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The Magnitude-Frequency-Distribution (MFD) of earthquakes is typically
modeled with the (tapered) Gutenberg—-Richter relation. The main parameter
of this relation, the b-value, controls the relative rate of small and large
earthquakes. Resolving spatiotemporal variations of the b-value is critical to
understanding the earthquake occurrence process and improving earthquake
forecasting. However, this variation is not well understood. Here we present
remarkable MFD variability during the complex 2016/17 central Italy sequence
using a high-resolution earthquake catalog. Isolating seismically active
volumes (‘clusters’) reveals that the MFD differed in nearby clusters, varied or
remained constant in time depending on the cluster, and increased in b-value
in the cluster where the largest earthquake eventually occurred. These findings
suggest that the fault system’s heterogeneity and complexity influence the
MED. Our findings raise the question “b-value of what?”: interpreting and using
MEFD variability needs a spatiotemporal scale that is physically meaningful, like

the one proposed here.

Beroza et al.' recently highlighted that current earthquake catalogs
achieve a high level of detail that likely contains more information about
earthquake occurrence, allows testing of existing hypotheses, and
potentially improves earthquake forecasting. One of the main ingre-
dients for earthquake forecasting and seismic hazard models is the
Magnitude-Frequency-Distribution (MFD) of earthquakes, which car-
ries information about the proportion between small and large earth-
quakes. The MFD is typically modeled with the Gutenberg-Richter (GR)
relation and its b-value (the slope of the GR relation), which can be used
to infer the occurrence rate of large earthquakes from small ones. The b-
value is observed to vary in space and time?®, which is thought to be
primarily related to variations of the stress state in the crust’”. The b-
value is also considered as an indicator for other conditions in the crust,
which are directly or indirectly related to the stress state, such as
faulting style”?, locked or creeping fault patches**"™", material
properties™, fluid pore-pressure perturbations**”"8, and critical
nucleation length'®, among others” (and references therein). b-value
variations may therefore have an important role in improving our
physical understanding of earthquake occurrence.

Estimating the b-value appears trivial in theory (after all, it is
simply the rate parameter of an exponential distribution), but not in
practice. Several aspects affect the ability to resolve representative b-
value variations in earthquake catalogs, such as:

1. the quality of the data, its spatiotemporal selection, and the var-
ious ways of sampling it**’;

2. the sample size and available magnitude range?**;

3. the used magnitude scale, magnitude binning, and maximum
likelihood estimator*?%>>2¢;

4. the assumption of the underlying MFD model for the upper end
(unbounded, tapered, or truncated) and the detection of depar-
tures from an exponential-like GR distribution at the lower end
(due to the inherent and potentially varying incompleteness)* 2%,
i.e., the estimation of the magnitude of completeness, M., as the
lower magnitude threshold.

Although this list is not exhaustive, these considerations highlight that
the outcome of a b-value analysis highly depends on expert judgment
and/or subjective choices. In fact, recent scientific studies®*° and
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discussions®*? reemphasized that choices have to be specific, mean-

ingful, and reproducible to obtain robust results that contribute to a
better understanding of the underlying physical processes. It appears
that this field of study requires well-defined schemes and analysis
steps. Moreover, choices are critical for real-time applications that
need to run automatically, e.g., for operational earthquake forecasting
(OEF) purposes™. Assessing the influence of expert choices and various
modeling ideas on the forecasting performance needs community
efforts such as the Collaboratory for the Study of Earthquake
Predictability (CSEP)****, which tests forecasting models prospectively
in a controlled environment.

Here we argue that a complex earthquake sequence with multiple
ruptured fault segments can further bias the MFD and b-value analysis:
If the MFD varies temporally among distinct zones of a fault system, an
averaged view over the whole sequence or a smoothed view over a
finite scale (either in space or time) will neglect or mask those varia-
tions and may lead to inappropriate or biased inferences. Instead, an
MFD analysis may become more physically meaningful and less
ambiguous when accounting for distinct seismogenic zones and their
evolution during the sequence. This rationale is the subject of this
study. It has already been shown that the MFD can significantly differ in
adjacent but well-defined zones of induced seismicity*. Here we focus
on a complex sequence and propose to investigate the spatiotemporal
behavior of the MFD and b-value by spatially isolating the most seis-
mogenic zones and further dividing them temporally.

