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Synchronizing rock clocks in the late Cambrian
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The Cambrian is the most poorly dated period of the past 541 million years. This hampers

analysis of profound environmental and biological changes that took place during this period.

Astronomically forced climate cycles recognized in sediments and anchored to radioisotopic

ages provide a powerful geochronometer that has fundamentally refined Mesozoic–Cenozoic

time scales but not yet the Palaeozoic. Here we report a continuous astronomical signal

detected as geochemical variations (1 mm resolution) in the late Cambrian Alum Shale

Formation that is used to establish a 16-Myr-long astronomical time scale, anchored by

radioisotopic dates. The resulting time scale is biostratigraphically well-constrained, allowing

correlation of the late Cambrian global stage boundaries with the 405-kyr astrochronological

framework. This enables a first assessment, in numerical time, of the evolution of major biotic

and abiotic changes, including the end-Marjuman extinctions and the Steptoean Positive

Carbon Isotope Excursion, that characterized the late Cambrian Earth.
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During the late Cambrian, profound changes in the Earth’s
oceanic physio-chemical conditions took place along with
shifts in atmospheric oxygen levels1. These changes

coincided with biotic turnover, and conspicuous perturbations in
the global carbon cycle and marine redox landscape2–8. Precise
temporal constraints are fundamental for understanding their
timing, duration and links to causal mechanisms. However,
compared to other Phanerozoic intervals, the ages of Cambrian
stratigraphic boundaries are poorly resolved9 as dated bentonite
beds are rare in the Cambrian stratigraphic record10. The ages
currently available for the Cambrian stage boundaries were esti-
mated simply by assuming that successive biozones represent
equal time intervals9. This is unlikely, however, as evolutionary
turnover rates are not constant and as the uniformity in
palaeontological practice for biozonal designation varies across
clades and geographical occurrence9,11. As a further complica-
tion, global biostratigraphic correlation is hampered by the pro-
nounced faunal provincialism at this time9 and as a result, stage
boundaries within the Cambrian system have proven particularly
difficult to ratify by the International Union of Geological
Sciences.

Cyclostratigraphy is a powerful tool for refining the geological
time scale, but thus far applications in the early Palaeozoic have
been relatively few12,13. Astronomically forced climate cycles
expressed in sediments14, when tuned to an astronomical solu-
tion, yield a high-resolution astronomical time scale15. During the
past two decades, the construction of an astronomical time scale
has been well underway for the Cenozoic–Mesozoic eras12,13,16,
assisted by orbital solutions to the solar insolation on Earth17,18.
Despite the lack of complete orbital solutions prior to 50Ma, the
405-kyr long orbital eccentricity, caused by gravitational inter-
actions between Jupiter and Venus, is considered stable over most
of Earth’s history, enabling it to be used as a reliable astronomical
metronome15–19. Well-expressed orbital cycles have been found
in 1.4 Ga Proterozoic marine sediments20,21, and in 2.48 Ga old
banded iron formations of South Africa22. Apart from one recent
study detailed below, previous studies of Cambrian cyclostrati-
graphy have mostly focused on whether orbital forcing can be
recognized at all, and where present, only short intervals span-
ning a few 405-kyr cycles have been observed at widely disparate
localities23–26.

Recently, Milankovitch-driven Cambrian cycles were recog-
nized in two drill cores in southern Scandinavia, enabling the
establishment of a floating astronomical time scale for a ~8.7 Myr
interval across the Miaolingian–Furongian boundary27. Still, the
lack of numerical age constraints has prevented independent time
control and the establishment of a continuous, robust Cambrian
temporal framework. Here, we describe astronomically forced
cycles recorded by the aluminium content (1 mm resolution) in
the upper part of the Alum Shale Formation, southern Sweden,
calibrated to previous records from the same interval27. This new
time framework is constrained by radioisotopic ages published for
the late Cambrian–Early Ordovician11,28,29, and covers a strati-
graphic interval from the Guzhangian (~499.9 Ma) to the early
Tremadocian (~483.9 Ma) (Fig. 1c). Regional and global corre-
lations are based on integrated constraints from biostratigraphy,
gamma-ray log stratigraphy, carbon isotopes, as well as elemental
chemostratigraphy.

