatively more mature developmental stages (TAL/
LMO)35, while immature ETP-ALL cells were less sensitive to
dasatinib. In our study, the immature T-ALL cell line LOUCY
indeed showed lower LCK activity but increased activation of
myeloid kinases such as LYN and HCK. Given the lower response
to dasatinib for most of the cell lines in our panel, possibly due to
the presence of alternative escape signaling routes, we found that
co-inhibition of the INSR/IGF-1R axis and SFKs was strongly
synergistic. We provided evidence that the INSR/IGF-1R axis is
active in most T-ALL cell lines and that the pharmacological
inhibition of IGF-1R sensitizes T-ALL cells to dasatinib treat-
ment, indicating important cross-talks between INSR/IGF-1R and
SFKs. These results are in line with previous studies that identi-
fied INSR/IGF-1R activation as a bypass mechanism in solid
tumors with intrinsic resistance to tyrosine kinase inhibitors36–38.
Moreover, preclinical investigations showed that a subset of
T-ALL cells is sensitive to INSR/IGF-1R inhibition without pre-
senting any activating mutations in these receptor kinase-coding
genes39,40. We validated the targeting of active INSR/IGF-1R
signaling either as single treatment or in combination with
dasatinib in two PDX models. In line with previous observations,
both PDXs did not carry any somatic mutation in INSR or IGF1R.
The lack of mutations that could explain the active INSR/IGF-1R
signaling underscores the role of phosphoproteomics in high-
lighting relevant signaling nodes which would have not been
uncovered via genomic analyses. Interestingly, Gocho and col-
leagues showed modulation of INSR activity upon dasatinib
treatment in dasatinib-sensitive T-ALL patient-derived murine
xenografts35, further strengthening the observation that the
INSR/IGF-1R and SFKs signaling can be interconnected and can
mutually affect each other, as summarized in Fig. 5c, and illu-
strated in kinase-substrate relation networks in Supplementary
Fig. 8. Two studies highlighted the role of dendritic cells and
tumor-associated myeloid cells in supporting T-ALL growth in
stromal niches via IGF-1R activation41,42, emphasizing the rele-
vance of this signaling pathway in the pathobiology of T-ALL.
The tumor niche can provide a protective microenvironment, and
therefore the simultaneous blocking of IGF-1R and SFKs signal-
ing should be further investigated for T-ALL patients.

Fig. 6 INKA prediction of active kinases identifies synergistic combinations in patient-derived xenografts. a PDXs were obtained from T-ALL primary
cells expanded in NSG mice. Purified human blasts were used for phosphoproteomics, INKA analyses, and ex vivo drug screening using a 10-by-10 drug
concentrations matrix. b Top20 INKA kinases from the phosphotyrosine (pY) dataset. Each bar plot illustrates the highest 20 active kinases in four PDXs
ranked on their INKA score. Orange, INSR/IGF-1R; gray, JAKs; c Dose-response curves of dasatinib and BMS-754807 in T-ALL PDX cells (T-ALL PDX-01 to
04). Cells were treated for 72 h with increasing concentrations of either dasatinib or BMS-754807 (1 nM–10 µM range) and viability was calculated in
relation to untreated control cells (DMSO only). Each point represents the mean and standard deviation of the duplicate. d Zero-Interaction Potency (ZIP)
synergy scores for the combination of dasatinib and BMS-754807 in a 1 nM–10 µM concentration range. Cells were treated with either one of the single
drugs or a drug combination for 72 h in duplicate. Cell survival was calculated in comparison to untreated cells (DMSO only). ZIP values lower than 0
indicate an antagonistic effect of the drug combination (blue), values between 0 and 10 indicate an additive effect (white to light red) while values above 10
(corresponding to a deviation from the reference model above 10%) indicate synergy (dark red and outside black dashed line). Each drug screening was
performed in duplicate. e Dose-response curves of dasatinib and ruxolitinib in T-ALL PDX cells. Cells were treated for 72 h with increasing concentrations
of either dasatinib or ruxolitinib (1 nM–10 µM range) and viability was calculated in relation to untreated control cells (DMSO only). Each point represents
the mean and standard deviation of the duplicate. f ZIP synergy scores for the combination of dasatinib and ruxolitinib in a 1 nM–10 µM concentration
range. Cells were treated with either one of the single drugs or a drug combination for 72 h in duplicate. Relative viability vas calculated in comparison to
untreated cells (DMSO only). Each drug screening was performed in duplicate. Source data are provided as a Source Data file.
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Furthermore, since several studies highlighted a role for LCK in
supporting resistance to glucocorticoids in T-ALL43,44, targeting
LCK activation could provide additional benefits to other com-
bination therapies. Multiple clinical trials are investigating the
JAK inhibitor ruxolitinib for the treatment of T-ALL in the
presence of JAK mutations12. Here, we show that ruxolitinib
treatment is effective ex vivo in T-ALL cells with elevated JAK
kinase activity. Interestingly, the elevated JAK3 activity correlated
with the presence of an activating JAK3 mutation, highlighting
that driving oncogenic aberrations can also be detected at the
signaling level. Moreover, ruxolitinib can synergize with dasatinib
treatment in JAK-activated and SFKs-activated cells, indicating
another putative combinatorial strategy for selected T-ALL cases.
Therefore, our phosphoproteomic profiling provides a platform
for the investigation of combinatorial treatments and for the
identification of non-genomic leukemia dependencies. Such
dependencies can be further exploited as leukemia vulnerabilities
for personalized treatment.