We use the 2016/17 central Italy (hereafter ‘CI2016’) sequence as
an example due to its complex tectonic structure, cascading evolution,
and the availability of high-resolution catalogs. The CI2016 sequence
occurred in the central Apennines, one of Italy’s most seismically active
areas, and was marked by a cascade of three main events”: the M6.0
(M. 6.0) Amatrice event on 24 August 2016, the M,,5.9 (M,5.8) Visso
event on 26 October 2016, and the M,,6.5 (M, 6.1) Norcia mainshock on
30 October 2016. On 18 January 2017, four M,,5.0-5.5 events followed
near Campotosto®. These seven events have been caused by move-
ments on southwest-dipping normal faults and they ruptured multiple
fault segments, activating a complex fault system®***,

The CI2016 sequence is particular in that it features seismicity in
a ~1 km-thick subhorizontal detachment at around 10 km depth, which
intersects with and confines almost the entire normal fault system
above®™*%****_Such a feature was already observed in the Apennines at
a depth of 15-20 km*®, which suggested the presence of a buried
subhorizontal thrust related to (the deepest part of) the Apennines
build-up. It generally appears as a flat layer, and high-resolution cata-
logs resolved it as a slightly east-dipping, irregular structure (i.e., with
locally varying depth and thickness)®. This feature was interpreted as a
midcrustal shear zone*, which decouples the upper and lower crust.
Prior seismicity was found to mostly occur along this structure®,
suggesting that it was loaded tectonically and eventually favored the
unlocking of the shallower faults through stress transfer. Partially
overlapping fault fragments were identified in this structure®.

Magnitude statistics of CI2016 have been investigated in several
recent studies using different spatiotemporal scales. Montuori et al.*’
mapped the b-value on a 2-km grid using the 80 nearest events; they
found that the Amatrice event originated in an area with a high b-value
and subsequently reduced the b-value to the north and south, sug-
gesting a high potential for further large events. Gulia and Wiemer*®
resolved b-value changes relative to the background b-value both in
time using events within focal-mechanism-driven boxes surrounding
the Amatrice and Norcia epicenters, and in space on a 2-km grid using
the 250 nearest events; they found a b-value variation during the
course of the sequence, in particular (i) a drop after the Amatrice event
(especially in the area to the north where the Norcia mainshock
occurred afterward), interpreted as a still impending large earthquake,
and (ii) a b-value increase after the Norcia mainshock, interpreted as a
substantially reduced chance for a further large earthquake similar to

the tectonic background rate. Garc¢a-Hernandez et al.” used a multi-
scale approach to resolve the b-value continuously in time and spatially
on a grid; they also observed a “marked drop of the b-value” after the
Amatrice event (resolved spatially and in depth) and a recovery of the
b-value to the background level after the Norcia mainshock; they could
exclude that these variations were caused by an increased M, after the
main events.

In this study, we reanalyze this sequence using a high-resolution
catalog and introduce an alternative perspective for studying MFD
variability—using a spatiotemporal scale that considers the 3-D dis-
tribution of recorded seismicity. A cluster analysis of the sequence
using density-based algorithms lets us spatially isolate the most seis-
mogenic zones; temporal periods are defined by the occurrence time
of the largest events. We demonstrate that this approach proves
beneficial in resolving the spatiotemporal variation of the MFD and b-
value. For instance, we resolve what happened in the days before the
largest event (Norcia) in its associated seismogenic zone. Rather than
solely focusing on b-value estimates, we consider it important to
exploit more information from the MFD, e.g., by assessing and com-
paring its exponential-like part and reporting the b-value stability as
function of M.. We show that the MFD behaves in a complex manner
among the spatially isolated clusters throughout the sequence. Our
findings reflect on the appropriate spatiotemporal scale to resolve the
b-value and challenge existing approaches.

