
ARTICLE

The genetic architecture of pneumonia
susceptibility implicates mucin biology and a
relationship with psychiatric illness
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Pneumonia remains one of the leading causes of death worldwide. In this study, we use

genome-wide meta-analysis of lifetime pneumonia diagnosis (N= 391,044) to identify four

association signals outside of the previously implicated major histocompatibility complex

region. Integrative analyses and finemapping of these signals support clinically tractable

targets, including the mucin MUC5AC and tumour necrosis factor receptor superfamily

member TNFRSF1A. Moreover, we demonstrate widespread evidence of genetic overlap with

pneumonia susceptibility across the human phenome, including particularly significant cor-

relations with psychiatric phenotypes that remain significant after testing differing phenotype

definitions for pneumonia or genetically conditioning on smoking behaviour. Finally, we show

how polygenic risk could be utilised for precision treatment formulation or drug repurposing

through pneumonia risk scores constructed using variants mapped to pathways with known

drug targets. In summary, we provide insights into the genetic architecture of pneumonia

susceptibility and genetics informed targets for drug development or repositioning.
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Pneumonia is characterised as an acute infection of the lung,
with fluid filled alveoli and resultant restriction of oxygen
intake being a key hallmark of its pathophysiology.

There are a number of mechanisms known to cause pneumonia,
however, bacterial or viral infection are the most common
aetiologies1. Pharmacological intervention in pneumonia treat-
ment is largely dependent on the infection source—for instance,
bacterial-induced pneumonia is treated with antibiotics. Yearly
mortality rates worldwide from pneumonia remain high, even in
the developed world where access to antibiotics and routine
hospital care is usually unrestricted2,3. This necessitates a greater
understanding of the mechanisms involved in pneumonia sus-
ceptibility and pathogenesis, which could be leveraged to identify
novel treatments and inform the repositioning of existing drugs.

There has been considerable work undertaken to identify host
factors that influence the onset and clinical course of pneumonia.
Twin-based estimates of pneumonia heritability are still lacking,
however, the heritability of death due to infections disease has
been estimated as high as 40%, although further study is required4.
There have also been few studies that have used modern statistical
genetics approaches to test for the existence of risk-increasing or
protective alleles associated with pneumonia with sufficient power
for surpassing genome-wide significance. Previously, a genome-
wide association study of lifetime self-reported pneumonia diag-
nosis was published using participants obtained by 23andMe, Inc.
that identified a significant signal in the major histocompatibility
complex (MHC) region on chromosome six5. We sought to
increase statistical power to detect association signals by per-
forming a genome-wide meta-analysis of self-reported pneumonia
in the 23andMe cohort with SNP effects on a clinically ascertained
pneumonia phenotype from the FinnGen consortium.

In this work, we interrogate the genetic architecture of pneu-
monia to identify association signals that map to clinically rele-
vant biology. We priortise plausible risk genes from these new
association signals that implicate a role for processes like mucin
function in pneumonia susceptibility. We also estimate genetic
correlation with clinically significant phenotypes and find parti-
cularly significant correlations with psychiatric disorders and
related traits. These data identify prospective targets for clinical
intervention and drug repurposing, with support for several
plausible opportunities for precision medicine.

Results
Common and rare variant loci associated with pneumonia
susceptibility. We performed a genome-wide meta-analysis of
lifetime pneumonia susceptibility (NCases= 74,323, NControls=
316,721, NEffective= 240,788) using common and rare (MAF <
0.01) overlapping variants from 23andMe and FinnGen release
six, with 6,896,087 and 882,363 common and low frequency sites
tested, respectively. The bivariate genetic correlation estimate (rg)
between the input self-reported pneumonia 23andMe GWAS and
the clinically ascertained pneumonia phenotype definition utilised
in the FinnGen data was high and significantly non-zero (rg=
0.71, SE= 0.12, P= 5.72 × 10−9). This supports the pooling of
these two acquisition methods of the pneumonia phenotype,
although we explicitly tested heterogeneity between phenotypes
for all SNPs genome-wide (Supplementary Fig. 1). We estimated
the SNP-based heritability (h2SNP) as approximately 2.69% on the
liability scale (Fig. 1b) using linkage disequilibrium score
regression (LDSR)6, with the prevalence of pneumonia in the
FinnGen release 6 cohort of 12.96% set as the population pre-
valence for liability scale conversion, however, we acknowledge
the population prevalence of pneumonia is difficult to quantify.
As a result, we re-estimated h2 using a more conservative
population prevalence value based on phenotype data from the

UK biobank (3.20%), resulting in a lower liability scale estimate of
h2SNP= 0.0176. The point estimate of SNP-based h2 was higher in
the 23andMe cohort with the self-reported phenotype, h2SNP=
0.0424, but the estimate was more precise in the meta-analysis
than in either 23andMe or FinnGen alone: ZMeta= 9.61,
Z23andMe= 7.19, and ZFinnGen= 5.40. In line with previous com-
parisons between self-reported and clinically ascertained pheno-
types, the heritability estimate was lower in FinnGen than
23andMe. There was some evidence of test statistic inflation when
visualised as a quantile-quantile plot (Supplementary Fig. 2),
however, the proportion of the polygenic signal (mean χ2 infla-
tion) in the meta-analysis attributed to model misspecification
and/or confounding as indexed by the LDSR intercept was still a
modest value of around 17% (SE= 5.3%), given LDSR ratios
between 10 and 20% are not uncommon in large GWAS6. The
mean χ2 of 1.14 was also large enough to estimate heritability.

There were five common genomic loci that surpassed the
conventional genome-wide significance threshold (P < 5 × 10−8,
Table 1, Fig. 1a, c). All the lead SNPs for these loci remained
genome-wide significant upon conservatively correcting the P values
for the LDSR intercept. The effect sizes of these common variant
signals were small in accordance with expectation, with each SNP
increasing or decreasing the odds of pneumonia by around 4–6%.
The most significant signal spanned the major histocompatibility
complex (MHC) region, according with the previously observed
association with pneumonia in the 23andMe cohort5. Due to the
complexity of this region, we define theMHC signal as a single locus,
with the minor allele of the lead common SNP associated with a
small increase in the odds of pneumonia (rs9275211-C allele:
OR= 1.06 [95% CI: 1.05, 1.08], P= 3.83 × 10−14).

The most significant common frequency signal outside of the
MHC in this study was a region located on chromosome 11, with
the lead SNP (rs11245979) located upstream of the MUC5AC
gene that encodes a mucin protein, with three other genes that
encode a mucin protein within 400 kilobases of the lead SNP
(MUC6, MUC2, and MUC5B). Importantly, rs11245979 was
similarly associated in the 23andMe (P= 2.98 × 10−6) and
FinnGen (P= 5.03 × 10−6) cohorts, and thus, there was no
appreciable evidence for differences in population structure
between the input GWAS driving this signal. Mucins are heavily
glycosylated proteins that play a number of important roles,
particularly in relation to the maintenance of mucosal barriers7.
Mucin genes are also known the exhibit somewhat pervasive
genomic complexity and evidence of heterogeneity between
populations, thus, to ensure that this signal is not just an artefact
of this, we performed a phenome-wide association study
(pheWAS) of the lead SNP in the IEUGWAS database and
found that this variant was associated with predominantly
respiratory phenotypes relevant to pneumonia. Specifically, it
was linked to asthma, self-reported regular cough and mucus, and
eosinophil count at a conventional phenome-wide significance
threshold (P < 1 × 10−5, Supplementary Data 1). Given
rs11245979 was associated with asthma at a more stringent level
of genome-wide significance, we performed colocalisation
analyses and found strong evidence that this region was
associated with both traits but there were two distinct causal
variants in this region (posterior probability = 80.3%). We
caution that this assumes the existence of a single causal variant,
which may be unrealistic given the complexity of this region. As
we visualise in Supplementary Fig. 3, if one utilises a less
conservative prior probability of a shared causal variant than
there is some evidence that there is a shared underlying causal
variant with the posterior probability for that hypothesis rising
over 60%. It also should be noted that the association profile of
this variant may change as more GWAS emerge, and thus, the
phenome-wide association profile requires ongoing investigation.
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The third most significant locus was largely physically mapped
within the bounds the gene encoding Tumour Necrosis Factor
Receptor Superfamily, Member 1A (TNFRSF1A). A pheWAS of
the lead SNP for this locus also revealed strong associations with
inflammatory phenotypes like white blood cell counts, multiple
sclerosis, and ankylosing spondylitis (Supplementary Data 2). An
intergenic region was the fourth non-MHC locus, with the closest

gene to the lead SNP encoding the prostaglandin E receptor 4
(PTGER4) and pheWAS revealing this SNP as strongly associated
with Crohn’s disease and allergic rhinitis (Supplementary Data 3).
Finally, the last genome-wide significant signal uncovered in this
study in this study is encompassed within the gene encoding the
alpha subunit of the interleukin-6 receptor (IL6R) and the lead
SNP exhibits a phenome-wide association profile consistent with

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31473-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3756 | https://doi.org/10.1038/s41467-022-31473-3 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the complex role of IL-6 in the immune system and other
processes (Supplementary Data 4). Importantly, despite the meta-
analysis combining a self-reported phenotype with clinically
ascertained pneumonia diagnoses, no lead SNP in the demon-
strated even nominal heterogeneity in the effect sizes between the
two cohorts (Cochran’s Q, PHet > 0.05, Table 1, Supplementary
Fig. 1).