INKA-based selection of (combination) treatments has been
already validated in the context of solid tumors27 and acute
myeloid leukemia22,45, underscoring the functional value of the
pipeline. Future T-ALL studies should include an in vitro
screening platform that can allow blasts proliferation ex vivo to
study drugs affecting the cell cycle, as well as an extended PDXs
cohort comprising all the different T-ALL subtypes. Further
in vivo investigations of selected drug combinations should
address not only the efficacy and tolerability of these treatments
(i.e., toxicities) but also the role of the microenvironmental niches
that can support blasts growth and survival. Such investigations
could allow the direct translation of the preclinical findings to the
clinical settings. In conclusion, we provide evidence that phos-
phoproteomics can guide the selection of targets for ex vivo drug
screening to evaluate the most effective treatment strategy.

Methods
Cell culture. Cell lines (Supplementary Table 1) were purchased from DSMZ
(Germany) or ATCC (USA) and maintained in RPMI1640+GlutaMax® (Gibco)
supplemented with 10% fetal bovine serum (Gibco) and antibiotics at a density of
0.2–2 × 106 cells/ml in a humidified incubator with 5% CO2 at 37 °C. Cells were
periodically tested for the absence of mycoplasma contamination using the
MycoAlert Mycoplasma Detection Kit (Lonza cat# LT07-118). Cell lines authen-
tication was performed via short tandem repeat (STR) profiling.

Western blotting. Membranes were incubated with the following primary anti-
bodies (1:1000 dilution, if not stated otherwise): anti-P-Tyr-1000 (Cell Signaling
Technology cat# 8954), anti-Lck (Cell Signaling Technology cat# 2752), anti-Src
L4A1 (Cell Signaling Technology cat# 2110), anti-phospho Lck (Tyr505) (Cell
Signaling Technology cat# 2751), anti-phospho Src Family (Tyr416) (Cell Signaling
Technology cat# 2101), anti-IGF1Rβ (Cell Signaling Technology cat# 3027), anti-
phospho IGF1Rβ (Tyr1135) (Cell Signaling Technology cat# 3918), anti-phospho
mTOR (Ser2448) (Cell Signaling Technology cat# 2971), anti-phospho p70 S6K
(Thr421/Ser424) (Cell Signaling Technology cat# 9204), anti-AKT (Cell Signaling
Technology cat# 9272), anti-phospho AKT (Ser473) (Cell Signaling Technology
cat# 9271), anti-p44-42 MAPK (ERK1/2) (137F5) (Cell Signaling Technology cat#
4695), anti-phospho p44-42 MAPK (Thr202/Tyr204) (D13.14.4E) (Cell Signaling
Technology cat# 4370), anti-cleaved caspase-3 (Asp175) (Cell Signaling Technol-
ogy cat# 9661), and anti-β actin (Abcam, cat# ab6276, 1:10,000).

