Table 3 Logistic regression models for the association between the morphological features and EBVNet’s prediction on external datasets.

From: A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology

Features

MultiCenter-STAD

TCGA-STAD

Univariate

Multivariate

Univariate

Multivariate

OR

P

OR

P

OR

P

OR

P

Tertiary lymphoid structure

1.50 (1.00, 2.25)

0.050

NA

NA

1.45 (0.80, 2.61)

0.222

NA

NA

Medullary histology

193.17 (26.49, 1408.74)

<0.001

58.73 (7.75, 445.00)

<0.001

28.60 (6.23, 131.22)

<0.001

9.20 (1.87, 45.22)

0.006

Mucinous differentiation

0.14 (0.06, 0.33)

<0.001

0.30 (0.12, 0.76)

0.011

0.71 (0.32, 1.57)

0.400

NA

NA

Adenoid differentiation

0.41 (0.27, 0.61)

<0.001

0.79 (0.41, 1.53)

0.492

0.43 (0.24, 0.78)

0.005

1.31 (0.53, 3.22)

0.563

Papillary differentiation

0.17 (0.08, 0.36)

<0.001

0.55 (0.22, 1.40)

0.208

0.11 (0.04, 0.33)

<0.001

0.17 (0.05, 0.53)

0.003

Signet-ring cell

0.38 (0.23, 0.63)

<0.001

0.42 (0.22, 0.82)

0.010

0.50 (0.18, 1.34)

0.165

NA

NA

Poor differentiation

7.37 (4.38, 12.40)

<0.001

5.17 (2.46, 10.87)

<0.001

4.02 (2.12, 7.64)

<0.001

2.33 (0.92, 5.90)

0.075

Vacuolar nucleus or recognizable nucleolus

4.30 (2.82, 6.55)

<0.001

1.67 (0.98, 2.84)

0.059

4.11 (2.16, 7.80)

<0.001

3.86 (1.87, 7.98)

<0.001

  1. 95% confidence intervals are included in brackets. The data have been provided in the Source Data file.
  2. OR odds ratio, MultiCenter-STAD external dataset from multiple medical centers, TCGA-STAD external dataset from The Cancer Genome Atlas, NA not applicable.