The Alum Shale Formation
The Baltoscandian platform was exceptionally flat and tectonically
quiescent during the Cambrian, and active subsidence of this
ancient craton was minimal30. The Alum Shale Formation was
deposited from the Miaolingian (middle Cambrian) to the Early
Ordovician (Tremadocian) in the offshore deeper parts of an

extensive epicontinental sea. The facies originally blanketed all of
western Baltica and roughly covered an area of about 1 × 106 km2,
from Finnmark in northernmost Norway to northern Poland in the
south and from the Norwegian/Swedish Caledonides in the west to
Estonia and the St. Petersburg area of Russia in the east (Fig. 1b).
The formation thickens from ~20–25m across much of Sweden to
~80–100m in Scania (southern Sweden) and the Oslo region
(southern Norway). The present study of the upper ~77m of the
Alum Shale Formation in the Albjära-1 drill core from Scania spans
the Guzhangian to Tremadocian interval, and mainly comprises
finely laminated, non-bioturbated organic-rich black shales depos-
ited on the outer shelf (Fig. 1c). In this setting, deposition was
continuous but varied with sea-level changes, being expanded in
lowstand intervals and condensed in highstand intervals31. A
detailed biostratigraphy, comprising nine Miaolingian–Furongian
superzones subdivided into 31 zones based on trilobites and
agnostoids and three Tremadocian zones based on graptolites,
provides an important stratigraphic framework for comparison of
sections across Scandinavia31,32. A detailed stratigraphic framework
for the Albjära-1 drill core has been established (Supplementary
Fig. 1) based on the correlation of fossils, gamma-ray log patterns,
and δ13Corg chemostratigraphy from multiple localities in Scania
(Sweden) and on Bornholm (Denmark)8,33.

Aluminium as a palaeoclimate proxy
X-Ray fluorescence core scanning of the Albjära-1 core at 1 mm
resolution yielded geochemical profiles for an array of chemical
elements. Among them, we selected aluminium (Al) for cyclos-
tratigraphic analysis because (i) Al is hosted mainly in alumi-
nosilicates that are the predominant component of clay, and thus,
highly affected by continental weathering processes34, (ii) Al is
hosted in insoluble phases and, thus, less sensitive to diagenetic
alteration34,35, and (iii) a previous study of other Alum Shale
cores has found cyclic patterns in clay-bound elements27.
Therefore, cyclic variations in the Al content of the Alum Shale
are presumed useful as an indicator for palaeoclimatic changes. In
general, warm and humid climates are associated with enhanced
chemical weathering, precipitation and runoff, and thus intensi-
fied clay supply to the sea, causing higher Al concentrations in the
marine sediments, and vice versa in colder and/or drier climates.
In addition, the cyclic effect of weathering-induced Al con-
centrations was likely further amplified by pyrite dilution, e.g., via
aeolian dust supply of iron into the ocean, which was enhanced
during increased aridity and colder climates27.

Results
The multitaper method (MTM) spectrum of the uncalibrated Al
series through the entire stratigraphic interval shows dominant
wavelengths of 1.79–2.90, 0.48–0.76, 0.13–0.22 and 0.08–0.11m
(Supplementary Fig. 4a), with ratios that fit well with those of the
theoretical late Cambrian orbital parameters36 (see Supplementary
Note 2 for details). Given the variable sedimentation rates revealed
by our evolutive spectrogram (evolutive Fast Fourier transform
[evoFFT]; Supplementary Fig. 4b), we conducted the cyclostrati-
graphic analysis in four subsets, viz. core intervals 0–18, 18–41,
41–55 and 55–74m. These four intervals display robust peaks at
~1.85, ~2.44, ~2.78 and ~1.84m, respectively, which are all inter-
preted as reflecting 405-kyr eccentricity cycles (Supplementary
Fig. 4c), based on an average (compacted) sedimentation rate
estimation of 4–5mm/kyr in Scania (ref. 37; Supplementary Note 3).
When 405 kyr is used to time-calibrate these stratigraphic cycles,
the significant spectral peaks in addition to the 405-kyr peak
indicate cycles with periods consistent with the theoretical ratio of
the astronomical parameters for the late Cambrian (Supplementary
Note 2). Variations in the sedimentation rate at 405-kyr scale also
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match well with the sedimentation rate map derived iteratively
using the evolutionary correlation coefficient (eCOCO) algorithm
(Supplementary Fig. 5) and variations observed in other parts of the
Alum Shale basin27. The sedimentation rates are inversely corre-
lated with late Cambrian sea-level reconstructions in the basin as
should be expected31 (Supplementary Fig. 5). The MTM spectrum
of the entire 405-kyr-calibrated time series displays significant
spectral peaks at ~2.6Myr, ~1.8Myr, ~1.3Myr, 405 kyr, ~108 kyr,
~30.9 kyr and ~17.1–20.9 kyr above the 99.9% confidence level
(Supplementary Fig. 6a, b). These peaks are consistent with the
major periods expected from the orbital forcing of solar insolation
on the late Cambrian Earth12,13,36. Application of the Al-based age
model to other lithogenic elements, silicon and titanium, further
support this interpretation (Supplementary Fig. 6d–i). The obliquity
component is significant (Supplementary Fig. 6b, e, h), which fits
expectations since obliquity forcing of insolation increases