Results
Description of clusters
Using the high-resolution catalog of Tan et al.>°, we spatially isolated the
five largest seismogenic zones (Cluster 1-5, hereafter abbreviated with
C1, C2, etc.) following the procedure described in Methods. Figure 1
shows that the obtained clusters are not randomly distributed, but
instead highlight the complex spatial structure of the sequence. For
instance, C1 comprises seismicity in the northern part of the sub-
horizontal detachment, parts of the normal fault (Mt. Vettore) that
ruptured during the Norcia mainshock, and this mainshock hypocenter
itself. C2 represents seismicity in the southern part of the subhorizontal
detachment, and C3 captures the shallow northern part of the
sequence, including the Visso hypocenter. C4 and CS5 relate to small-
scale structures. These five clusters correspond to the largest volumes
of high hypocenter density (Supplementary Fig. 1). The Amatrice event
does not belong to any of the main clusters because the area around its
hypocenter is devoid of earthquakes**°~*°. The Campotosto events
were also not assigned to a main cluster.

Figure 2 shows that each cluster has a distinct temporal activity.
For instance, C1 was active throughout the sequence until the Cam-
potosto events; C2 was quiet after the Visso event until the Norcia
mainshock while C3 was very active in this period. C4 and C5 were
mostly active toward the end of the sequence, along with the other
clusters in roughly comparable proportions. Supplementary Fig. 2 and
Supplementary Note 1 summarize the cluster statistics in terms of size
and ratio for each period, making it more apparent that = 50% of the
earthquakes in each period belong to a cluster. Moreover, up to two
clusters were dominating each period except for the last period.

Cluster-based MFD analysis using the whole sequence

For the statistical analysis of the MFD, we follow the procedure
described in Methods. Table 1 and Fig. 3 indicate differences and
similarities in the MFD among the clusters. In particular, Table 1 sug-
gests that Cl1, C2, and C3 have identical MFD shapes, but that the MFD
of C1 and C2 are distinct from the ones of C4 and C5. There is a
tendency that C1 differs from C2, although not statistically significant.
Figure 3c provides more details about the MFD behavior in terms of
the b-value as function of M.. For instance, the largest clusters C1-C3
(red, blue, and green, respectively) have comparable b-values (-1.2) at
their corresponding ML1"s byt behave differently for increasing M,:
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Fig. 1| Map view and depth sections of the 2016/17 central Italy (‘C12016’)
seismicity with identified clusters (see legend). The depth sections are to scale.
To better reveal the structure of the individual clusters, the earthquake hypo-
centers are plotted ascending by their cluster number on top of ‘unclustered’

hypocenters, neglecting a physically correct appearance. The main events Ama-
trice, Visso, Norcia, and four Campotosto events are represented by larger circles;
in the map view, they are annotated with the respective initial letter (A, V, N, C).
Supplementary Fig. 1 shows the hypocenter density for the same data.

for M, > 3.0, the b-value is much higher in C3 than in C1 or C2. The
small-scale clusters C4 and CS5 (yellow and cyan, respectively) show the
highest overall b-value. The Lilliefors p-value (Fig. 3b) is useful to judge
the reliability of the b-value; a p-value dropping below 0.1 indicates
that the b-value for Cl1 and C3 below M,,2.0 does not relate to a per-
sistent exponentiality with M., which can have several reasons (Sup-
plementary Note 2.2) and necessitates an inspection of the MFD in
individual periods, as done in the following subsection.

For the sake of completeness, we repeated the analysis using local
magnitudes, M, (Supplementary Fig. 3), which introduces a different
MEFD behavior for the individual clusters due to a narrower exponential
range (Supplementary Note 2.3).

Cluster-based MFD analysis using temporal subsets
We extend the spatial analysis by a temporal component using three
periods that exclude the short-term aftershock incompleteness (STAI)

between the main events, namely ‘pre-Visso’, ‘pre-Norcia’, and ‘pre-
Campotosto’ (see Methods). Table 2 provides a more granular break-
down of MFD variations above ML than Table 1, also temporally
within the same cluster. For instance, in C1, only pre-Visso and pre-
Norcia are distinct; in C2, no period is distinct, and in C3, pre-Visso is
distinct from the other two periods. The MFD in pre-Campotosto is
never distinct in any cluster. Comparisons among clusters for the same
temporal period show no significant differences between C1 and C2,
but when comparing C1 or C2 with C3. (Note that the sample size of C2
in pre-Norcia is very small (26 earthquakes), which reduces the power
of the KS test to detect potential differences for pairs that include this
subset.) The most unique subset is C3 during pre-Visso, which differs
from almost all other subsets. Of all 36 pairs, 15 (42%) are significantly
different.

