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De novo identification of microbial
contaminants in low microbial biomass
microbiomes with Squeegee

Yunxi Liu1, R. A. Leo Elworth1, Michael D. Jochum2, Kjersti M. Aagaard 2 &
Todd J. Treangen 1

Computational analysis of host-associated microbiomes has opened the door
to numerous discoveries relevant to human health and disease. However,
contaminant sequences in metagenomic samples can potentially impact the
interpretation of findings reported in microbiome studies, especially in low-
biomass environments. Contamination from DNA extraction kits or sampling
lab environments leaves taxonomic "bread crumbs" across multiple distinct
sample types. Here we describe Squeegee, a de novo contamination detection
tool that is based upon this principle, allowing the detection of microbial
contaminants when negative controls are unavailable. On the low-biomass
samples, we compare Squeegee predictions to experimental negative control
data and show that Squeegee accurately recovers putative contaminants. We
analyze samples of varying biomass from the Human Microbiome Project and
identify likely, previously unreported kit contamination. Collectively, our
results highlight that Squeegee can identify microbial contaminants with high
precision and thus represents a computational approach for contaminant
detection when negative controls are unavailable.

In recent years, the field of metagenomics has grown at a fast pace
thanks to next-generation sequencing technologies. The scale and
complexity of metagenomics studies have expanded alongside the
volume of the sequencing data. By performing metagenomic
sequencing, we are able to analyze the DNA and RNA of the entire
microbial community in varying and heterogeneous biomass envir-
onments, such as samples from wastewater, soil, or human body
sites1. One commonly usedmethod is 16S rRNAgene sequencing. The
16S rRNA gene is highly conserved in bacteria and can be amplified
and used as a marker gene for taxonomic classification2–7. The other
widely used technique is whole-genome shotgun sequencing, where
all DNA sequences in the community are fragmented and
sequenced2,3,8–10. Both methods open the door for identifying mem-
bers of microbial communities from the sampled environments and
estimating the relative abundance of each member1. However, the
results from both of these methods can be affected by microbial

contamination. Microbial contamination occurs when sequences
from microbes appear in the data that were not in the original
samples3,11.

A variety of sources can introduce microbial contamination.
External sources include personnel, the laboratory environment, and
kits and reagents used for collecting and processing samples2,3,11–20.
Internal sources of contamination may include human error, such as
sample mislabeling or inadvertent mixing3,11,17,21. Contaminant
sequences have also made their way into public reference
databases22–25. Studies have shown that contaminants in DNA extrac-
tion kits are ubiquitous26,27, and can bear an impact on metagenomic
studies, especially for low-biomass environments if they are not
accounted for in the analysis11,20,28. For example, in a recent naso-
pharyngeal microbiota study on newborn babies conducted in Thai-
land, contaminants found in DNA extraction kits resulted in
contaminant bias3.
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Extra precautions during sample collection and processing, and
well-designedexperiments, suchas processing samples in a clean,well-
structured environment, or using depletion methods to remove host
DNA, can help minimize the impact caused by contamination11,29. In
addition, computational models have been used to identify and
remove contaminants from sequenced datasets. For example, the
recently published software Recentrifuge uses a score-oriented com-
parative approach to identify and remove contaminants from
sequencing reads30. As is the case with all current computational
methods for microbial contaminant detection, performing con-
tamination removal with Recentrifuge requires experimental controls.
Another statistical tool for identifying and removing contamination is
Decontam3. Decontam includes a combination of a frequency-based
approach and a prevalence-based approach. Auxiliary DNA quantita-
tion data are required to perform the frequency-based analysis, and
standard negative control samples are required to perform the
prevalence-based analysis3.

Experimental negative and/or environmental contaminant con-
trols combined with computational contamination identification and
removal is effective3,19,30. However, the additional costs (both time and
resources) to include negative control experiments are often a barrier
to utilization. As a result, negative control experiments available for

publicly available datasets are often lacking. Although contaminant
sequences have been a known issue for some time, negative control
data are often unavailable in public databases, making it nearly
impossible to perform contamination removal on uploaded data.

Since the composition of contaminantswithinDNAextraction kits
and other lab reagents are ubiquitous and can be distinct, our
hypothesis is that contaminants from the same sources, such as DNA
extraction kits or from a lab environment, will share similar char-
acteristics in the composition of their contaminants. This fact should
enable contaminants to be found in the form of shared species in
samples taken from sufficiently distinct ecological niches, or in our
case, body sites. In particular, this proposed approach ismost relevant
when the sequencing runs use the same DNA extraction kit and/or are
processed in the same lab after reaching sufficient sequencing depth.