polewards with pronounced expression at 60°–80° latitude13, and
Baltica was located at ~60° S palaeolatitude at this time38. Ampli-
tude modulations of the obliquity cycles reveal persistent periods at
~1.3Myr (Supplementary Fig. 7), near the secular frequency (s4–s3)
originating from Mars and Earth’s orbital inclination variations at
~1.2Myr. This modulation is also an important feature in
Cenozoic–Mesozoic sedimentary records39. This modulation peri-
odicity has not been reported from the Cambrian before, but due to
the extended duration of the interval studied here (~16Myr) at a
very high resolution (2–3 kyr), it could be detected and demon-
strated as a significant component in our dataset. The collective
array of cyclostratigraphic results, thus, confirms a strong
insolation-forced imprint on the late Cambrian climate and on
sedimentation in the Alum shale basin. More details on the
cyclostratigraphic interpretation are provided in Supplementary
Note 3.
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Fig. 1 Summary of relevant geographical and stratigraphic data. a Late Cambrian (494Ma) global palaeogeography85. b Location map showing the
original distribution of the Alum Shale Formation in southern Scandinavia and the location of wells referred to (modified from ref. 30). c Biozonation,
lithology and cyclostratigraphy of the Furongian interval including strata below and above in the Albjära-1 core, as well as representative core photos of the
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Lamination cycles are closely tracked by Al concentration variations (the 178.52–181.21 m interval is shown as an example).
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Discussion
Comparison with Milankovitch cycles published for the late
Cambrian. Sørensen et al.27 recently reported Milankovitch cycles
from a ~8.7Myr interval across the Miaolingian–Furongian
boundary in two Alum Shale drill cores, Fågeltofta-2 from eastern
Scania (southern Sweden), and Billegrav-2 from Bornholm (Den-
mark). The 405-kyr cycles identified in the Albjära-1 core show
overall an excellent match with these results. Although the previous
cyclostratigraphic analysis focused on sulfur (S), a strong anti-
correlation between the detrended Al and S signals (ref. 27, their
Supplementary Fig. 5) facilitates correlation with the present study.
Figure 2 shows a nearly perfect correlation between the three cores,
which are constrained by biostratigraphy and molybdenum (Mo)
trends in the overlapping intervals. The correlation points match
twenty-two 405-kyr cycles (E16–E37) but with two discrepancies: in
the lower Parabolina Superzone where one 405-kyr cycle (E25) in
the Albjära-1 core correlates with two cycles (Pa-4 and Pa-5) in the
Fågeltofta-2 and Billegrav-2 cores, and in the Agnostus pisiformis
Zone, where two 405-kyr cycles (E34 and E35) in the Albjära-1 core
correspond to only one cycle (Ap-1) in the Billegrav-2 core.

