Fig. 6: Transcriptomic and physiological evidence that PtTryp2 positively modulates P starvation-induced genes during Pi starvation. | Nature Communications

Fig. 6: Transcriptomic and physiological evidence that PtTryp2 positively modulates P starvation-induced genes during Pi starvation.

From: Trypsin is a coordinate regulator of N and P nutrients in marine phytoplankton

Fig. 6

a PtTryp2 knockout resulted in a reverse regulation of most P starvation-induced genes relative to that in control (KOC) under N-depleted (LNHP), P-depleted (HNLP), and nutrient-replete (HNHP) conditions. b PtTryp2 knockout caused decreases in Pi uptake and cellular P content under nutrient-replete condition (HNHP) but caused increases under N-depleted condition (LNHP). Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. c PtTryp2 knockout caused increases in Pi uptake rate and cellular P content under HNHP and LNHP. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. d Venn diagram showing the number of P-depletion induced DEGs in PtTryp2-KO1 and KOC. In parentheses, total number of DEGs; red font, upregulated; green font, downregulated. e Log2 fold changes (FC) of P-depletion induced differential gene expression in PtTryp2-KO1 against that in KOC. Most data points (95.69%) are distributed in 1,3 quadrants, indicating the same direction of change. Source data are provided as a Source Data file.

Back to article page