Smoking status was not included as a covariate in the respective
GWAS meta-analysed, and thus, we sought to investigate whether
genetic variants associated with smoking may confound our
findings in this GWAS. Specifically, we genetically conditioned
common variant associations on their effect size from a GWAS of
smoking initiation and smoking heaviness using mtCOJO8. All
lead SNPs remained genome-wide significant upon conditioning
on either smoking phenotype. Furthermore, SNP heritability was
only very marginally impacted by conditioning on these
phenotypes (h2Conditioned on Cigarettes per day= 0.0241, h2 Condi-
tioned on Smoking initiation= 0.0254). We then sought to
replicate our genome-wide significant common loci outside of
the MHC using two GWAS from the independent UK Biobank
cohort—specifically, we utilised two automated GWAS that
encompassed a self-reportedpneumonia phenotype (NCase= 6572,
NControls= 456,361) and ICD-10 derived pneumonia diagnoses
(NCase= 10,059, NControls= 398,538). We investigated both phe-
notyping approaches given our GWAS was a meta-analysis of self-
reported and clinically ascertained data. In the self-reported
pneumonia UKBB GWAS, we found that no SNPs replicated at
genome-wide significance, however, three of the lead SNPs for the
chromosome 1, 5, and 11 loci were nominally associated in the
same direction (rs6684439: P= 7.78 × 10−3; rs11245979: P= 0.04;
rs9283753: P= 0.045), The ICD-10 phenotype GWAS in the
UKBB did not replicate any of our non-MHC genome-wide
significant SNPs at even nominal significance, although there was
trend for rs4149581 (P= 0.074). It should be noted that a
limitation of both of those GWAS is that they focused only on
either the self-reported or clinically ascertained phenotype in the
UKBB, meaning some controls plausibly would have had
pneumonia, and thus, decreasing power. Moreover, the effective
sample sizes of these UKBB GWAS were markedly smaller than

ours (240,788 in our current discovery meta-analysis versus 25,915
and 39,246, respectively). We also considered two very recent
smaller sample-size pneumonia GWAS without publicly available
summary statistics to see if we could replicate their findings. Firstly,
Chen et al. performed a GWAS of pneumonia susceptibility and
severity in the Vanderbilt University Biobank (BioVU, NCase=
8889, NControls= 60,767, and Neff= 31,019), European ancestry
cohort)9. They found that a genome-wide significant common
signal in Europeans associated with pneumonia severity, with the
lead SNP rs10786398 nominally associated in our meta-analysis
(P= 0.01), whilst we were unable to replicate the significant rare-
variant association signal from that study as the variant was not
available in our analyses. Moreover, a meta-analysis (Neff= 94,584)
of a smaller previous FinnGen release (release 2) and ICD-10
derived pneumonia in the UKBB found two genome-wide
significant index SNPs in the 15q15.1 region that were directionally
consistent in our analyses at a nominal significance threshold:
rs76474922 (P= 0.025)10. The SNP-based heritability estimate
from that study also closely mirrored ours (3.3% on the liability
scale), supporting the reliability of this study’s estimate in a larger
sample, although it should be noted that the samples included in
that study partially overlap ours as it used the early second FinnGen
release.

Finally, a genome-wide significant association between a rare
intergenic variant in the MHC region and pneumonia suscept-
ibility was also uncovered in this study—rs11962863, OR= 1.65
[95% CI: 1.51, 1.79], P= 3.94 × 10−12. This relatively large effect
allele, however, did display statistically significant heterogeneity
in its effect between the two cohorts (P= 1.4 × 10−4). This locus
is considerably rarer in the Finnish population (AF= 5.8 × 10−4)
than non-Finnish Europeans in gnomAD (AF= 2.9 × 10−3),
which may account for its larger effect size in the FinnGen cohort.
Due to the complexity of recombination and linkage in the MHC
locus, the functional consequence of this variant remains difficult
to interpret at an individual level without considering the local
genomic context of affected individuals, such as HLA type. We
also detected six additional regions with rare variants that
surpassed suggestive significance for association with pneumonia
(P < 1 × 10−5, Supplementary Data 5).

Fig. 1 Genome-wide meta-analysis of pneumonia susceptibility. a Manhattan plot of common variant GWAS for pneumonia, which was an inverse-
variance weighted meta-analysis of SNP-wise log odds estimates of additive association with pneumonia. as is usual practice, each point is the negative
log10 transformed P value of a variant for association with pneumonia, with the red dotted line indicative of genome-wide significance that accounts for
multiple comparisons (P < 5 × 10−8). Closest genes to the lead SNPs are highlighted and labelled on the plot, except for the MHC locus which we denote
only as “MHC” due to its complexity. Blue up arrows denote lead SNPs where the minor allele was associated with increased odds of pneumonia, whilst red
down arrows denote lead SNPs with protective minor alleles. b Estimates of SNP-based heritability (h2) on the liability scale for the 23andMe and FinnGen
cohorts individually, as well as the using the inverse-variance weighted effects meta-analysis of the two cohorts. The error bars represent the standard
error of h2. The sample sizes of the respective GWAS used to calculate heritability were 130,639 for the 23and Me study, 260,405 for FinnGen, and
391,044 for the meta-analysis. c Region plots for the three genome-wide significant loci outside of the MHC region in which a gene was mapped to its
boundaries. The LD for each variant with the lead SNP, as denoted by the square of the Pearson correlation coefficient between frequencies from the 1000
genomes phase III European reference set, was utilised to colour the points.

Table 1 Lead SNPs within common genome-wide significant loci associated with pneumonia.

Lead SNP Locus EA/NEA EAF (NFE) EAF (FIN) OR 95% CI PGWAS PHet
rs9275211 MHC C/T 0.18 0.16 1.06 1.05, 1.08 3.83e−14 0.83
rs11245979 chr11:1110395-1225078 C/T 0.31 0.38 1.05 1.03, 1.06 7.25e−11 0.60
rs4149581 chr12:6440009-6455098 C/T 0.42 0.42 0.96 0.95, 0.98 3.22e−9 0.60
rs9283753 chr5:40486896-40524860 T/C 0.57 0.50 1.04 1.03, 1.05 3.39e−9 0.43
rs6684439 chr1:154395212-154428283 T/C 0.37 0.30 1.04 1.03, 1.05 3.05e−8 0.96

Common (MAF > 0.01) lead SNPs were defined as independent SNPs (r2 < 0.1) within each genomic locus. The effect allele (EA) and non-effect allele (NEA) was reported for this table such that the
effect allele was the minor allele. The effect allele frequency (EAF) is denoted in gnomAD v2.1.1 for non-Finish Europeans (NFE) and Finns (FIN). All odds ratio and their respective confidence intervals
were calculated relative to the EA. Heterogeneity of effect between the 23andMe and FinnGen cohorts was tested using Cochran’s Q, with the P value of that test reported here (PHet). Due to the
complexity of locus 1 (MHC), we report only a single common SNP for this locus. Locus coordinates in hg19 assembly.
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Integrative gene prioritisation suggests candidate therapeutic
targets for pneumonia. We then subjected each non-MHC
common frequency associated locus to an integrative gene
prioritisation pipeline (Fig. 2a, b, Online Methods). This
approach identified genes from each locus that satisfied the most
criteria of the following: closest gene to the lead SNP, gene
mapped to variants in the 95% credible set from probabilistic
finemapping of SNP effect sizes (Approximate Bayes’ Factors

(ABF))11, gene with strongest evidence from finemapping
(FOCUS) of marginal transcriptome-wide associations study
(TWAS) test statistics using models of genetically regulated
expression (GReX)12, gene with highest score from the Open
Targets Genetics Variant-to-Gene (V2G) pipeline for the lead
SNP13, most significant eQTL signal for the locus (eGene), most
significant pQTL signal for the locus (pGene), presence of a
nonsynonymous variant in the gene, gene with the variant
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exhibiting the highest Combined Annotation Dependent Deple-
tion (CADD) score14, and gene with the variant exhibiting the
lowest RegulomeDB rank score15. The gene IL6R satisfied all the
above for the locus on chromosome 1, and thus, was likely a
causal gene for that signal, although the non-synonymous IL6R
variant within the bounds of the locus did not quite reach
genome-wide significance. MUC5AC was the prioritised gene for
the chromosome 11 locus by three metrics (closet gene, eGene,
and V2G) and the ABF-derived credible set variants were addi-
tionally all proximally upstream from that gene. The chromo-
some 12 locus yielded two plausible genes, TNFRSF1A (closest
gene, finemapping, CADD score, RegulomeDB score), and LTBR
(V2G, eGene). Finally, the intergenic signal on chromosome 5
demonstrated some evidence for PTGER4 (closet gene, V2G,
eGene) but the intergenic nature of this locus likely means that
further study is warranted to uncover specific biology impacted.