To investigate these discrepancies further, more detailed
cyclostratigraphic analyses of the uncalibrated Al series from
the lower Parabolina Superzone and the A. pisiformis Zone in the
Albjära-1 core were conducted (Supplementary Fig. 8). The
detailed analysis of the E25 interval of the Albjära-1 core confirms
our initial interpretation (Supplementary Fig. 8a, b), but the
possibility that one 405-kyr cycle is condensed or missing cannot
be excluded, considering the sea-level lowstand conditions that
prevailed during the deposition of the lower Parabolina
Superzone31 (Supplementary Fig. 5), and the fact that the Pa-4
and Pa-5 cycles are well expressed in the corresponding interval
of the Fågeltofta-2 and Billegrav-2 cores27 (Fig. 2). Although the
16-Myr record represented by the Albjära-1 section provides the
most complete astrochronological record, a (possible) local hiatus
in the lower Parabolina Superzone suggest that dates for
boundaries below the Parabolina Superzone may carry an
additional error, which is included in the calculated uncertainty
of the ages of biozone and stage boundaries (see section
“Establishing and testing a radioisotopically anchored late
Cambrian astronomical time scale”). The new data show two
well-expressed E34 and E35 cycles associated with higher-
frequency cycles in the A. pisiformis zone (Supplementary Fig. 8c,
d), matching two Al-based 405-kyr cycles in the Billegrav-2 core
(labelled Ap-1a and -1b in Fig. 2), which are not recorded in the
sulfur data from that core27. Apart from these two discrepancies,
the antiphase relationship between the Al- and S-derived 405-kyr
cycles is interrupted at cycle E37 (Ap-3 in the Billegrav-2 core)
(Fig. 2). Detailed analysis of this interval revealed well-expressed
higher-frequency oscillations (~32.7-kyr and ~18.5-kyr cycles)
within the E37 cycle (Supplementary Fig. 8e, f), and this cycle can
also confidently be correlated with that of the Al-based Ap-3 cycle
in the Billegrav-2 core, as supported by correlation of the
molybdenum profiles (Fig. 2). Therefore, the insolation forcing on
Al may be more robust than S in this interval, because in the
anoxic Alum Shale basin, S (hosted mainly in pyrite, FeS2) is
affected by the iron supply to the basin via multiple plausible
sources such as benthic iron shuttle, aeolian dust and clastic
input27,40.

Determination of the Cambrian–Ordovician boundary. The
Global Boundary Stratotype Section and Point for the
Cambrian–Ordovician boundary (COB) has been ratified at
Green Point, western Newfoundland, coinciding with the First
Appearance Datum (FAD) of the conodont Iapetognathus fluc-
tivagus, which is located just 4.8 m below the earliest occurrence

of planktic graptolites41. This boundary coincides with a positive
carbon isotope (δ13Ccarb) excursion, featuring a “double switch-
back” at about the COB before reaching the maximum value of
~–2‰ in the lowermost Ordovician41,42. Hence, the COB is
located at the rising limb of this positive excursion. Based on
detailed carbon isotope correlations with records from Australia
(Queensland), USA (Utah), Canada (Green Point section) and
China (Jilin) (Fig. 3), the COB in the Albjära-1 core is inferred
located at 146.86 m in the middle of this rising limb (corre-
sponding to an adjusted depth of 11.18 m below the top of the
Alum Shale Formation). This position is corroborated by a per-
fect correlation of the gamma-ray log and δ13Corg curve to the
Gislövshammar-1 and Gislövshammar-2 wells in SE Scania
(ref. 8; Supplementary Fig. 1). The biozonation has been inves-
tigated in great detail in the Gislövshammar-1 well43,44. The
Albjära-1 core has been kept as intact as possible without splitting
the core systematically for fossil investigations, and the first
reliable record of the planktic graptolite Rhabdinopora is on an
incidentally exposed core surface at 142.0 m. A few possible
graptolite stipe fragments have, however, been observed at
146.63 m just above the COB (Supplementary Fig. 1). In the
Gislövhammer cores, the first record of planktic graptolites is
~0.67 m above the COB as predicted by the δ13Corg isotope
pattern (Supplementary Fig. 1).