Results
Overview of our experimental evaluation of Squeegee
In this work, we have implemented a de novo computational con-
taminationdetection tool, Squeegee,which is able to identify potential
contaminants at the species level. Squeegee performs taxonomic
classification and searches for shared organisms across multiple sam-
ples and sample types. The workflow of the pipeline is shown in Fig. 1.
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Fig. 1 | Squeegee pipelineworkflow. Squeegee starts with taxonomic classification
using Kraken to determine a set of candidate contaminant species. Reads from the
input data are aligned to the representative genomes of the candidate contaminant
species using Bowtie2 inmulti-alignmentmode. It also calculates the pairwiseMash

distance for all the samples. Then, it combines the prevalence score, the Mash
distance, as well as the breadth/depth of genome coverage of the candidates to
predict potential contaminants.
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The software takes multiple samples containing sequencing data col-
lected from distinct microbiomes as input and then uses taxonomic
classification to search for candidate contaminant species that are
shared across samples. By estimating pairwise similarity between
metagenomic samples that the candidate contaminant species pre-
sents, and calculating breadth and depth of genome coverage by
aligning the reads to the reference genome of the candidate con-
taminant species, Squeegee identifies taxonomic classification errors
and makes accurate contaminant predictions at the species rank by
filtering false calls from the candidates.

We evaluated Squeegee on three datasets, including (i) a simu-
lated dataset with ground truth contaminants, (ii) a real dataset with
negative controls, and (iii) HMP samples without negative controls but
with associated DNA extraction kit contaminants. Details on the

implementation and evaluation of Squeegee can be found in the
methods section. The dataset characteristics and parameters used in
the study can be found in Supplementary table 1.

Stable community members for human body sites
In order to accurately identify contaminant sequences from external
sources, such as lab environments or reagents used during the
extraction or sequencing process, stable community members from
different sample types must be considered. To assess whether there
are ubiquitous genera across body sites comprising the human
microbiome, we identified the stable community members across
different human niches using Kraken classification results for HMP
samples (Supplementary Table 2). By looking at each set of common
community members of different body sites, we found no genera

Fig. 2 | Benchmarking Squeegee with Decontam on the maternal/infant data-
set. Squeegee (de novo) and Decontam (with negative control) accuracy at species
and genus ranks are evaluated with (a) the permissive ground truth and (b) the
more strict ground truth. The figures show the precision, recall, and F-score cal-
culated at species and genus rank for both methods. The unweighted precision is
calculated as the ratio between the number of predicted contaminant taxa found in
the ground truth and the total number of predicted contaminant taxa. The
unweighted recall is calculated as the ratio between the number of predicted
contaminant taxa found in the ground truth and the total number of taxa in the

ground truth. While weighted by samples, the measurements are weighted by the
meanproportionof the readsassigned to each taxon in thenon-control experiment
samples. The weighted by negative controls figures show the detailed composition
of the taxa, their mean relative abundance in the negative control samples, and the
cumulative relative abundance of the correctly predicted putative contaminants
(weighted recall) by different methods. The correctly predicted species/genera are
marked with strips, and the species/genera that the methods failed to predict are
without stripes. Multiple low relative abundance taxa have been combined in a.
Source data are provided as a Source Data file.
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present inmore than three of the six body sites (oral, nasal, skin, stool,
throat, and vaginal).

Benchmark with Decontam
Weevaluated Squeegee prediction accuracy at both genus and species
rank on the maternal/infant datasets. During this benchmark, Squee-
gee performed contamination prediction without using the negative
control samples, while Decontam took the classification results of the
10 negative control samples as input for contamination identification.
A permissive ground truth contaminant set, and a strict version of the
ground truth contaminant set, are generated with data from the
negative control samples as well to use as a reference for the evalua-
tion, whereas the strict set is generatedwithmore stringent filtering to
ensure high confidence. The details of the contaminant ground truth
sets can be found in the methods section.

Figure 2a shows the precision, recall, and F-score of Squeegee and
Decontam atboth species and genus rank using the permissive ground
truth set. The unweighted precision, unweighted recall, and
unweighted F-score for Squeegee are 0.714 (10/14 species), 0.323 (10/
31 species), and 0.444 at species rank, and 0.833 (10/12 genera), 0.625
(10/16 genera), and 0.714 at genus rank, respectively. The false positive
calls for Squeegee are Rothia mucilaginosa, Staphylococcus cohnii,
Staphylococcus haemolyticus, and Streptococcus mitis. The unweighted
precision, unweighted recall, and unweighted F-score for Decontam
are0.140,0.774, and0.238 at species rank, alongwith0.174, 0.750, and
0.282 at genus rank, respectively.