The FOCUS finemapping results, as well as eQTL and pQTL
annotated variants, were then investigated to infer a potential
direction of expression for each prioritised genes that would be
odds increasing for pneumonia. Whilst MUC5AC did not have a
cis-heritable GReX model available for FOCUS, eQTL annotation
of individual SNPs consistently suggested that upregulated
mRNA expression of MUC5AC was associated with elevated
odds of pneumonia. Given that MUC5AC is mostly very lowly
expressed outside of the respiratory epithelium, eQTL estimation
remains difficult in bulk tissue, and thus, further study is needed.
Moreover, the eQTLs annotated were obtained from the
PsychENCODE study of cortical eQTLs, where MUC5AC is only
lowly expressed. Both FOCUS and eQTL annotation supported
that downregulation of IL6R would be risk increasing for
pneumonia, however, the odds increasing allele of the IL6R locus
in this GWAS was associated with increased IL-6R protein levels.
We caution that the pQTL signal is in high LD with a missense
variant (rs2228145), and thus, antigen binding affinity may be
altered to create an artefactual pQTL association. These antigen-
binding affinity-related effects require further investigation,
particularly in light of the phenomenon of the non-
synonymous rs2228415-C allele displaying correlation with
increased protein abundance from the pQTL study16 but
with decreased expression via RNAseq derived eQTL, along with
decreased C-reactive protein (CRP) levels in the UK biobank, a
well-characterised biomarker of IL-6R inhibition. Previous
functional analyses of the rs2228145 non-synonymous allele have
demonstrated that it likely impairs overall IL-6 signalling as it
disturbs the balance between soluble circulating IL-6R and the
classical signalling pathway of the membrane bound isoform, and
thus, prevents exacerbated IL-6-driven inflammation17. This
rs2228415-C allele was risk increasing for pneumonia suscept-
ibility at a suggestive significance threshold (P= 2.32 × 10−6) but
has been demonstrated to be protective for disorders like
rheumatoid arthritis for which anti-IL-6 receptor agents like
tocilizumab are indicated. In summary, it appears from these data
that inhibition of IL6R would increase the odds of pneumonia,

although further study is needed, particularly as this is a GWAS
of susceptibility, not pneumonia severity. The remaining three
genes, PTGER4, TNFRSF1A, and LTBR displayed mixed direc-
tions of expression relative to the pneumonia risk increasing allele
when annotating individual SNPs with eQTLs depending on the
tissue considered. FOCUS finemapping of marginal TWAS
statistics in and around the genome-wide significant locus on
chromosome 12 provided further support to TNFRSF1A as a
pneumonia risk gene, with the highest posterior inclusion
probability (PIP) in the 90% credible set assigned to a TNFRSF1A
GReX model in blood for which increased expression was
correlated with pneumonia (PIP= 0.724). A null model repre-
senting potentially untyped genes was in this credible set,
however, with very low PIP < 2%. FOCUS did not further
support PTGER4 on chromosome 5, with the null model
prioritised with the largest PIP. Therefore, we consider that there
is moderate to strong evidence that MUC5AC, IL6R and
TNFRSF1A are involved in the pathophysiology of pneumonia
susceptibility. The therapeutic tractability of these targets in the
appropriate direction (downregulation of MUC5AC and
TNFRSF1A, upregulation of IL6R) was then assessed. Firstly,
inhibitors of MUC5AC have been in development for oncology,
with evidence that compounds like flavonoids, alkaloids, and
glycosides may also haveMUC5AC antagonising properties in the
airway18. TNRSF1A has a structure with ligand available, as well a
phase I clinical trial complete for an inhibitor antibody (GSK-
1995057) developed for use in acute respiratory distress
syndrome19. Whilst IL6R inhibitors are available, the clinical
utility of the converse, that is, IL6R agonism, requires further
consideration due to the complexity of IL-6 biology and likely
adverse effects of this mode of action.

To further investigate TNFRSF1A inhibition as protective for
pneumonia given the existence of an inhibitor antibody with
preliminary testing for use in respiratory medicine; a phenome-
wide causal estimate (Mendelian randomisation) of genetically
proxied TNFRSF1A expression was obtained using effect sizes from
the IEUGWAS database (MR-PheWAS, Online Methods, Supple-
mentary Data 6 and 7, Fig. 2c). The most significant eQTL for
TNFRSF1A from the eQTL catalogue also had a high posterior
inclusion probability over 95% for that locus (rs1800692, blood
tissue), and thus, this SNP was selected as the instrumental variable
(IV). After Bonferroni correction (PMR-Wald < 6.82 × 10−6), we
found that genetically proxied TNFRSF1A inhibition decreased
white blood cell counts (total leucocytes, eosinophils, monocytes,
basophils, and lymphocytes), decreased platelet count and was
protective for Ankylosing spondylitis. However, inhibition
appeared to increase the odds of Multiple sclerosis and Primary
biliary cirrhosis, whilst increasing the percentage of neutrophils
relative to total leucocyte count. We repeated these analyses
with SNP-effect sizes from FinnGen release 6 but no traits survived
multiple testing correction. We note that there was a trend
(PMR-Wald < 1 × 10−4) towards a protective effect of TNFRSF1A
inhibition on FinnGen pneumonia and infection phenotypes,

Fig. 2 Gene prioritisation for non-MHC pneumonia susceptibility risk genes. a, b Scoring for gene prioritisation procedure. Each column (b) represents a
scoring criterion, with a shaded row denoting that said criterion is satisfied for the genes listed by each row. The criteria were as follows: closest gene to
lead SNP, gene mapped to 95% credible set for probabilistic finemapping of per variant effect sizes, gene prioritised by probabilistic finemapping of
marginal TWAS Z (FOCUS), gene annotated with strongest eQTL in the locus, gene annotated with strongest pQTL in the locus, gene prioritised by the
OpenTargets V2G pipeline, variant annotated to gene with highest CADD score, gene with non-synonymous variant in locus, and variant annotated to gene
with lowest RegulomeDB rank score. An unshaded cell for any gene denotes that the gene did not satisfy that criterion. c Phenome-wide investigation of
genetically proxied TNFRSF1A using a blood eQTL with high confidence for annotation as a causal variant. Mendelian randomisation leveraged this eQTL
effect size as an IV to estimate the causal effect of TNFRSF1A expression on binary and continuous phenotypes in the IEUGWAS database. The results for
traits that survive Bonferroni correction are visualised as Z scores (MR β/MR SE) and have been flipped relative to inhibition of the gene such that Z > 0
corresponds to decreased expression increasing the odds (binary) or value (continuous) of the outcome phenotype.
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along with evidence for an increased risk of cramps and vitamin
B12 anaemia. In summary, TNFRSF1A inhibition appears to have a
dampening effect on some aspects leucocyte biology and is
protective for pneumonia and the autoimmune condition
ankylosing spondylitis but conversely displays a risk-increasing
relationship with inflammatory-related conditions like Multiple
sclerosis, suggesting that more analysis of this candidate
therapeutic target is warranted.

Gene and gene-set association reveal further insights outside of
genome-wide significant loci. Common variants were aggregated
at gene-level via the MAGMA approach (Supplementary
Data 8–10) to boost power for gene discovery20. We considered
three different strategies to annotate SNPs to genes for gene-
based association testing; specifically, mapping SNPs only within
the defined coordinates of genes, a conservative extension of genic
boundaries to capture regulatory variation (5 kilobase (kb)
upstream and 1.5 kb downstream), and a more liberal genic
boundary extension (35 kb upstream, 10 kb downstream).
MUC5AC and TNFRSF1A surpassed correction at all three
boundary definitions, as did a gene on chromsome 8 outside of
the implicated loci from the GWAS, TOX, encoding the Thy-
mocyte Selection Associated High Mobility Group Box protein.
The CRP gene on chromosome 1 also passed strict Bonferroni
correction with no boundary extension for SNP annotation.
Gene-based results were then utilised to perform competitive
gene-set association to identify biological pathways with an
enrichment of the pneumonia susceptibility common variant
signal relative to all other genes. We calculated a meta-analytic P
value for each of the 21,765 gene-sets (with at least five over-
lapping genes) tested across all three boundary definitions value
to boost power through leveraging the properties of heavy tail of
the Cauchy distribution, such that the covariance between these P
values derived the same sample is accounted for (Online
Methods)21. There were no gene-sets that survived multiple-
testing correction using a false-discovery rate threshold (FDR) of
5%, however, there were 12 pathways that displayed association
using a more lenient FDR < 0.1 threshold (Supplementary
Data 11). These gene-sets included heart valve development
(PCauchy= 2.49 × 10−5, q= 0.07), collagen biosynthetic process
(PCauchy= 1.86 × 10−5, q= 0.07), and positive thymic T cell
selection (PCauchy= 1.88 × 10−5, q= 0.07).