Establishing and testing a radioisotopically anchored late
Cambrian astronomical time scale. The COB age of
485.4 ± 1.9 Ma, published in the GTS201210 and GTS201645, was
calculated by a spline fit of 26 radioisotopic age determinations
through the late Cambrian–Early Devonian interval. In GTS2020,
the number of radioisotopic dates increased to 49, and an age of
486.9 ± 1.5 Ma was recalculated for the COB46. Nonetheless, the
general scarcity of stratigraphically well-constrained age deter-
minations in the Cambrian creates a large uncertainty for the
calculated COB age10. A U-Pb date of an ash bed from the
uppermost Furongian Acerocare ecorne Zone at Bryn-llin-fawr,
North Wales, located just ~4 m below the first occurrence of the
graptolite Rhabdinopora (traditional index fossil for the base of
the Ordovician), provides a precise numerical age constraint of
489 ± 0.6 Ma11. In GTS2020, this age was recalculated at
486.78 ± 0.53 Ma using a corrected U decay constant47. Anchor-
ing our 405-kyr calibrated time series to this U-Pb date, which is
well within the range of the calculated age (486.9 ± 1.5 Ma) based
on a spline fit of 49 radioisotopic dates from the lower Palaeozoic
(cf. GTS202046), enables the construction of an anchored astro-
nomical time scale for the late part of the Cambrian and the
earliest Ordovician, spanning from 499.9 ± 0.9 to 483.9 ± 0.7 Ma
(Fig. 4).

The astronomical time scale carries the following uncertainties:
(i) the error of the 486.78 ± 0.53 Ma U-Pb dating of the COB; (ii)
the uncertainty in precisely determining the position of the
COB in the studied core based on δ13Corg data, as the rising
limb of the COB positive excursion straddles a 0.29-m-thick
interval (146.71–147.00 m), which corresponds to 0.05Myr (i.e.,
±0.03Myr error if the COB is assumed located at 146.86 m in the
middle of that interval); (iii) the assumption of a constant
sedimentation rate between every two 405-kyr cycle minima; (iv)
the uncertainty of spectral peak assignments in the cyclostrati-
graphic signal due to nonlinear climatic response that potentially
caused variable time lags between orbital forcing and sedimenta-
tion cyclic expression; here, we follow the previously proposed
assumption of ±0.10Myr27; (v) the uncertainties in identifying
the exact location of biozone or stage boundaries in the Albjära-1
core; these uncertainties in metres are translated into durations
using the 405-kyr-derived sedimentation rate, and the resulting
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errors of which (labelled as ebio) range between 0.07 and
0.35Myr, see Supplementary Note 1 for details; (vi) due to
the single discrepancy between the analysis of the Fågeltofta-2 core
(indicating 5 cycles in the Parabolina Superzone27) and that of the
present study (4 cycles), we have adopted the average of the two
studies (i.e., 4.5 cycles), and therefore added an additional error of
±0.20Myr (half 405-kyr cycle) to all ages below the Parabolina

Superzone. All in all, the uncertainties of dating the biozone and
stage boundaries above and below the Parabolina Superzone are
estimated to be 0.66+ebio (=0.53+ 0.03+ 0.10+ebio) Myr and
0.86+ebio (=0.53+ 0.03+ 0.10+ 0.20+ebio) Myr, respectively.

The radioisotopically anchored astronomical time scale (Fig. 4) is
further constrained by two additional isotope dates. The first one is
an adjusted U-Pb zircon date at 488.71 ± 1.17Ma, based on a
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volcanic ash from Ogof-ddu, Criccieth, N. Wales29,47. This ash bed
was located just 0.6m above the first occurrence of Ctenopyge
linnarssoni in the lower part of the Peltura scarabaeoides Zone29

according to Henningsmoen’s scheme48, but recently, the revised
definition of the P. scarabaeoides Zone places it in the upper part of
this zone31. The U-Pb age corroborates our calculated age range for
the upper half of the P. scarabaeoides Zone (~488.7–489.7Ma). The
second adjusted U-Pb zircon age of 481.13 ± 1.12Ma was reported
from an uppermost Tremadocian K-bentonite in the Chesley Drive
Group, McLeod Brook, at Cape Breton, Canada28,47. In Scania, the
Alum Shale Formation is overlain by the Bjørkåsholmen Formation
and the Tøyen Formation (Fig. 1c). The upper boundary of the
Tremadocian Stage corresponds to a level somewhere in the lower
part of Tøyen Formation, a few metres above the top of Alum Shale
Formation. This is consistent with the estimated age of
483.9 ± 0.7Ma for the top of the Alum Shale Formation, which is
~2.8Myr older than the dated uppermost Tremadocian bentonite
from Cape Breton. Hence, the few existing radioisotopic dates
published for the studied interval fit with the time scale constructed
on the basis of astronomical cycles (Fig. 4), corroborating the
reliability of the age model and the feasibility of building an
astronomical time scale for the late Cambrian.