For protein bands staining, SDS-PAGE gels were stained using the Colloidal
Blue Staining kit (Invitrogen cat# LC6025) according to the manufacturer protocol.
Uncropped and unprocessed blots are provided in the Source Data file.

Flow cytometry. Experiments were performed using the ZE5 flow cytometer
(BioRAD). For cell cycle analysis, 200,000 cells per condition were stained with
Hoechst (7.5 µg/ml) for 1 h at 37 °C and then incubated for 15 min on ice before
FACS analysis. For Annexin V/propidium iodide (PI) staining of apoptotic cells,
200,000 cells were stained with Annexin V-APC antibody (Biolegend cat# 640920)
diluted 1:20 in Annexin V-binding buffer (Invitrogen cat# V13246) for 15 min at
room temperature (RT) in the dark. PI (Miltenyi) was added at a final con-
centration of 0.5 µg/ml just before the FACS measurement. Data analysis was
performed using FlowJo v10.7.1 (FlowJo). Examples of the sequential gatings used
for the FACS data analyses are shown in Supplementary Fig. 9.

Generation of patient-derived xenografts. Blasts obtained from pediatric
patients diagnosed with T-ALL were provided by the Dutch Childhood Oncology
Group (DCOG) upon signed informed consent and in accordance with the
declaration of Helsinki. Animal experiments were approved by the Animal
Welfare Committee of the Princess Máxima Center for pediatric oncology
(Utrecht, the Netherlands) and were carried out at the animal facility of the
Hubrecht Institute (Utrecht, the Netherlands) under specific pathogen-free
conditions and in accordance with animal welfare, FELASA (Federation of
European Laboratory Animal Science Associations), ethical, and institutional
guidelines. Mice were hosted in individually ventilated cages in groups of 2–3
mice per cage. Briefly, viably frozen human blasts were intravenously injected
into immunocompromised NOD/scid/Gamma (NSG) female mice of 8–10 weeks
of age (Charles River, France). Mice were constantly monitored for leukemia
development and disease burden was assessed by detection of human CD45+
cells in the murine blood by tail vein cut and FACS analysis. Mice were sacrificed
when presenting symptoms of leukemia (lack of grooming and activity, hunched
back position, visible loss of weight) or when the circulating human CD45+ cells
reached 50%. Human blasts were isolated from the murine spleen using the
Lymphoprep density gradient separation (STEMCELL technologies, Canada).
Purified blasts were either immediately harvested for phosphoproteomic analyses
or viably frozen until further usage. The mutational status of primary cells and
their related PDXs was previously investigated by whole-exome sequencing46.
The full list of somatic mutations of the T-ALL xenografts used in this study is
reported in Supplementary Data 1.