A transcriptome-wide association study (TWAS) was then
undertaken to identify further genes outside of genome-wide
significant loci for which genetically predicted expression was
correlated with pneumonia susceptibility22–24. We selected SNP
weights from three tissues which are plausibly biologically
relevant to pneumonia pathophysiology: lung, whole blood, and
spleen. After applying Bonferroni correction across all three
tissues, which is very conservative given some genes will have
significantly cis-heritable GReX in multiple tissues, we uncovered
three transcriptome-wide significant signals (Supplementary
Data 12). Specifically, decreased predicted expression of two
proximal genes on chromosome 16 were associated with
pneumonia susceptibility, NPIPB7 in lung (PTWAS= 7.18 × 10−7)
and SULT1A1 in spleen (PTWAS= 8.38 × 10−7), whilst upregu-
lated predicted expression of PSMA4 in whole blood on
chromosome 14 also survived correction (PTWAS= 9.36 × 10−7).
Probabilistic finemapping via FOCUS of the marginal TWAS Z
scores in both implicated regions on chromosome 15 and 16,
respectively, was then undertaken using a multi-tissue panel to
assess evidence for whether any of these genes are plausible the
causal gene in said region. A tissue agonistic finemapping
approach, that is, including GReX models based on their most
predictive model regardless of tissue, was unable to confidently

infer causal genes as all PIP were less than 40% and the null
model was a member of the 90% credible set, suggesting the
potential involvement of a gene without a suitable GReX model. It
should be noted that the posterior inclusion probability for the
null model to be causal was less than 6% in both instances.
However, prioritising whole blood GReX models for the PSMA4
provided stronger support to this gene (PIP= 0.763).

Pneumonia susceptibility displays significant genetic correla-
tion and partial genetic causality with clinically important
phenotypes across the human phenome. We derived genetic
correlation estimates between pneumonia susceptibility and 674
UK Biobank (UKBB) GWAS with a trait h2SNP Z score > 4 using
LDSR25. After Bonferroni correction (P < 7.41 × 10−5), there were
318 phenotypes that exhibited non-zero genetic correlation with
pneumonia susceptibility (Supplementary Data 13). There were
several clinically relevant correlations observed in both the
positive and negative direction. Traits positively correlated
pneumonia susceptibility after correction included anthropo-
metric traits (for example, waist circumference, body mass index,
and limb fat mass), psychiatric phenotypes (for example,
depression, neuroticism, miserableness), wheezing and chest pain,
asthma, angina, diabetes, and chronic obstructive pulmonary
disease. Conversely, negative genetic correlations were observed
with spirometry measures (lung function), age of last live birth,
snoring, ‘never smoked’ status, and paternal age of death.

A latent causal variable (LCV) model was then constructed for
the significantly correlated trait-pairs that were uncovered26. The
LCV approach leverages the bivariate effect size distribution of
SNPs in two GWAS and their LD scores to estimate a posterior
mean genetic causality proportion (GCP), such that, evidence
of partial genetic causality can be distinguished from genetic
correlation. We found strong evidence ( djGCPj > 0.6) for partial
genetic causality of five traits on pneumonia susceptibility. Two of
these traits related to the gallbladder and gallstones (cholelithia-
sis): Diagnoses - main ICD10: K80 Cholelithiasis - dGCP= 0.789,
SE= 0.322, P= 1.33 × 10−9, and Disorders of gallbladder, biliary
tract and pancreas - dGCP= 0.804, SE= 0.145, P= 1.80 × 10−8;
whilst two were measured biochemical traits: Gamma glutamyl-
transferase (GGT) levels in blood - dGCP= 0.786, SE= 0.148,
P= 2.51 × 10−32, and CRP levels in blood - dGCP= 0.705,
SE= 0.202, P= 1.95 × 10−4. The positive sign of the genetic
correlation estimates in these four instances, therefore, suggests
that gallstones and gallbladder disease, elevated GGT, and
elevated CRP would be risk factors for pneumonia. The other
trait that exhibited partial genetic causality on pneumonia was the
self-reported trait Ever thought that life not worth living -
dGCP= 0.826, SE= 0.142, P= 2.45 × 10−4. Interestingly, pneu-
monia susceptibility conversely exhibited partial genetic causality
on the psychiatric trait Ever had prolonged feelings of sadness or
depression - dGCP=−0.812, SE= 0.147, P= 4.58 × 10−7, sug-
gesting a complex bidirectional relationship between pneumonia
and affective phenotypes like depression. It is important to
emphasise that these posterior mean GCP should not be
interpreted magnitudes of causal effect and only imply that there
is a causal relationship due to the unbalanced nature of the
genetic effects26,27.

Strong genetic overlap between pneumonia susceptibility and
psychiatric illness within and outside of the major histo-
compatibility complex region. Pneumonia susceptibility was
found to be robustly genetically correlated with several psychia-
tric phenotypes from the UKBB cohort. As a result, we investi-
gated whether this signal would remain for psychiatric GWAS
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with more curated disease phenotypes from the psychiatric
genomics consortium (post-traumatic stress disorder (PTSD),
attention-deficit/hyperactivity disorder (ADHD), schizophrenia,
major depressive disorder (MDD), bipolar disorder, anorexia
nervosa, and Tourette’s syndrome)28–35, as well as a GWAS of
general cognitive function (Online Methods, Fig. 3, Supplemen-
tary Data 14)36. The pneumonia susceptibility meta-analysis from
this study was most significantly positively correlated with MDD
(rg= 0.44, SE= 0.05, P= 3.66 × 10−18), followed by PTSD (rg=
0.74, SE= 0.1, P= 2.36 × 10−13), ADHD (rg= 0.42, SE= 0.06,
P= 1.43 × 10−12), and schizophrenia (rg= 0.15, SE= 0.04,
P= 1 × 10−4). General cognitive ability exhibited strong negative
correlation with pneumonia susceptibility. We hypothesised that
the large magnitude of these correlation estimates could be
inflated by heterogeneity in the meta-analysis between self-
reported and clinically ascertained pneumonia or an effect of
genetic liability to smoking behaviour on both traits. As a result,
the self-reported and clinically ascertained pneumonia suscept-
ibility GWAS were utilised separately to estimate genetic corre-
lation with each of the phenotypes. The genetic correlation
estimates for PTSD and ADHD remained remarkably stable
regardless of which pneumonia phenotype definition was con-
sidered (Fig. 3). The MDD genetic correlation was larger with the
self-reported pneumonia phenotype (rg= 0.52) than the clinically
ascertained definition (rg= 0.26) but was significantly non-zero
in both instances. Conversely, the correlation estimate was larger
for schizophrenia and cognition with clinically ascertained
pneumonia. Conditioning SNP-pneumonia effects in the meta-
analysis on smoking heaviness (cigarettes per day, mtCOJO
analysis) marginally weakened the estimates but all remained

statistically significant: MDD (rg= 0.39), PTSD (rg= 0.65),
ADHD (rg= 0.32), cognition (rg=−0.23), and schizophrenia
(rg= 0.13). In summary, there was consistent evidence of genetic
correlation between pneumonia susceptibility and psychiatric
phenotypes irrespective of the pneumonia phenotype definition
and adjustment for smoking related effects. LCV models con-
structed between each psychiatric GWAS, and the pneumonia
susceptibility meta-analysis did not yield a confident estimate of
partial genetic causality, further suggesting that complex biolo-
gical factors may underlie these relationships.

The above models were constructed from SNPs outside of the
extended MHC region on chromosome 6, which is an important
component of the genetic architecture of pneumonia suscept-
ibility. Thus, we employed the LAVA model to estimate local
genetic correlation within the MHC region37. The MHC is a
difficult region to model in this fashion due to its immense
complexity, and all results should, therefore, be interpreted
cautiously. The top three most significantly correlated psychiatric
GWAS genome wide (MDD, PTSD, and ADHD) were subjected
to this analysis, with all three phenotypes and pneumonia
susceptibility demonstrating significantly non-zero univariate
local heritability in the MHC region. MDD and PTSD
demonstrated significant positive local bivariate correlation with
pneumonia susceptibility in the MHC region – PTSD: ρLocal=
0.68 [95% CI: 0.44, 1], P= 1 × 10−6; MDD: ρLocal= 0.36 [95% CI:
0.16, 0.56], P= 4.81 × 10−4.