The ages of the bases of the late Cambrian Jiangshanian, Paibian
and Guzhangian stages are, respectively, calculated at 494.1 ± 1.0,
497.3+ 1.2/–0.9 and 500.3 ± 0.9Ma. These dates agree well with the
GTS2020 approximations of ~494.2, ~497.0 and ~500.5Ma49. The
base of Cambrian Stage 10 remains to be defined. Two levels are
discussed as potential candidates, viz. the FAD of the agnostoid
Lotagnostus americanus50,51 or the FAD of the conodont
Eoconodontus notchpeakensis below the onset of Hellnmaria-Red
Tops Boundary (HERB) carbon excursion event52,53. The lower
boundary age of Stage 10, based on the FAD of the L. americanus,
was estimated at ~489.5Ma in the GTS201645 and at ~491.0Ma in
the GTS202049. This was done by assigning the recalculated
488.71 ± 1.17Ma zircon date47 (erroneously stated to be redated as

490.1 ± 0.6Ma in GTS20209, see Supplementary Note 1 for details)
to the base of the Ctenopyge bisulcata Subzone [now abandoned
lower part of the P. scarabaeoides Zone31] and assuming a 1Myr
duration of the L. americanus Zone9,54. However, as remarked
above, the dated ash derives from the upper part of revised P.
scarabaeoides Zone31 and a 1Myr duration of the L. americanus
Zone is also a highly uncertain approximation. The lowest record of
L. trisectus [= L. americanus according to ref. 55] in Scandinavia is
in the basal part of the Peltura Superzone56–58 and which results in
an age for the base of Stage 10 at 491.1 ± 0.7Ma if defined at this
level. Alternatively, the FAD of E. notchpeakensis just slightly below
the onset of HERB carbon isotope event has been proposed as the
marker for the base of Stage 1052,53 (regarding naming of this event,
here provisionally referred to as the HERB/Top of Cambrian
Excursion (TOCE) excursion, see the section below). In Scandina-
via, this index fossil has been recorded from the Parabolina lobata
Zone59. If defined at this level, the age of the base of Stage 10 is
488.6 ± 0.8Ma (Fig. 4). This date is consistent with the date
calculated for the globally recognized HERB/TOCE event at
~488.0Ma according to the calibrated 405-kyr framework (Fig. 5).

The Baltoscandian astrochronology in a global context. The
current study provides new and significantly more detailed
temporal constraints on the palaeoenvironmental and biological
changes during the late Cambrian than previously published
(Fig. 5). The globally recognized Steptoean Positive Carbon Iso-
tope Excursion (SPICE) represents the largest carbon cycle per-
turbation during the late Cambrian, and it is one of the best
characterized anoxic events in the pre-Mesozoic ocean2,3. Based
on the age model (Fig. 5), this excursion in the Baltoscandian
Alum Shale started at ~497.5 Ma slightly prior to the
Guzhangian–Paibian boundary and lasted for ~3.0 Myr before
returning to pre-excursion values. This duration is in line with the
previous estimate of 3.0 ± 0.2 Myr27. A robust positive carbon
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isotope excursion (post-SPICE in Fig. 5) centres at ~494Ma with
a duration of ~1.2 Myr. This excursion is similar in position and
magnitude to a reported positive δ13C feature with an amplitude
of up to 2‰ immediately above the SPICE event in carbonate
successions from Siberia, Kazakhstan and Laurentia60,61, as well
as shales from Avalonia and Baltica8,62. The HERB, by some

referred to as the TOCE, has been recognized in Laurentia,
Gondwana, China and Baltica8,52,53,63–67. However, whether
HERB and TOCE are synonymous remains contentious68,69, and
for this reason, we provisionally refer to the excursion as HERB/
TOCE. Regardless of its name, our astrochronologic framework
suggests that this excursion peaked at ~488.0 Ma (Fig. 5). The
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refined temporal framework serves to clarify the timing and
relationship between the major late Cambrian carbon cycle per-
turbations, environmental changes, and biotic turnovers.