Phosphorylated peptide enrichment and mass spectrometry analysis. Cell
lines were harvested in their exponential growth phase to preserve physiological
signaling while human CD45+ blasts obtained from the murine spleen were
immediately harvested after the Lymphoprep density gradient separation. Briefly,
cells were spun down at 250 × g for 5 min, washed in cold PBS, spun down again, and
harvested in 9M urea/20mM HEPES (pH 8) lysis buffer containing 1mM sodium
orthovanadate, 2.5mM sodium pyrophosphate, and 1mM β-glycerophosphate. Cell
lysates were thoroughly vortexed at maximum speed for 30 s, snap-frozen in liquid
nitrogen and stored at −80 °C until further usage. Before the enrichment step, lysates
were thawed, sonicated three times at 18-micron amplitude (30 s on/60 s off) using
the MSE Soniprep 150 sonicator (MSE) on ice. Cleared lysates were diluted to a
concentration of 2 mg/ml and 5mg of protein input was used for each sample.
Proteins were reduced with 2mM DTT for 30min at 55 °C, alkylated using 5mM
iodoacetamide for 15min at RT in the dark and eventually digested overnight with
Sequencing Grade Modified Trypsin (Promega cat# V5111) at RT. Digested peptides
were purified using OASIS HLB Cartridges (6 cc, 500mg Sorbent, 60 µm particle
size. Waters cat# 186000115) and lyophilized. Phospho-tyrosine peptides were
enriched via immunoprecipitation (IP) using the PTMScan® Phospho-Tyrosine
Rabbit mAb (P-Tyr-1000) Kit (Cell Signaling Technology cat# 8803) according to
the manufacturer protocol, using 4 µl of bead slurry for each mg of protein input.
Phospho-tyrosine peptides were eluted in 0.15% trifluoroacetic acid (TFA) and the
unbound peptide fraction was used for complementary phospho-serine and
phospho-threonine peptides capturing using custom-made TiO2 C8-fitted tips.
Eventually, eluted phosphorylated peptides were desalted using 20 µl SDB-XC
StageTips (Prepared from Empore™ SPE Disks with SDB-XC, Sigma cat# 66884-U)
prior to LC-MS analysis. For global protein expression analysis, 1 µg of total lysate
was subjected to liquid chromatography-mass spectrometry (LC-MS). LC-MS ana-
lyses were performed as previously described27. Briefly, phosphopeptides were dried
in a vacuum centrifuge and dissolved in 20 µl 0.5% trifluoroacetic acid (TFA)/4%
acetonitrile (ACN) prior to injection; 18 µl was injected using partial loop injection.
Peptides were separated by an Ultimate 3000 nanoLC-MS/MS system (Thermo
Fisher) equipped with a 50 cm × 75 μm ID Acclaim Pepmap (C18, 1.9 μm) column.
After injection, peptides were trapped at 3 μl/min on a 10mm × 75 μm ID Acclaim
Pepmap trap at 2% buffer B (buffer A: 0.1% formic acid (FA); buffer B: 80% ACN,
0.1% FA) and separated at 300 nl/min in a 10–40% buffer B gradient in 90min
(125min inject-to-inject) at 35 °C. Eluting peptides were ionized at a potential of +2
kVa into a Q Exactive HF mass spectrometer (Thermo Fisher). Intact masses were
measured from m/z 350–1400 at resolution 120,000 (at m/z 200) in the Orbitrap
using an AGC target value of 3E6 charges and a maxIT of 100ms. The top 15 for
peptide signals (charge-states 2+ and higher) were submitted to MS/MS in the HCD
(higher-energy collision) cell (1.4 amu isolation width, 26% normalized collision
energy). MS/MS spectra were acquired at resolution 15,000 (at m/z 200) in the
Orbitrap using an AGC target value of 1E6 charges, a maxIT of 64ms and an
underfill ratio of 0.1%. This results in an intensity threshold for MS/MS of 1.3E5.
Dynamic exclusion was applied with a repeat count of 1 and an exclusion time of
30 s. For peptide and protein identification, MS/MS spectra were searched against
theoretical spectra from the UniProt complete human proteome FASTA file (release
January 2018, 42,258 entries) using the MaxQuant 1.6.0.16 software47 with the fol-
lowing settings: enzyme specificity = trypsin, missed cleavages allowed = 2, fixed
modification = cysteine carboxamidomethylation; variable modification = serine,
threonine and tyrosine phosphorylation, methionine oxidation, and N-terminal
acetylation; MS tolerance = 4.5 ppm and MS/MS tolerance = 20 ppm. For
both peptide and protein identifications, the false discovery rate was set at 1%
for filtering using a decoy database strategy. The minimal peptide length
was set at seven amino acids, the minimum Andromeda score for modified
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peptides at 40, and the corresponding minimum delta score at 6. Moreover, the
“match between runs” option was used to propagate the peptides identification
across samples.