Genetic interrogation of biochemical targets for pneumonia
susceptibility. We uncovered evidence for non-zero genetic

Fig. 3 Bivariate genetic correlation estimates between pneumonia susceptibility and psychiatric phenotypes. Genetic correlation was estimated
between ten psychiatric GWAS and pneumonia susceptibility GWAS. The forest plot denotes the linkage disequilibrium genetic correlation estimate, whilst
the error bars are the 95% confidence internal. The different pneumonia GWAS effect sizes utilised with the panel of psychiatric disorders was as follows:
top left – genome-wide meta-analysis of self-reported and clinically ascertained pneumonia; top right – genome-wide meta-analysis of self-reported and
clinically ascertained pneumonia genetically conditioned on smoking heaviness (cigarettes per day); bottom left – clinically ascertained pneumonia from
FinnGen, and bottom right – self-reported pneumonia from 23andMe. The psychiatric phenotypes were as follows: TS= Tourette’s syndrome
(N= 14,307), SZ= schizophrenia (130,644), PTSD= post-traumatic stress disorder (N= 174659), OCD= obsessive compulsive disorder (N= 9725),
cognition = general cognitive ability (intelligence, N= 269,867), BIP= bipolar disorder (N= 51,890), ASD= autism spectrum disorder (N= 36,350),
AN= anorexia nervosa (N= 72,517), and ADHD= attention/deficit-hyperactivity disorder (N= 53,293).
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correlation and partial genetic causality between two biochemical
indices (GGT and CRP) and pneumonia susceptibility. As a
result, Mendelian randomisation (MR) was deployed for these
two traits to act as a sensitivity test for the inferred evidence of
causality and derive a causal estimate. In contrast to the genome-
wide approach of the LCV model, MR leverages specific variants
as instrumental variables to proxy the effect of the biochemical
trait on the odds of pneumonia susceptibility38. We implemented
five different MR models with varying underlying assumptions
regarding IV validity (Online methods: inverse-variance weighted
effect with fixed effects (IVW-FE), inverse variance weighted
effect with multiplicative random effects (IVW-MRE), weighted
median, weighted mode, and MR-Egger)38–41. There estimate per
standard deviation (SD) increase in CRP on pneumonia sus-
ceptibility was significantly non-zero and positive in all of the
models except for the MR-Egger approach (Fig. 4a, Supplemen-
tary Data 15); for example, in the IVW-MRE construct OR per
SD CRP= 1.08 [95% CI: 1.02, 1.14], P= 6.47 × 10−3, whilst the
IVW-FE produced a more precise positive estimate (P= 5.47 ×
10−5), in line with how multiplicative random effects more
explicitly models heterogeneity between IVs. We then considered
a series of sensitivity analyses related to heterogeneity and
pleiotropy, as well attempting to replicate the CRP → pneumonia
susceptibility relationship with an independent CRP GWAS
(Online Methods). Firstly, there was evidence of significant
heterogeneity between IV estimates (Q= 340.30, df= 155,
P= 6.33 × 10−16) and a nominally non-zero MR-Egger intercept
(P= 0.03), which may indicate confounding pleiotropy. However,
given the biological complexity of CRP biology, heterogeneity is
not unexpected, and an outlier corrected estimate (MR-PRESSO),
was directionally consistent and statistically significant
(P= 2.84 × 10−3). The independent CRP GWAS used as repli-
cation demonstrated highly concordant causal estimates across
the five methods, with the MR-Egger again the only non-
significant test (Supplementary Data 15). Given the evidence of
statistical heterogeneity for the effect of CRP, we also applied the
MR-Clust model which leverages a mixture modelling approach
to detect clusters of IVs with similar causal estimates (Fig. 3c)42.
This detected one cluster with a mean protective effect of CRP
discordant from the overall odds increasing effect using default
parameters, as well as also after applying a cluster inclusion
probability threshold of 80% (Supplementary Fig. 4). This cluster
contains an IV mapped to the IL6R gene which this study indi-
cates has a protective effect on pneumonia susceptibility, sup-
porting proceeding analyses that suggest IL6R inhibition may be
odds increasing for pneumonia. Finally, we employed a more
conservative MR approach by considering only the effect of a
single cis-acting IV (rs2794520) mapped to the signal that
encompasses the gene which encodes CRP itself. This cis-acting
model provided more evidence that CRP signalling through the
protein itself is odds increasing for pneumonia, even though more
complex relationships likely exist with factors like IL-6 signalling:
OR per SD CRP= 1.16 [95% CI: 1.09, 1.23], P= 7.23 × 10−5.

Whilst there was some evidence for a causal relationship
between GGT and pneumonia susceptibility using an MR
approach (supported five models being directionally consistent
in GGT exerting an odds increasing effect on pneumonia, Fig. 4b,
Supplementary Data 16), only the weighted mode and weighted
median models were statistically significant – OR per SD
GGT= 1.08 [95% CI: 1.02, 1.16], P= 0.01 (Weighted median).
We therefore also considered a cis-acting model for GGT (the IV
rs3859862 mapped to the GGT1 gene) and observed only a non-
significant trend in the same direction (P= 0.08). In summary, a
causal relationship between GGT and pneumonia was suggested
in an LCV model constructed using genome-wide SNP effects,
which could support inhibition of this enzyme as a treatment

target. With several GGT inhibitors under active development
and under consideration for use in respiratory illness43,44; these
data do marginally support this observation. However, given that
this relationship was only weakly supported by MR, some caution
and further investigation is warranted. We also compared the MR
effect sizes to observational estimate of elevated GGT and lifetime
pneumonia susceptibility in the UKBB cohort (Supplementary
Methods). The observational association between GGT and
pneumonia in the UKBB was directionally consistent and
stronger than the MR estimate, with each standard deviation
associated with a 13.54% [95% CI: 12.43%, 14.56%] increase in
the odds of pneumonia amongst UKBB participants. Interest-
ingly, this association was also significant amongst younger non-
smoking females in the UK biobank at baseline (age < 45) who
have relatively lower risk of pneumonia (OR= 1.354 [95% CI:
1.161, 1.553], P= 2.75 × 10−5. These variables are extremely
heterogeneous and there are many potential confounders of the
observed effect sizes, however, it supports the inferred relation-
ship from the LCV construct, and to a lesser extent, some of the
MR models.

Precision treatment for pneumonia using pharmacologically
orientated polygenic scoring. The pharmagenic enrichment score
(PES) approach was applied to pneumonia susceptibility to identify
drug repurposing candidates that could be targeted more precisely
based on genetic risk24,45,46. Briefly, the PES is a genetic risk score
specifically within a biological pathway that is targeted by a drug.
The concept underlying the PES is that individuals with elevated
genetic risk within a particular druggable set of genes may benefit
from a pharmacological agent that modulates the pathway in
question. Firstly, we sought to identify candidate pathways for PES
in a hypothesis-free manner using the summary statistics from this
study. 1030 gene-sets from the molecular signatures database
(MSigDB) with a least one druggable gene were tested for an
enrichment of the pneumonia common variant signal relative to all
other genes at four different P value thresholds of variant inclusion
(Online Methods, Supplementary Methods). The underlying con-
cept of using P value thresholding in the competitive enrichment
tests is that there may be different biological insights that can be
gained by focusing on pathways enriched with variations at dif-
ferent levels of the polygenic signal. For example, consider a
pathway which displays enrichment when all variants are con-
sidered (P < 1), versus a pathway which only displays enrichment
when nominally significant variants are included (P < 0.05). The
nominally significant variants represent a less ‘polygenic’ signal
relative to all variants, and thus, may encompass distinct biological
processes. We identified 13 candidate druggable pathways for
which a PES could be constructed after applying FDR correction
(FDR < 0.05) across all P thresholds considering either a con-
servative or liberal annotation boundary for SNPs to gene anno-
tation (Supplementary Data 17 and 18). These were as follows:
Cytokine-induced activation of matrix metalloproteinases
(P= 2.95 × 10−7), Genes upregulated by IL6 and STAT3 signalling
(P= 9.44 × 10−7), Complement cascade (P= 3.63 × 10−6), Meta-
bolism of proteins (P= 1.03 × 10−5), Aldosterone-regulated
sodium reabsorption (P= 1.33 × 10−5), Post-translational protein
modification (P= 2.26 × 10−5), Notch-mediated HES/HEY net-
work (P= 2.53 × 10−5), Expression of cyclins regulates progression
through the cell cycle by activating cyclin-dependent kinases
(P= 2.80 × 10−5), G0 and Early G1 cell cycle phase (P= 6.26 ×
10−5), Regulation of retinoblastoma protein (P= 7.67 × 10−5),
Cytokine–cytokine receptor interaction (P= 9.51 × 10−5), Reg-
ulation of transcriptional activity by PML (P= 1.23 × 10−4),
and Jak-STAT signalling (P= 1.23 × 10−4). Of these sets, 10 were
at least nominally significant across both genic boundary
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configurations, and thus, considered for further annotation. These
gene-sets were then tested for an overrepresentation amongst drug
targets within 85 anatomical therapeutic classification (ATC) level
codes (P < 5.81 × 10−4. Supplementary Data 19). For instance, the
aldosterone-regulated sodium reabsorption pathway was enriched
for the targets of C03 (diuretic) and C01 (cardiac therapy) classified

agents, whilst the cytokine–cytokine receptor interaction pathways
had overrepresented targets of L03/L04 (immunostimulants/
immunosuppressants) drugs and metabolism of proteins was
overrepresented amongst antithrombotic agents (B01).

