Fig. 10: CIU fingerprints of the in cellula and in vitro assembled αβ heterodimer in the presence of ATP and Mg2+.
From: Bacterial F-type ATP synthases follow a well-choreographed assembly pathway

a In cellula assembled αβ heterodimer. b In vitro assembled αβ heterodimer. Exemplary spectra are shown in Supplementary Fig. 10. At low collision voltages the IM signal of the αβ heterodimer appears at 7595 Å2 for the in cellula and at 7630 Å2 for the in vitro assembled αβ heterodimer, respectively. At higher collision voltages the signal of the in vitro assembled αβ heterodimer unfolds, resulting in a signal at 7851 Å2. At 152.6 V 50% has reached the unfolded state. In contrast, increasing the collision voltage in the case of the in cellula formed αβ heterodimer leads to a signal appearing at 7802 Å2. 50% unfolding is never reached—the maximal unfolding of 47% is observed at 200 V. c The difference plot of both fingerprints illustrates the change regarding unfolding behavior between in vitro and in cellula assembled heterodimers. d–f CCS distribution for different collision voltages for in vitro (d) and in cellula (e) assembled heterodimers, and the difference plot (f). The overall feature of the in vitro αβ is clearly broader than for the in cellula αβ.