Further investigating the MFDs in terms of a M.-dependent b-
value (Figs. 4 and 5) provides a more nuanced discrimination. The most
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Fig. 2 | Temporal evolution of CI2016 seismicity colored by cluster associa-
tion (see legend). The horizontal axis represents the index of the shown earth-
quakes. a Overview of the temporal subsets. b Magnitude vs. index of individual
events (empty circles denote ‘unclustered’); the occurrence times of main events

are annotated vertically. ¢ Proportion between the number of earthquakes in each
cluster and the total number of earthquakes using a rolling window of the
previous 24 h.

remarkable observation is that the b-value in Cl1 is highest before the
Norcia mainshock—it has increased after the Visso event from 1.4 to 1.6.
After the Norcia mainshock, the b-value remained at a high level (1.5 in
the pre-Campotosto period). In C2, the b-value remained high at ~1.45
both before the Visso event and after the Norcia mainshock. (This
cluster does not contain enough earthquakes in the pre-Norcia period
to estimate a b-value.) In C3, which contains the Visso event, the b-
value increased from 1.0 in pre-Visso to 1.4 in pre-Norcia, at which level
it stayed also after the Norcia mainshock.

Figure 5 facilitates a temporal comparison of the MFD among the
clusters. In pre-Visso, the b-value is similar in C1 and C2 at around 1.4,
and much lower in C3 (1.0). Prior to the Norcia mainshock, the b-value
increased both in C1 and C3 (to 1.4 - 1.6); C2 does not provide enough
data. After the Norcia mainshock (i.e., pre-Campotosto), the b-value
remains elevated in C1-C3 (1.3 - 1.5) and C1 and C2 have similar b-values
again. After the Campotosto events (Supplementary Fig. 8, ‘post-Cam-
potosto’), the b-value still remains elevated in C1-C3 (1.4 - 1.5).

For the sake of completeness, we repeated the analysis using M,
(Supplementary Figs. 4, 5, and Supplementary Note 2.3), which
reproduces our main findings qualitatively with comparable relative b-

Table 1| Pairwise comparison of the cumulative magnitude
distribution of each cluster against the others

Cluster1 Cluster2 Cluster3 Cluster4  Cluster5
Cluster 1 0.089 0.26 2.2e-06 1.2e-06
Cluster 2 0.089 0.59 0.024 0.0084
Cluster 3 0.26 0.59 0.49 0.36
Cluster 4  2.2e-06 0.024 0.49 0.51
Cluster 5 1.2e-06 0.0084 0.36 0.51

p-values of two-sample Kolmogorov-Smirnov tests (Methods). Statistically significant p-values
are highlighted in bold.

value changes, albeit the b-value behaves differently as function of M,
owing to the scale change. For a comparison using temporal periods
that include STAI, see Supplementary Note 2.4 and Supplementary
Figs. 6-8.

Discussion

We found that the individual earthquake clusters, which represent the
most active zones of this complex sequence, are characterized by a
significantly different MFD behavior. In particular, the MFD experi-
enced variations as temporal changes and spatial differences, or
remained identical within one cluster throughout the sequence.
Finding this complex MFD variability highlights that the spatio-
temporal scale to select seismicity and resolve the b-value must be
physically meaningful. In the following, we first discuss the observed
temporal behavior, followed by a discussion of spatial differences and
similarities, an interpretation of our findings, and a summary with
implications and outlooks.