We then considered which of these candidate druggable gene-
sets that displayed an enrichment of the genetic signal contained
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at least one of the two therapeutic targets we prioritised in this
study (MUC5AC and TNFRSF1A). MUC5AC overlapped two
gene-sets related to protein modification, in line with the known
biology of mucins, metabolism of proteins and post-translational
protein modification. TNFRSF1A was a member of four candidate
PES, specifically—regulation of transcriptional activity by PML,
genes upregulated by IL6 and STAT3 signalling, cytokine–
cytokine receptor interaction, and cytokine-induced activation
of matrix metalloproteinases. These PES were then profiled in the
UKBB at the same P value threshold and genic boundary
definition as a replication of their association with lifetime
pneumonia susceptibility. We found that the association with
pneumonia susceptibility with following two PES overlapping our
prioritised genic targets nominally replicated in the UKBB
(NCases= 15,158, NControls= 320,213): metabolism of proteins
(OR per SD in PES= 1.032 [95% CI: 1.016, 1.049],
P= 1.12 × 10−4, NSNP= 410), and post-translational protein
modification (OR per SD in PES= 1.029 [95% CI: 1.011,
1.043], P= 1.51 × 10−3, NSNP= 320). As in previous work, we
then included genome wide pneumonia polygenic risk score
(PRS) as a covariate in the association model at the same P value
threshold to ensure the signal for this gene-set was not purely
driven by background inflation of genetic risk45,46. Both sets
remained nominally significant after adjustment for total
genome-wide pneumonia common variant risk in individuals
(P < 0.05, χ2 test of residual deviance). We emphasise that these
results only survive multiple-testing correction when the marginal
PRS-unadjusted association is considered, however, nominal
replication using PRS adjusted signal is still notable given the
much lower effective pneumonia sample size in the UKBB than
our discovery GWAS and the conservativeness of the PRS
covariation approach. Both these PES were significantly corre-
lated with genome-wide pneumonia PRS at the same-threshold,
although both were relatively small in magnitude (r < 0.15),
whilst the PES demonstrated high correlation with each other
(r= 0.68), as would be expected given their overlapping biology.
As a result, this reinforces that these pathways may be an
identifiable component of the polygenic architecture of pneumo-
nia that could be used to direct inhibitors of MUC5AC to patients
with elevated pneumonia genetic risk amongst protein modifica-
tion processes such as glycosylation. Moreover, the cytokine–
cytokine receptor interaction PES that contained TNFRSF1A did
display some nominal enrichment of the pneumonia signal in the
UKBB cohort, however, at a different P value threshold than what
was most significant in the summary data (UKBB: PT= 0.005,
P= 1.33 × 10−3, NSNP= 44).

Discussion
In this study, we uncovered association signals for lifetime pneu-
monia susceptibility outside of the MHC region. Interestingly,

there was also a low frequency variant in the MHC itself which
reached genome-wide significant that confers a relatively large
(~65%) increase in the odds of pneumonia, reflecting the immense
heterogeneity spanned within this region. Further analyses of the
MHC signal are warranted, particularly to deconvolve specific HLA
types that may contribute to pneumonia susceptibility and pro-
gression. We implemented an integrative gene prioritisation
approach to identify plausible causal genes at each of the non-MHC
loci, with the most consistent evidence found for TNFRSF1A, IL6R,
and MUC5AC. MUC5AC is an interesting candidate given that it
has been previously implicated in the pathogenesis of respiratory
illness and the role of mucins in physical defence against pathogens
via mucociliary clearance47. This heavily glycosylated protein is
lowly expressed in normal respiratory epithelium, however, is
upregulated upon in response to perturbagens, such as viral
infection48,49. We posit that upregulation of MUC5AC may be
deleterious in the context of pneumonia given recent evidence that
this protein can enhance airway inflammation induced by viral
infection50, although dissection of the mechanisms of variants in
this locus are warranted. There are also some preliminary data that
suggests MUC5AC is upregulated in the airway mucus of patients
with severe COVID-19, although these studies were conducted
using small sample sizes51,52. Interestingly, therapies specifically
targeting mucin-linked O-glycosylation are now under active
development, including a recently proposed hexosamine analogue
that demonstrated potent inhibition of O-glycan biosynthesis and
downregulation of neutrophil infiltration in rodents53. The prior-
itisation of TNFRSF1A as a risk gene for pneumonia susceptibility
was also notable given the existence of pre-clinical compounds
developed for its inhibition in acute respiratory distress syndrome.
TNFRSF1A (TNFR1) is one of the two central cellular receptors of
tumour necrosis factor-alpha, an important inflammatory cytokine
induced during acute inflammation. Murine knock-out studies
have demonstrated that selective inhibition of TNFR1 protects
against sepsis and lung injury19,54,55, with this study providing
genetic evidence for the first time that downregulation of this
protein would be risk-decreasing for pneumonia.

A limitation in the use of GWAS signals to inform drug
development or repurposing is that inter-individual heterogeneity
may confound the effectiveness of these compounds24. In other
words, the unique genetic risk factors carried by each individual
diagnosed with a complex trait like pneumonia may implicate
different underlying biological processes as of greater or lesser
importance. Our group has previously developed the pharma-
genic enrichment score (PES) to overcome this by targeting
treatment to those with elevated genetic risk within pathways
relevant to the drug. A hypothesis free scan of druggable path-
ways that could be used as PES implicated interesting clinically
actionable biology in pneumonia susceptibility—for example, we
found an enrichment of pneumonia susceptibility genetic risk
within the aldosterone-regulated sodium reabsorption pathway.

Fig. 4 Mendelian randomisation causal estimates of the biochemical traits C-reactive protein and gamma-glutamyltransferase on the odds of
pneumonia susceptibility. a The left plot is a scatter plot that visualises the effect of each instrumental variable SNP on C-reactive protein (CRP) verses its
effect on pneumonia (NCRP= 343,524), with the regression trend line the MR estimate from each of the five models implemented. Similarly, the righthand
forest plot indicates the pneumonia odds ratio for each of the MR models, with the error bar indicative of the 95% confidence intervals. The MR models
were as follows: mode = weighted mode estimator, median = weighted median estimator, IVW-FE= inverse-variance weighted estimator with fixed
effects, IVW-MRE= inverse-variance weighted estimator with multiplicative random effects, Egger = MR-Egger regression. b The same as (a) but relates
to gamma-glutamyltransferase (GGT, NGGT= 344,104). c Output of the MR-Clust approach for the effect of CRP on pneumonia susceptibility using default
cluster allocations. This is a mixture model framework that seeks to identify clusters of instrumental variables with similar causal estimates. The size of the
point denotes the cluster inclusion probability, relating to the conditional probability of cluster membership. The null cluster, coloured pink, relates to IVs
with null effect, whilst the black “junk cluster” are variants that were not parsimoniously assigned to any cluster. The three different non-null or junk
clusters are each coloured grey, orange, and blue, respectively, with a trend line indicative of the mean cluster effect. The error bars denote the standard
error estimates of the Wald Ratio for each instrumental variable.
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Aldosterone signalling is an important regulator of blood pres-
sure, with hypertension shown to be a risk factor for incident
pneumonia both observationally and through Mendelian
randomisation56, with this PES potentially supporting precision
indication of antihypertensive interventions. Some of the impli-
cated pathways also overlapped MUC5AC and TNFRSF1A, the
two most confident therapeutic targets identified in this study
based on the individual genome-wide association signals. We also
were able to replicate the overrepresentation of the pneumonia
polygenic signal within protein modification pathways in which
MUC5AC participates in the independent UKBB cohort, sug-
gesting that a PES to direct mucin inhibitors may be particularly
clinically tractable. Detailed discussion of the strengths and lim-
itations of the PES methodology have been featured in previous
publications24,45,46; however, further work is required to assess
the suitability of the PES framework to direct treatment, such as
clinical trials for compounds stratified by the PES to investigate
their relevance to treatment response.

