Fig. 4: Changes in fecal community composition in response to glycans across human donors. | Nature Communications

Fig. 4: Changes in fecal community composition in response to glycans across human donors.

From: Synthetic glycans control gut microbiome structure and mitigate colitis in mice

Fig. 4

Differences in relative abundances of genera in ex vivo fecal cultures grown on (a) BRF, (b) BQM, or (c) lactulose relative to no-glycan controls. Data points show median log2FC in genus abundances for each donor; box plots show median and interquartile range across donors. Genera with significant changes (p < 0.05 after FDR correction) are shown. d Differences in CAZyme gene abundances in ex vivo cultures grown on different glycans (median log2FC versus no-glycan controls). CAZyme family/subfamilies with significant abundance changes (p < 0.05 after FDR correction) and log2FC > 1 on at least one glycan versus no-glycan controls are shown with hierarchical clustering based on Euclidean distance. Colors are FC with gray showing families not detected in the no-glycan control. Asterisks indicate significantly elevated abundance. a–d Fecal cultures from healthy donors (ten donors for SGs, seven donors for lactulose) were grown in triplicate for 45 h in MM29 medium supplemented with 5 g l−1 glycan, as appropriate, and sequenced by metagenomics. Statistical significance for genus and CAZyme changes was determined by fitting a linear mixed-effect model on rank transformed genera/CAZyme abundance data with glycan treatment as fixed effect and subject as random effect. Source data are provided as a Source Data file. SGs Synthetic Glycans, FC fold change, FDR false discovery rate, CAZyme carbohydrate-active enzyme, GH glycoside hydrolase, CBM carbohydrate-binding modul, PL polysaccharide lyase, GT glycosyltransferase, AA auxiliary activity.

Back to article page