During the latest Miaolingian–earliest Furongian, loss of
richness among shelf faunas has been reported from both
south-western marginal Laurentia70–72, South China7, as well as
in global compilations5. The event is known as the end-
Marjuman extinctions, and it partially overlaps with the onset
of the SPICE event73. Our temporal compilation of the rates of
biotic and abiotic events (Fig. 5) shows that as extinctions peaked
during the latest Miaolingian, sea water temperatures and sea
level were both at their late Cambrian maximum. Late
Cambrian–Early Ordovician extreme heat has been suggested
by, for instance, clumped isotope evidence74,75. This “hyper-
warming” is proposed resulting from increasing global insolation
due to major eustatic rise and marine onlap of cratons, which
probably reduced ocean circulation, lowered oceanic oxygen
solubility and promoted epeiric sea anoxia76. This extreme
warming interval straddles four 405-kyr cycles (E34–E37) of the
Agnostus pisiformis Zone in Baltica. Hereafter, twelve 405-kyr
cycles follow from E33 to E22 that encompass the Paibian Olenus
Superzone and Jiangshanian Parabolina Superzone before a rapid
burst in generic richness occurred during the short Leptoplastus
Superzone spanning only 1.3 405-kyr cycles (i.e., ~500 kyr). This
rapid rebound appears to have occurred at least ~4.8 Myr after
the extinctions and coincides with isotopic evidence for a
dramatic ocean cooling in the palaeo-tropics to temperatures
similar to the modern equatorial range74 (Fig. 5). The richness
burst peaked during the Protopeltura Superzone and coincided
with a sea-level rise (Fig. 5).

This calibrated 405-kyr framework thus presents a first step
towards establishing a well-constrained temporal perspective on
the late Cambrian world. Further investigations are needed to
understand why the rates of biotic turnover, as well as the
environmental determinants, apparently fluctuated so rapidly
during the studied interval.

Methods
XRF-core scanning. Albjära-1 is a fully cored shallow scientific well with a total
depth of 237.40 m made by the University of Copenhagen and the Geological
Survey of Denmark and Greenland. The drill site is located about 5 km NE of the
small town Svalöv in Scania, Sweden, and the approximate coordinates are
55°56'9.03“N 13°10'42.52“E. The core diameter is 55 mm and the core recovery was
essentially 100%. The Alum Shale Formation was penetrated between 135.12 and
232.50 m below ground level at the drill site. The bulk elemental composition of the
upper part of the Alum Shale in the Albjära-1 core (135.12–212.49 m) was mea-
sured at the GLOBE Institute, University of Copenhagen, using an Itrax X-ray
fluorescence core scanner (XRF-CS) equipped with a rhodium tube as the X-ray
source. The measurements were conducted on the outer, round, cleaned core
surface at a stratigraphic resolution of 1 mm (corresponding to ~200 years of
sedimentation on average), confidently recording all expected astronomical cycles.
Each scan lasted for 10 s with the voltage and current of Rh energy of 40 kv and
10 mA, respectively. The recorded XRF signals were then analysed with Q-Spec
software CoreScanner 8.6.4 Rh from Cox Analytical Systems to get the elemental
concentrations using the SGR-1 calibration standard (Green River Shale).

Handheld-XRF. For broken core intervals (accounting for ~2.5 m of the ~77-m-
long core) where XRF-CS was impossible to apply, the element concentrations were
measured at the Geological Survey of Denmark and Greenland using a handheld
NitonTM Xl3t Goldd+XRF device (HH-XRF) equipped with an Ag anode. Each
measurement lasted for 120 s at a 30 kv voltage and 200 μA current. The scanned
area is about 5 mm in diameter. In total, 175 shale samples were measured,
including 30 from two unbroken intervals (166.25–166.42 and 166.53–166.72 m)
for calibration with the XRF-CS concentration (Supplementary Fig. 2), and 145
from broken intervals. The Al concentrations measured by the HH-XRF and XRF-
CS methods show a good correlation with Pearson correlation coefficient (r2)
values of 0.93 (Supplementary Fig. 2). Based on the fitted curve, the HH-XRF data
were corrected and a complete Al series along the entire length of the core was
obtained.