The genetic architecture of pneumonia susceptibility was
revealed to exhibit non-zero genetic correlations with several
clinically interesting traits, although the strength of the relation-
ship with psychiatric phenotypes was particularly interesting
given it was only marginally impacted by the possible con-
founders of differing pneumonia phenotype definitions or
adjustment for genetically proxied smoking heaviness. There
is a wealth of epidemiological data which have previously sup-
ported that several psychiatric illnesses increase the risk of
pneumonia57–60, whilst infection and pneumonia is also a puta-
tive risk factor for subsequent mental illness61–63. For instance, a
British registry study estimates that the rate ratio for incident
pneumonia after hospitalisation for a range of psychiatric ill-
nesses was consistently greater than two57. Additional study is
required to fully understand what underlies the genetic correla-
tion between pneumonia susceptibility and psychiatric illness, but
we present some plausible hypotheses forthwith. Firstly, we found
local significant positive correlations between the MHC pneu-
monia signal and psychiatric phenotypes like major depressive
disorder. This may imply that MHC-related factors like HLA-
types which increase the odds of pneumonia susceptibility may
also be risk-increasing for psychiatric illness. Other inflammatory
mediators outside of the MHC could also contribute to this
shared genetic architecture throughout the rest of the genome.
Our group has previously shown several psychiatric GWAS are
significantly genetically correlated with various indices of leuco-
cyte abundance27, suggesting pleiotropy with inflammatory
biology. It is possible that there could be an influence of both
aberrant inflammation and inability to respond adequately to
infection in this relationship, however, the biological pathways
that could underlie this remain uncharacterised. One interesting
candidate for additional study would be tumour necrosis factor-
alpha biology given elevated TNFRSF1A has also been associated
with schizophrenia, bipolar disorder, and autism in the large
post-mortem brain expression study from the PsychENCODE
consortium64, although genetic evidence from GWAS for this
gene is still lacking in the context of psychiatric phenotypes.

There are a number of important limitations that should be
considered related to the pneumonia GWAS in this study. Firstly,
this GWAS was conducted using samples from European
ancestry. It will be critical to translate findings related to host-
genetic influences on pneumonia that future efforts strive to
collect trans-ancestral data, particularly due to concerns about the
portability of European GWAS signals and the advantages in
finemapping afforded by including multiple ancestries65. The
SNP heritability for pneumonia derived in this study was also
relatively low, and it remains unclear how heterogeneity amongst
the phenotype definition of pneumonia may contribute to this. In

other words, given that pneumonia is caused by a variety of
factors and may go undiagnosed in some individuals, detailed
phenotyping data would potentially assist in resolving the genetic
architecture of this disorder. For example, a GWAS on suscept-
ibility verses pneumonia severity will likely reveal some different
biological insights. This could also be aided by stratified analyses
by age, given pneumonia is more pervasive in the elderly. How-
ever, an advantage of this study relative to recent GWAS of
COVID-19 severity is the larger number of cases and a more
generalised phenotype that could be applicable to a variety of
pneumonia aetiologies. The putative therapeutic candidates sug-
gested in this study must also be viewed in light of the low her-
itability of pneumonia and the need for clinical validation.
Despite these challenges, we believe that further resolving the
host-genetic architecture of pneumonia will be invaluable to
public health efforts to more effectively prevent and manage this
illness.

Methods
Genome-wide meta-analysis of pneumonia. This research used GWAS summary
statistics that received relevant ethics approval. The use of UK Biobank data
individual level data in that portion of the study was approved by the UK Biobank
Access Committee (application ID= 58432). The genome-wide meta-analysis was
performed using two primary study cohorts from 23andMe, Inc. and FinnGen
(release 6), respectively, with full details of these cohorts and the meta-analysis
procedure detailed in the supplementary methods. Summary statistics for a self-
reported pneumonia phenotype were obtained from 23andMe as outlined by Tian
et al.5. This self-reported phenotype was derived from an online survey of 23andMe
customers about their medical history. In the final 23andMe GWAS after quality
control (QC), there were 40600 cases and 90039 controls. In addition, summary
statistics for pneumonia were downloaded from the sixth release of the FinnGen
database which combines genotype data from Finnish biobanks and digital health
record data from Finnish health registries. The pneumonia phenotype chosen was
All pneumoniae (J10 pneumonia), for which 33723 cases and 226682 controls were
available for GWAS after QC.

The 23andMe and FinnGen summary statistics were meta-analysed using an
inverse-variance weighted model with fixed effects as implemented byMETAL version
March 201166. Firstly, we meta-analysed common variants, defined as sites with allele
frequency > 1% in both the 23andMe and FinnGen cohorts. Variants were retained if
they were available in both summary statistics and had an imputation quality that
exceeded 0.6 for variants not physically genotyped, resulting in 6897087 common sites
with an effect size estimate from the meta-analysis and a total sample size of 391044
individuals. Imputed rare variants available in both studies (INFO> 0.6) were also
subjected to meta-analysis, with 882364 low frequency variants considered. In both
instances, we further tested for heterogeneity between the contributing studies using
Cochran’s Q test. Genome-wide summary statistics from the IVWmeta-analysis were
processed using the FUMA v1.3.7 (Functional Mapping and Annotation of Genome-
Wide Association Studies) platform67. Genome-wide significant variants were
characterised using the traditional P < 5 × 10−8 threshold, whilst suggestive
significance was defined using a more lenient threshold of P < 1 × 10−5. We utilised
the default settings for defining independent significant SNPs (r2 ≤ 0.6) and lead SNPs
(r2 ≤ 0.1). The reference panel population for LD estimation was the 1000 genomes
phase III European reference panel, with LD blocks within 250 kb of each other
merged into a single locus. We examined the effect of conditioning on two smoking
GWAS via the multi-trait-based conditional & joint analysis (mtCOJO) framework
implemented in GCTA v 1.93.2 beta (Supplementary Methods)8,68. For the common
lead SNP, we additionally performed a phenome-wide association study using the
IEUGWAS database version 3.7.0 (https://gwas.mrcieu.ac.uk/), reporting SNPs using a
conventional phenome-wide significance threshold of P < 1 × 10−5. Given the most
significant association in this database for the MUC5AC lead SNP was a GWAS of
adult-onset asthma69, we also tested whether the association of SNPs proximal to
MUC5AC was driven by the same underlying causal variant, assuming a single causal
variant, via the coloc colocalisation methodology implemented in version 4 of the
package70. We also sought to replicate our results in two UK biobank (UKBB)
pneumonia GWAS, specifically, a self-reported pneumonia phenotype performed in
the automated GWAS pipeline by the MRC IEU group (ukb-b-4533, https://gwas.
mrcieu.ac.uk/datasets/ukb-b-4533/), as well as a phecode ICD-10 UKBB GWAS
performed in an automated series of GWAS by the authors of the SAIGEmethodology
(https://pheweb.org/UKB-SAIGE/pheno/480)71.

Estimation of SNP-based heritability. SNP based heritability was computed using
LD score regression (LDSR) with 1000 genomes phase 3 European LD scores and
weights25. We converted the heritability estimate to the liability scale assuming the
population prevalence of pneumonia as that of pneumonia in the FinnGen dataset
(12.96%), as well as a more conservative estimate based on ICD-10 diagnosed
pneumonia in the UK biobank (UKBB) sample (3.20% - Supplementary Methods).
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Genetic correlation between the self-reported and clinically ascertained pneumonia
input GWAS was estimated using ‘munged’ variants aligned to the non-MHC
HapMap3 reference panel via LDSR.

Prioritisation of plausible genes from genome-wide significant loci. We
implemented an integrative approach to priortise causal associations at each of the
genome-wide significant loci outside of the MHC region. Firstly, we annotated the
closet gene to the lead SNP using the Open Targets genetics platform (v2022.22)13.
FUMA was then utilised to annotate all SNPs within each loci with eQTLs to identify
the gene for which the strongest eQTL signal could be identified, with annotations
sourced from a variety of databases including GTEx and the eQTL catalogue, as
outlined elsewhere67. Similarly, pQTLs were annotated using the Open Targets
platform. ANNOVAR, as implemented by FUMA, annotated any variants as non-
synonymous72. We then finemapped each of these regions to map genes to the
derived credible sets. SNP-effect sizes were finemapped using method which leverages
asymptotic Bayes’ factors (ABF) to estimate credible sets under the assumption of a
single causal variant73. Specifically, we utilised Wakefield’s method to approximate
ABFs assuming a prior variance of 0.22, which reflects the belief that the confidence
intervals of estimated variant effect sizes expressed as odds ratios ranging from
around 0.68 to 1.48. Given that the posterior probability for causality of each variant
is proportional to its Bayes’ factor, these can be summed until a prespecified prob-
ability (ρ) is reached, thus, constituting a ρ set of putative causal variants. In this
study, we derived 95% credible sets. A single causal variant was assumed such that we
did not have to account for LD between variants, which has been demonstrated to be
problematic in finemapping studies which prespecify more than one causal variant
using references external to the GWAS like the 1000 genomes project panel74. Sec-
ondly, these regions were finemapped using marginal TWAS Z scores for each gene
within and proximal to the locus via FOCUS v0.6.1012. We utilised the default
Bernoulli prior (p= 1 × 10−3) and chi-square prior variance (nσ2= 40) to approx-
imate Bayes’ factors for each gene, and thus, derive the posterior inclusion prob-
abilities (PIP) for each gene to be causal given its observed TWAS Z. Two integrative
scoring pipelines were also considered to priortise genes—the variant to gene (V2G)
approach implemented by Open Targets for the lead SNP and the RegulomeDB
rank13,15. The V2G scoring metric integrates information related to physical distance,
eQTL (eGene) and pQTL (pGene) annotation, epigenetic annotation with data like
promoter capture Hi-C, and in silico functional prediction. RegulomeDB was
implemented by FUMA and applies a rank score to each SNP in the locus leveraging
eQTL annotation, in silico transcription factor binding prediction, and chromatin
data, with SNPs ranked as “1” more likely to impact binding and expression of a
linked target. We identified the gene with the highest V2G for the lead SNP and the
gene mapped to the lowest RegulomeDB rank considering all SNPs in the locus.
Finally, we also annotated all variants in each implicated region with an in silico
predicted scaled combined annotation dependent depletion (CADD) score via
FUMA, with the gene mapped to the highest scoring SNP prioritised14. In summary,
we identified the gene/s which satisfied any of the following for the four non-MHC
loci: closet gene to lead SNP, most significant eGene and pGene, gene with a non-
synonymous variant, genes mapped to variants in the ABF 95% credible set, genes
prioritised as causal by FOCUS, the highest V2G score for each lead SNP, the gene
mapped to the variant with the lowest RegulomeDB rank, and the genemapped to the
variant with the highest CADD score.

