Fig. 4: RBM17 knockdown leads to the production of NMD sensitive transcripts. | Nature Communications

Fig. 4: RBM17 knockdown leads to the production of NMD sensitive transcripts.

From: The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors

Fig. 4

a Pie chart distribution of predicted protein consequences, including changes in “protein domain” and “coding potential”. Bottom bar plot indicates the distribution of alternative splicing events predicted to lead to coding potential changes in shRBM17 groups. b Depiction of (1) RBM17 binding to intronic regions of EZH and EIF4A2, and resultant promotion of their retention and PTC introduction following knockdown of RBM17; (2) RBM17 binding to the cassette exon of RBM39, HNRNPDL and RBM41 leading to cassette exon inclusion and introduction of PTCs post-RBM17 knockdown; (3) RBM17 binding to exon belonging to 5’UTR of SRRM1 and subsequent inclusion of this exon that contain alternative start codon upon RBM17 knockdown, inducing ORF frameshift and PTC. c Cytoscape network analysis of proteins significantly deregulated by RBM17 knockdown in K562 cells. d Heat map of protein expression fold change of 13 NMD-sensitive transcripts with and without RBM17 knockdown. e Bootstrapping analysis of 44 proteins from 8825 total proteins identified from the RBM17 knockdown proteome. P value was calculated using two-tailed Student’s t test.

Back to article page