Regarding the temporal evolution, the most striking observation
is the gradual b-value increase in the cluster where the strongest
earthquake eventually occurred (C1). Apparently, a high b-value did
not prevent the nucleation of a large rupture in this cluster. This
resolved behavior differs from the general observation that the b-value
decreases prior to large earthquakes®***'=3, albeit similar observations
to ours do exist®. The increasing b-value in Cl after the Visso event
highlights that activity in one cluster may influence the MFD in another
one. After the Visso event, the b-value also increased in its own cluster
(C3), which corroborates that large earthquakes may influence the
MEFD in their surrounding®. The later Norcia mainshock, however, did
not alter the MFD in the three main clusters further and the b-value
remained high—also after the Campotosto events, which occurred in
the southern part of the sequence. This stagnating b-value highlights
that the MFD eventually became insensitive to large earthquakes even
though it had experienced significant temporal variations in the same
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Fig. 3 | Magnitude statistics for all data (black) and individual clusters (see
legend). a Representing the data in terms of their magnitude-frequency distribu-
tion (MFD). Note that a tiny value is added to each MFD (between - 0.1 and 0.1) to
avoid visual overlaps at large magnitudes. b The Lilliefors p-value (assuming an
exponential distribution as null hypothesis) as a function of lower magnitude
cutoff, or magnitude of completeness, M. (see Methods). ¢ The estimated b-value
(the slope of the fitted Gutenberg-Richter relation, see Methods) as a function of
M_ with the shading representing 10. The M-S estimates are indicated for each
cluster in aand c with a circle marker. Supplementary Fig. 3 shows the same analysis
using local magnitudes.

seismogenic zones earlier. This ambiguous MFD character is com-
pounded by its behavior in C2, where the MFD locally remained con-
stant throughout the sequence—apparently unaffected by surrounding
seismicity.

When comparing clusters spatially regarding the whole sequence,
we found differences in the MFD between the largest clusters (C1 and
C2) and the smaller ones (C4 and C5). The former have overall lower b-
value estimates, which are due to the stronger influence of STAI as a
result of their proximity to larger earthquakes. In fact, the b-value is
underestimated in periods that include STAI (Supplementary Note 2.4
and Supplementary Figs. 7-9). Excluding STAI in the individual time
periods, we found spatial MFD differences among the largest clusters
(C3 differing from C1 and C2). Simultaneously, MFD similarities coex-
isted among these clusters (C1 and C2), although we do not have evi-
dence for every time period, such as for pre-Norcia when C2 only
provides few samples. C1 and C2 have in common that they represent

the majority of seismicity in the subhorizontal detachment at depth
(its northern and southern extension, respectively). With their MFD
differing from C3 in each individual period and tending toward a
higher b-value indicates that this subhorizontal detachment is not only
tectonically distinct from the shallower normal faults (see Introduc-
tion), but also in terms of the MFD.

Although our study focuses on raising awareness of appro-
priately resolving MFD and b-value variations, we briefly speculate
about the underlying causes for our most remarkable observations in
this sequence. The marked MFD variability among the clusters over
time may reflect a heterogeneous stress field and/or a complex fault
geometry with significant contributions from the subhorizontal
detachment. In other words, the different spatiotemporal behavior
of the elastic energy release may be related to some particular (and
unknown) features of the geological setting. Moreover, a complex
rupture process is suggested by the fact that only some main events
belong to clusters—a result of the different hypocenter densities
surrounding these events. Assuming the b-value is inversely related
to the stress state®’, the generally higher b-value in the sub-
horizontal detachment could be caused by the structure’s reduced
capacity to accumulate stress. Instead of accumulating stress, it
preferentially transfers stress to the shallow fault system, favoring its
unlocking®. In fact, this subhorizontal thrust is known to release
microearthquakes quasi-continuously along its entire length®°°,
occasionally in minor sequences’*®, but not hosting larger earth-
quakes (which should have an extensional mechanism). The very
high b-value prior and close to the hypocenter of the Norcia main-
shock could be explained with (i) the generally high b-value in the
subhorizontal detachment because Cl's pre-Norcia seismicity
occurred within its north-eastern extension, whereas its pre-Visso
seismicity was located in a shallower part (Supplementary Fig. 10);
and (ii) the previous two main events (Amatrice and Visso) and
their aftershocks gradually releasing built-up strain and reducing
the overall stress in the fault zone. A noteworthy side observation
is that the Norcia mainshock nucleated in between the pre-Norcia
and the pre-Visso subset of C1 (i.e., the aftershock zones of Amatrice
and Visso, respectively, see also Improta et al*®), which is
consistent with observations that large earthquakes tend to nucleate
at the rim of seismic clouds**° and the cascading stress transfer
hypothesis®©2