Phenome-wide consequences of genetically proxied TNFRSF1A inhibition. We
sought to further investigate the utility of inhibiting TNFRSF1A as a treatment
opportunity for pneumonia. A blood eQTL SNP from the eQTL catalogue with high
posterior inclusion probability over 95% for that locus (rs1800692) was selected as an
instrumental variable for an MR-pheWAS using the IEUGWAS database and
FinnGen release 675. We filtered the IEUGWAS database to retain GWAS catalogue
imports, UKBB GWAS conducted by IEUGWAS, IEUGWAS curated consortia
GWAS, UKBB brain imaging GWAS, and immune/metabolite GWAS (IEUGWAS
codes = ukb-b, met-a, met-b, met-c, met-d, ubm-a, ebi-a, ieu-a, ieu-b). The effect of
TNFRSF1A expression on each outcome GWAS was calculated using the Mendelian
randomisation Wald ratio (ratio of coefficients) method76,77. We flipped the effect
size directions of the Wald ratio results such that the beta represented the effect of
decreased TNFRSF1A expression on the outcome phenotypes.

Gene-based and gene-set association. Common variant (MAF > 0.01) SNP-wise
P values were aggregated at gene-level using MAGMA v1.0920, using the 1000
genomes phase III European reference panel to approximate LD for the calculation
of the test statistic. We considered three different strategies to annotate SNPs to
genes for gene-based association testing; specifically, mapping SNPs only within the
defined coordinates of genes, a conservative extension of genic boundaries to
capture regulatory variation (5 kilobase (kb) upstream and 1.5 kb downstream),
and a more liberal genic boundary extension (35 kb upstream, 10 kb downstream).
The Bonferroni threshold for genic association was P < 2.68 × 10−6, accounting for
the number of genes tested. Moreover, gene-based P values were leveraged for
gene-set association using 21,765 gene-sets assembled by the g:Profiler platform78,
and available at all three annotation boundary configurations. We meta-analysed
the gene-set association P values from each boundary configuration via the
Aggregated Cauchy Association Test (ACAT) (Supplementary Methods). Code for

the Cauchy approach was obtained from (https://github.com/yaowuliu/ACAT) and
outlined by Liu and Xie21,79. Moreover, a TWAS of pneumonia was performed
using the FUSION package22. We utilised GTEx v7 SNP weights from three tissues
that would be plausibly involved in the pathophysiology of pneumonia (whole
blood, lung, and spleen). In addition, we probabilistically finemapped
transcriptome-wide significant regions using the FOCUS as outlined above.

Genetic correlation and causal inference. We estimated genetic correlation
between pneumonia and 674 UK Biobank (UKBB) GWAS with a trait h2SNP Z
score > 4 from the Neale group (http://www.nealelab.is/uk-biobank) using LDSR.
Genetic correlation was also applied to 9 psychiatric GWAS from the psychiatric
genomics consortium with more curated phenotypes28–35, as well as a general
cognitive ability GWAS36. Local genetic correlation estimates for the MHC region
were obtained using the LAVA approach, ensuring that the traits considered
(pneumonia, PTSD, ADHD, and MDD) all had significantly non-zero univariable
heritability in this region37. For Bonferroni significant genetic correlation estimates,
we constructed a LCV model to evaluate evidence for partial genetic causality
between traits26,27,46. A strong estimate of the posterior genetic causality propor-
tion (GCP) was defined as significantly different from zero (one sided t-test) and an
absolute GCP estimate > 0.6. Weak GCP estimates close to zero for genetically
correlated traits imply that their relationship is potentially mediated by horizontal
pleiotropy, whereby there are shared pathways, but the two traits do not likely
exhibit vertical pleiotropy by acting within the same pathway. In addition, we
followed up the two biochemical traits (CRP and GGT) that exhibited evidence for
partial genetic causality on pneumonia from the LCV model using two-sample
Mendelian randomisation, as described in the supplementary methods.

The pharmagenic enrichment score for precision drug repurposing. The PES
framework to prioritise treatments for individuals using polygenic scores specifi-
cally partitioned into pathways or gene-sets with known drug targets24,45,46. Spe-
cifically, we identify druggable pathways with an enrichment of common variant
associations relative to the rest of the genes tested and construct pathway-based
risk scores for these gene-sets (Supplementary Methods). We investigated over-
representation of ATC drug categories amongst these gene-sets using the GREP
tool80. PES gene-sets that survived multiple-testing correction were then further
considered to identify those overlapping the target genes prioritised in this study,
MUC5AC and TNFRSF1A. We utilised the UK biobank (UKBB) cohort to replicate
the association between these pneumonia PES that overlapped one of those target
genes and lifetime pneumonia susceptibility81,82. These analyses are described in
detail in the supplementary methods. The use of these data were approved by the
UKBB access management services system (project ID: 58432). Briefly, we retained
336,896 unrelated white British ancestry participants and 13,568,914 autosomal
variants that survived a series of quality control steps, including, imputation quality
filtering (INFO > 0.8), MAF > 1 × 10−4, call rate > 0.98, and filtering strong
deviations from the Hardy–Weinberg equilibrium. Self-reported pneumonia
diagnosis and ICD-10 codes from hospital inpatient records were used to construct
the pneumonia phenotype (Supplementary Methods). There were 15,138 indivi-
duals from the genotyped subset of the cohort included in the PES calculation with
a primary or secondary diagnosis using the ICD-10 primary or secondary diagnosis
codes relevant to pneumonia, or a self-reported pneumonia diagnosis at any
assessment centre visit. In turn, there were 320,213 controls without a self-reported
or clinically ascertained pneumonia diagnosis. SNPs were annotated to PES gene-
sets using the same boundary configuration that was most significant from the
summary statistics analyses (liberal or conservative), as well the best performing P
value threshold for clumping and thresholding (C+T). Sample code for the
implementation of the PES approach from our group can be found elsewhere—
https://github.com/Williamreay/Pharmagenic_enrichment_score; The PES calcu-
lation was performed using the PRSice-2 v2.3.5 (linux)83. Firstly, we tested the
baseline (marginal) association of these PES with pneumonia susceptibility using
binomial logistic regression covaried for age, sex, the first 20 SNP derived principal
components, and genotyping batch. Thereafter, we included genome-wide PRS at
the same P value threshold as an additional covariate to account for the back-
ground genetic signal and tested for the significance of the PES coefficient using a
χ2 test of residual deviance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The top 10,000 SNPs from our meta-analysis have been deposited in the following
GitHub repository. (https://github.com/Williamreay/Pneumonia_meta_GWAS/tree/
master/Summary_statistics). This file contains the top 10,000 SNPs ranked in terms of
their statistical significance. The full GWAS summary statistics for the 23andMe
discovery data set will be made available through 23andMe to qualified researchers under
an agreement with 23andMe that protects the privacy of the 23andMe participants.
Researchers wishing to recapitulate our meta-analysis can apply for access for the
23andMe subset of the study (https://research.23andme.com/dataset-access/), and then
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meta-analyse with FinnGen release 6 summary statistics (https://r6.finngen.fi/) as
described in our manuscript. The UK Biobank data can be obtained by approved
researchers after direct application to the UK Biobank (https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access). Additional GWAS summary statistics for other
in traits of this study were obtained from the IEU open GWAS project (https://gwas.
mrcieu.ac.uk/), the Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/
download-results/), and the Neale Group (http://www.nealelab.is/uk-biobank).

Code availability
The code used in our study is available on Github which can be found via the following
link: https://github.com/Williamreay/Pneumonia_meta_GWAS. The code version used
in this study is registered84.
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