Organic carbon isotopes. 366 Alum Shale powder samples devoid of visible
macroscopic pyrite concretions, calcite veins and limestone intercalations were
collected using a low-speed micro-drill across the studied interval in the Albjära-1
and Gislövshammar-2 cores. Appropriate amounts (~15 mg) of powder were
loaded into open silver-foil capsules. The samples were decarbonated in a vacuum
desiccator (5 L) by using concentrated (12M) hydrochloric acid fumigation for
48 h. Subsequently, the carbonate-free residue was rinsed with deionized water to
get a nearly neutral pH. After drying at a temperature of 45°C for 4 h, the samples
with silver-foil capsules were transferred to tin combustion cups and closed. The
stable carbon isotope analysis was performed at the University of Copenhagen,
using an elemental analyzer (CE1110, Thermo Electron, Milan, Italy) connected to
an isotope ratio mass spectrometer (IRMS; Finnigan MAT Delta PLUS, Thermo
Scientific, Bremen, Germany). The analytical precision was maintained at ±0.08‰
(SD) based on replicated analyses of certified reference material of loamy soil
(calibrated by Elemental Microanalysis, Okehampton, UK). All data are reported in
the delta notation (δ13Corg) relative to the international standard Vienna Pee Dee
Belemnite.

Thickness correction. The Alum Shale Formation contains abundant lenticular
limestone nodules up to about 1 m thick (Fig. 1c and Supplementary Fig. 3a). They
are early diagenetic concretions composed of calcite, clay and pyrite77. The total
accumulated thickness of these nodules in the studied interval of the Albjära-1 well
is ~4.2 m. The limestones formed due to a complex interplay of variations in
sedimentation rate and availability of various elements that favoured the growth of
concretions immediately below the sea floor prior to compaction. They represent a
mixing of primary depositional and diagenetic signals. Simply removing all lime-
stone nodules from the data will mistakenly delete certain depositional periods,
corresponding to the laterally equivalent shales. Here, we introduce a model to
optimize the thickness correction (Supplementary Fig. 3b). The lime content of the
nodules is typically c. 80%77. We assume that shale mud and minor organic matter
account for the remainder 20%. The 80% volume originally occupied by water in
the newly deposited clay has disappeared in the shale as the pore water was
squeezed out, while the pore volume in the limestone concretions was occupied by
early precipitated lime and could not be compacted. Consequently, for every
limestone interval, we reduced the thickness to 20%, corresponding to the com-
pacted thickness of the original clay framework. Depths indicated for the Albjära-1
core are adjusted by assigning the Alum Shale Formation top at 135.12 m (drilled
depth) as the starting point and measuring downward after reducing the limestone
thickness to 20%. Supplementary Table 1 provides a list of adjusted versus original
depths.

Time series methods. The uncalibrated elemental data were first smoothed every
12 measuring points, corresponding to ~2–3 kyr temporal resolution (12 mm). This
procedure enhances the signal to noise with minimal risk of overlooking Milan-
kovitch cycles27, and translates into a longer exposure time (120 s) sufficient for
semi-quantitative analysis of detectable elements78. Long-term trends in the
uncalibrated Al data were removed by subtracting an 8% and 35–80% weighted
average (LOESS) from the data series of the entire and four subsets (0–18, 18–41,
41–55, 55–74 m), respectively. Power spectral analysis was performed using the
MTM79, with confidence levels of 90%, 95%, 99% and 99.9% calculated from a
robust AR(1) noise model80. The power decomposition method81 was applied to
subtract power/variance. Evolutive spectrograms were produced using the evoFFT,
to identify frequency changes due to sedimentation rate variations82. By identifying
long orbital eccentricity cycle nodes and defining equal time spans of 405 kyr
between every two minima, the sedimentation rate was calculated and compared to
the results of the eCOCO function83. All cyclostratigraphic tools are from the
software Acycle 2.1 for cyclostratigraphy84 except for the Taner filter used for
isolating potential astronomical parameters (the script of the latter is shared by
Linda Hinnov at http://mason.gmu.edu/~lhinnov/cyclotools/tanerfilter.m). Further
details of data handling are presented in Supplementary Note 3.

Data availability
The geochemical data used in this study are provided in the Supplementary Data
file. Source Data are provided with this paper.
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