In summary, our study demonstrated that the spatiotemporal
isolation of seismicity clusters resolves a distinct MFD behavior among
the most active zones over time, including influences between them.
We therefore argue that the MFD highly depends on the observed
seismogenic zone. Since the most seismogenic zones in turn govern
the overall MFD behavior of a sequence, a consideration of the activity
in individual clusters allows us to decompose and analyze the most
important contributions of a complex sequence. Our findings highlight
the delicate issue of choosing an appropriate spatiotemporal scale to
resolve the b-value, challenging existing approaches: A too large scale
merges potentially different MFD behavior in individual seismogenic
zones and a too fine resolution obscures the tectonic relation and
neglects the statistical robustness. The cluster-based approach pre-
sented here uses the seismicity distribution itself to choose a scale that
is physically meaningful and statistically robust. This strategy may help
to reduce the amount of expert judgment and subjective choices,
paving the way for replicable MFD analyses and a unified interpretation
of MFD and b-value variability. For instance, a spatial scale based on
density-based clustering can provide appropriate reference volumes
(e.g., to determine a background b-value for each zone—an analysis
that we omitted only due to inconsistent moment magnitude esti-
mates, see Methods). Besides the spatiotemporal scale, other factors
and choices complicate a meaningful interpretation; we discuss sev-
eral of them in Supplementary Note 2, for example MFD exponenti-
ality, STAI, the used magnitude scale, and the used catalog. These
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Table 2 | Pairwise MFD comparison of temporal subsets

Cluster 1 Cluster 2 Cluster 3

(pre-V.) (pre-N.) (pre-C.) (pre-V.) (pre-N.) (pre-C.) (pre-V.) (pre-N.) (pre-C.)
C1 (pre-Visso) 0.0037 0.33 0.59 0.74 0.03 2.1e-05 0.86 0.79
C1 (pre-Norcia) 0.0037 0.23 0.01 0.72 0.044 1.3e-09 0.0056 0.052
C1 (pre-Campotosto) 0.33 0.23 0.52 0.42 o1 5.8e-06 0.62 0.013
C2 (pre-Visso) 0.59 0.01 0.52 0.78 0.28 2.5e-06 0.51 0.068
C2 (pre-Norcia) 0.74 0.72 0.42 0.79 0.51 0.093 0.42 0.26
C2 (pre-Campotosto) 0.03 0.044 0.21 0.28 0.5 7.6e-08 0.0087 0.018
C3 (pre-Visso) 2.1e-05 1.3e-09 5.8e-06 2.5e-06 0.093 7.6e-08 3.2e-06 0.012
C3 (pre-Norcia) 0.86 0.0056 0.62 0.51 0.42 0.0087 3.2e-06 0.099
C3 (pre-Campotosto) 0.79 0.052 0.013 0.068 0.26 0.018 0.012 0.099

Statistically significant p-values are highlighted in bold.
Like Table 1, but for three periods of Cluster 1, 2, and 3 that exclude short-term incompleteness (STAI).
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Fig. 4 | Magnitude statistics of the three largest clusters in three individual the shading representing 1o. Supplementary Fig. 4 shows the same analysis using

periods. a-c Cluster 1, d-f Cluster 2, and g-i Cluster 3. Like Fig. 3, a, d, and g show  local magnitudes. Supplementary Figs. 7 and 8 compare the periods shown here
clusters in terms of their magnitude-frequency distribution; b, e, and h show the  with periods that include STAL
Lilliefors p-value as function of M,; and ¢, f, and i the b-value as function of M. with

additional aspects influence and potentially bias b-value estimates and  variability (i.e., uncertainty) of a constant b-value, as found in various
are not always carefully addressed. We emphasize that the absolute b-  regions™*%%*, Our method may be beneficial for studying the pecu-
value has little meaning not only due to its dependence on the mag- liarities of spatiotemporal MFD variability to better understand the
nitude scale (Supplementary Note 2.3), but also on the particular  processes that influence seismicity. For instance, it may aid in explor-
conversion relation (Supplementary Note 2.5 and Supplemen- ing and modeling stress heterogeneities to improve the earthquake
tary Fig. 9). forecasting skill of physics-based models® . Even if the physical

