Table 1 Floquet group theory and harmonic generation selection rules in (2+1)D.

From: Selection rules in symmetry-broken systems by symmetries in synthetic dimensions

Floquet group symmetry \(\hat{X}\)

Harmonic generation selection rule

\(\hat{T}\)

Linearly polarized only harmonics. They may be polarized along any axis.

\(\hat{Q}=\hat{T}\cdot {\hat{R}}_{2}\)

Linearly polarized only harmonics. They may be polarized along any axis.

\(\hat{G}=\hat{{{{{{\rm{T}}}}}}}\cdot {\hat{{{{{{\rm{\tau }}}}}}}}_{2}\cdot {\hat{{{{{{\rm{R}}}}}}}}_{2}\)

Linearly polarized only harmonics. They may be polarized along any axis.

\({\hat{Z}}_{y}={\hat{{{{{{\rm{\tau }}}}}}}}_{2}\cdot {\hat{{{{{{\rm{\sigma }}}}}}}}_{{{{{{\rm{y}}}}}}}\)

Linearly polarized only harmonics, even harmonics are polarized along the reflection axis, and odd harmonics are polarized orthogonal to the reflection axis.

\({\hat{D}}_{y}=\hat{T}\cdot {\hat{{{{{{\rm{\sigma }}}}}}}}_{y}\)

Elliptically polarized harmonics with major/minor axis corresponding to the reflection axis.

\({\hat{H}}_{y}=\hat{T}\cdot {\hat{{{{{{\rm{\sigma }}}}}}}}_{y}\)

Elliptically polarized harmonics with major/minor axis corresponding to the reflection axis.

\({\hat{C}}_{N}={\hat{\tau }}_{N}\cdot {\hat{{{{{{\rm{R}}}}}}}}_{N}\)

(±) circularly polarized \({Nq}\pm 1\) harmonics, \(q{\mathbb{\in }}{\Bbb{N}}\), all other orders forbidden

\({\hat{C}}_{N,M}={\hat{\tau }}_{N}\cdot {\hat{{{{{{\rm{R}}}}}}}}_{N,M}={\hat{\tau }}_{N}\cdot {({\hat{R}}_{N})}^{M}\)

(±) circularly polarized \({Nq}\pm M\) harmonics, \(q{\mathbb{\in }}{\mathbb{N}}\), all other orders forbidden

\({\hat{e}}_{N,M}={\hat{\tau }}_{N}\cdot {\hat{{{{{{\rm{L}}}}}}}}_{b}\cdot {\hat{{{{{{\rm{R}}}}}}}}_{N,M}\cdot {\hat{{{{{{\rm{L}}}}}}}}_{1/b}\)

(±) elliptically polarized \({Nq}\pm M\) harmonics, \(q{\mathbb{\in }}{\mathbb{N}}\), with an ellipticity b, all other orders forbidden.