Isolation of human thymocytes and ex vivo drug treatment. Normal pediatric
thymic tissues were obtained according to the study protocol TCbio-18-181
approved by the ethical committee and the biobank of the Utrecht university
medical center (the Netherlands). Informed written consent for research purposes
was provided by all the legal guardians of the participants. Briefly, after surgical
removal, thymic tissue biopsies were mechanically disrupted in RPMI-1640 med-
ium (Gibco) supplemented with fetal bovine serum (Gibco) and antibiotics to
obtain a single-cell suspension. Isolated thymocytes were washed in PBS and
contaminating red blood cells were removed via osmotic shock using the RBC lysis
buffer (BioLegend, cat #420301) according to the manufacturer protocol. Cells were
diluted to a concentration of 2.5 × 106 cells/ml and dispensed into a 384 multiwell
plate (Corning) using the semi-automated Multidrop dispenser (Thermo Fisher) in
duplicates. Drugs were diluted in DMSO at a concentration of 10 mM and dis-
pensed using a TECAN D300e digital dispenser in a range of 1 nM–10 µM. Cell
viability was evaluated at the time of seeding (t= 0) and after 72 h incubation using
the CellTiter-Glo luminescence assay (Promega) according to the manufacturer
protocol.

INKA analyses. Inference of highly active kinases from phosphoproteomic data
was performed as previously described27. Integrative iNferred Kinase Activity
(INKA) scores are calculated based on four parameters: the sum of all phos-
phorylated peptides belonging to a kinase; the detection of the phosphorylated
kinase activation domain (kinase-centric parameters), 3) the detection of known
phosphorylated substrates and the presence of predicted phosphorylated substrates
(substrate-centric parameters)22,27. The latest version of the INKA pipeline is
available online at https://inkascore.org/.

Drug screenings. Cytotoxicity assays were performed as previously described48.
Alternatively, cells were seeded in triplicate in 96-multiwell plates and incubated
with kinase inhibitors (Supplementary Table 2) in a concentration range from
3.2 nM to 32 µM for 72 h. For combination treatment assays in cell lines, a fixed
concentration of BMS-754807, linsitinib, GSK-4529A, or ipatasertib was added to
the dasatinib range. Cell viability was calculated in relation to untreated control
cells using the colorimetric Thiazolyl Blue Tetrazolium Bromide (MTT) assay
(Sigma-Aldrich cat# 475989). Graphs were obtained using the GraphPad Prism
9.0.1 software (GraphPad Prism, nonlinear regression, inhibitor vs. response; three
parameters). Synergy upon treatment combination was calculated using the
Chou–Talalay method49, according to the following formula: combination index
(CI)=D1/Dx1+D2/Dx2, where Dx1 and Dx2 are the IC50 of the single drugs
while D1 and D2 are the drug concentrations achieving 50% reduction in cell
viability in the combined treatment.

For synergy testing in PDXs, viably frozen T-ALL blasts purified from the
murine spleen were thawed and cultured in RPMI1640+ GlutaMax® (Gibco)
supplemented with 20% fetal calf serum (Gibco) and antibiotics in the absence
of cytokines and feeder layer. Cells were dispensed into a 384 multiwell plate
(Corning) using the semi-automated Multidrop dispenser (Thermo Fisher) in
duplicates. Drugs were diluted in DMSO at a concentration of 10 mM and
dispensed using a TECAN D300e digital dispenser in a range of 1 nM–10 µM.
Cell viability was evaluated at the time of seeding (t= 0) and after 72 h
incubation using the CellTiter-Glo luminescence assay (Promega) according to
the manufacturer protocol. Synergy was evaluated using the SynergyFinder R
package (version 2.4.16)50 applying the Zero-Interaction Potency (ZIP)
method30. In case of negative inhibition values, a partial correction was applied
to avoid an overestimation of the synergistic effect with a combined
treatment30. Drug combinations with a ZIP synergy score higher than 10
(corresponding to a deviation from the reference model above 10%) were
considered synergistic.

Statistical analyses. Statistical analyses were performed via a paired, two-sided
Student’s t-test using the GraphPad Prism 9.0.1 software (GraphPad Prism). The
number of biological replicates and the exact p-values are indicated in the figure
legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD024807.
The human Swiss-Prot database used for raw data search was downloaded from the
UniProt database (https://www.uniprot.org/). The AML phosphoproteomic data22 used
in Fig. 1e was downloaded from the ProteomeXchange Consortium using the accession
code PXD007237. The targets of milciclib were identified browsing the ProteomicsDB
database28,29 (https://www.proteomicsdb.org/). Source data are provided with this paper.

Code availability
The latest version of the INKA code used in this manuscript is available online at https://
inkascore.org/.
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