Generalizing our findings, we hypothesize that a complex and processes remain hidden, merely recognizing that the MFD behaves in
distinct MFD behavior is not unique to the CI2016 sequence, but likely a complex manner potentially improves the spatiotemporal forecast
occurs in other regions and sequences. In particular, our results pre- performance—it is a way to better appreciate the fine-scale hetero-
dict thatin a larger region (like the extent of the CI2016 sequence), the  geneity and complexity of activated tectonic structures. Future work
temporal b-value variability must exceed the expected natural may focus on a refined identification of spatiotemporal clusters to
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Fig. 5 | Reordering the magnitude statistics of Fig. 4 temporally by period.
a-c ‘pre-Visso’, d-f “pre-Norcia', and g-i “pre-Campotosto'. Like Figs. 3 and 4,
a, d, and g show clusters in terms of their magnitude-frequency distribution;

b, e, and h show the Lilliefors p-value as function of M,; and ¢, f, and i the b-value as
function of M, with the shading representing 1o. Supplementary Fig. 5 shows the
same analysis using local magnitudes.

better connect them with individual tectonic structures, possibly by
not relying solely on hypocenter density.

Methods

High-resolution earthquake catalog of the sequence

We used the high-resolution catalog of Tan et al.*°, which spans from
2016-08-15 to 2017-08-15, and extracted a spatial subset as follows:
depth<12km; UTM easting: 330-370km (about longitude
12.94-13.40); UTM northing: 4690-4790km (about latitude
42.34-43.25). Only earthquakes with moment magnitudes M, >1.5
were considered, totaling 76 055 events. The provided hypocenters are
based on high-precision relative relocation. The M,, contained in the
catalog were converted from local magnitudes, M,, with an average
European scaling relation®® based on a polynomial fit using catalogs of
different seismological agencies with most events having M, >1.5 and
M, 2 1.5, but adjusted to regional data (Supplementary Note 2.3).

Identifying spatial earthquake clusters and creating temporal
subsets

To infer the spatial distribution of seismogenic zones, we followed
recommendations based on density-based clustering analyses of
earthquake catalogs®. Accordingly, earthquake hypocenters were
spatially separated into clusters using DBSCAN (Density-Based Spatial
Clustering of Applications with Noise)®, which groups points based on
how closely they are packed together and allows identifying volumes
of arbitrary shapes; points that lie in low-density zones are left as
outliers. Because the horizontal extension of the CI2016 sequence is
several times larger than the vertical extension, density-connected
clouds of hypocenters preferentially extend in horizontal directions.
To improve the clustering analysis for such an anisotropic case, we

rescaled the hypocenter coordinates to a uniform extent in each
direction, i.e., rescaled into a cube. This procedure increased the local
hypocenter density in horizontal planes, which facilitated identifying
hypocenter clusters with horizontally elongated shapes®” (Supple-
mentary Fig. 1). DBSCAN was then applied with parameter values that
led to an optimal clustering solution®”: ¢=0.40, the neighborhood
radius and Z=200, the minimum number of points required to form a
dense region. This configuration produced nine clusters, from which
we selected the five largest (C1-5, descending by size) and labeled the
remaining earthquakes as ‘unclustered’. Their spatial distribution is
shown in Fig. 1 and the data is provided as Supplementary Data 1.

To enable a temporal analysis, each of the largest clusters C1-C3
was divided into three periods (see indicators in Fig. 2):

* early: earthquakes between the Amatrice and Visso event;
* mid: earthquakes since the Visso event until 2 days after the

Norcia mainshock;
+ late: the rest.C4 and C5 contain too few data to benefit from this

division.

As illustrated in Supplementary Fig. 6, these periods are affected
by short-term aftershock incompleteness (STAI, see also Supplemen-
tary Note 2.4)°2, Supplementary Fig. 6 makes use of equalized plot
scales’ and overlays the point density as suggested by W. Ellsworth
(pers. comm., 2021). In this way, Supplementary Fig. 6 informs us
about the STAI duration after each main event, leading us to exclude
STAI by using temporal subsets of the three periods for C1, C2, and C3
(see indicators at the top of Fig. 2):

* pre-Visso: like ‘early’, but excluding the first 0.8 days after the

Amatrice event;
* pre-Norcia: like ‘mid’, but excluding the first 0.6 days after the

Visso event and 2 days after the Norcia mainshock;
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« pre-Campotosto: like ‘late’, but before the Campotosto event;
« post-Campotosto: like ‘late’, but after the Campotosto event

excluding the first 0.4 days.

Earthquake statistics

The clusters and their temporal subsets were investigated in terms of
their MFD. To quantify MFD variability, we calculated the b-value as
function of M, for each cluster or temporal subset. The b-value was
determined using a bias-free maximum likelihood estimation?’* for
sample sizes N > 50. The b-value requires an exponential distribution of
the magnitude above M, to be physically meaningful®. To assess the
exponentiality of the MFD, we applied the Lilliefors test>?® using the
implementation of Herrmann and Marzocchi”® and obtain a p-value as
function of M., which expresses the probability to observe the MFD
assuming that the exponential distribution is the underlying distribu-
tion. For a significance level of a=0.1, we derived the lowest magni-
tude level for which the MFD can be considered exponential, referred
to as ML1iers we always refer to the b-value at MLilefors,

As an alternative to quantify MFD variability, we used the two-
sample Kolmogorov-Smirnov (KS) test and compared the MFD of
clusters or their temporal subsets pairwise. For each pair, the largest
M-Mefers was used as lower magnitude cutoff. The KS test returns a p-
value as a measure for the strength of evidence against the null
hypothesis that the two MFDs come from the same parent distribution.
We interpreted a p-value < 0.05 as a statistically significant difference.

We assumed that distinct b-values or significant p-values reflect
differences or changes of the entire exponential part of the MFD. This
assumption is rather simplistic because both metrics are not ideal
representations of the MFD: While the b-value estimate increasingly
correlates with the largest magnitude for decreasing sample sizes”,
the KS test has a generally reduced sensitivity for differences toward
the tails of the distributions. But they are the most widely accepted
metrics available for representing the MFD or their differences. We did
not explore whether the MFD could be characterized by a tapered GR
distribution, and therefore neglected variations of the maximum
magnitude, e.g., due to released energy close to faults®.

Consider prior seismicity?

The high-resolution catalog of Tan et al.*° only contains 15 events with
M,, >1.5 before the first main event (the Amatrice event). To better
represent prior seismicity in the MFD analyses (e.g., as a reference
“background” b-value), we initially considered HORUS™® (horus.bo.
ingv.it) as a temporally extensive catalog that provides M,, magnitudes.
HORUS has already been used to study the CI2016 sequence in terms
of b-value*®. The M,, in HORUS were converted from M, with a different
scaling relation” than the M, in the high-resolution catalog®. (Note
that the M, estimates in either catalog are also not based on the same
procedure.) In fact, a comparative MFD analysis for CI2016 seismicity
shows that the b-value differs considerably between both catalogs (0.2
units at ML see Supplementary Note 2.5 and Supplementary
Fig. 9). The two M,, scales are not consistent with each other, rendering
a reliable MFD comparison impossible. We therefore did not use the
HORUS catalog and omitted prior seismicity in our MFD analyses.

Data availability

The high-resolution earthquake catalog of Tan et al.** is available at
Tan et al.’®. The extracted events with their associated cluster indices
obtained in this study can be found in Supplementary Data 1.

Code availability

No proprietary code was used in this study; the performed analysis can
be reproduced from the specifications in the Methods section. The
density-based cluster identification following the recommendations of
Piegari et al.”” is based on the DBSCAN algorithm implemented in
Matlab (www.mathworks.com/help/stats/dbscan.html); M%""eﬂ”s was

calculated with the Python class of Herrmann and Marzocchi”. Figures
were created with the Python graphing library plotly (www.plotly.
com/python).
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