We alsoevaluatedbothmethodswithweighted scores, taking into
account the abundance of information. Each of the species are first
weightedby themean fraction of reads assigned to those species in the
non-negative samples. The weighted precision, weighted recall, and

Fig. 3 | Relative abundance of all predicted species in the maternal/infant
dataset. The samples are clustered by their sample type, which is shown with
different colors on the color label on the y-axis. The predicted contaminant species
that can be found in the permissive ground truth contaminants are marked by the

black label on the x-axis, whereas the predicted contaminant species that do not
match the strict ground truth contaminants sample aremarked in gray. Source data
are provided as a Source Data file.
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weighted F-score for Squeegee were 0.580, 0.728, and 0.645, respec-
tively, and for Decontamwere 0.928, 0.494, and 0.645, respectively, at
species rank. The same measurements at genus rank were 0.438,
0.804, and 0.567 for Squeegee, respectively, and 0.947, 0.732, and
0.826 for Decontam, respectively.

More importantly, we took a closer look at the predicted con-
taminants output by each method and evaluated the recall weighted
by the relative abundance of the taxa in the negative control samples.
Although Squeegee failed to identify several putative low-abundance
contaminant species, the 10 correctly predicted species by Squeegee
occupy over 0.763 of the cumulative relative abundance from the
composition of the putative ground truth contaminants. With the
same measurement, the species rank weighted recall under the same
criteria for Decontam is 0.645. At genus rank, both methods per-
formed well, with weighted recall for Squeegee scored at 0.892 and
Decontam scored at 0.921. Although Decontam mislabeled some of
the high abundance contaminants at species rank, it did label some of
the closely related species under the same genera as contaminants,
resulting in a significant increase of the score at genus rank. Figure 2b
shows the accuracyof Squeegee andDecontamusing the strict ground
truth set. Thedetailed results canbe found in Supplementary Section 1.

Figure 3 shows the relative abundance of all contaminant species
predicted by Squeegee in each of the non-control samples. The sam-
ples are clustered by sample types, designated by their color label on
the y-axis. The predicted contaminant species that can be found in the
permissive ground truth contaminant set are labeled in black at the top
of the figure, and the predicted contaminant species not found in the
permissive ground truth contaminant set are labeled in light gray.

Evaluation of Squeegee on the HMP datasets
We evaluated Squeegee prediction accuracy on the HMP datasets as
well. Figure 4 shows the precision, recall, and F-score of Squeegee
predictions at genus rank. Squeegee has an unweighted precision of
0.667 (16/24 genera), an unweighted recall of 0.262 (16/61 genera), and
an unweighted F-score of 0.376. While each taxa is weighted by their
relative abundance from the non-control samples, Squeegee achieved
a weighted precision of 0.856, a weighted recall of 0.958, and resulted
in a weighted F-score of 0.904. Figure 4 also shows the relative
abundance of true contaminant genera identified in the MoBio DNA
extraction kit. The contaminants successfully predicted by Squeegee
are colored orange with stripes, and the contaminants Squeegee failed

to predict are colored gray. Low-abundance genera with relative
abundance below 1% are combined in the figure. Although only 16
genera were correctly predicted, those genera accounted for the
majority of the contaminated reads in the ground truth with a total
relative abundance of 0.686.

Since we use bacteria identified at the genera level as inherent
putative contaminants in the MoBio DNA extraction kit level18 for our
negative control reference, accuracy measurements at the species
level do not apply. It is worth noting thatmore than 81.3% (61 out of 75)
of species Squeegee predicted as contaminant species in the HMP
datasets fell under the ground truth contaminant genera. Supple-
mentary Fig. 1 shows the prevalence, the breadth of genome coverage,
and additional score and filtering information of the top 50 predicted
contaminant species after filtering. The first 16 rows show the pre-
valence of each species among each of the sample types, where zero
prevalence is marked in blue. The following 16 rows show the breadth
of genome coverage of each species in each sample type. The
remaining rows show the prevalence score, the alignment score, the
Mash score, and the combined score used tomake the final prediction
and whether each species passes the filters. The last row of the heat
map shows whether the species can be found in the ground truth, with
true positives shown in white and false positives shown in black.
Detailed information on all candidate contaminant species can be
found in Supplementary Fig. 2.

Evaluation of Squeegee on simulated datasets
To test the contamination limit of detection of Squeegee, we designed
a set of simulated datasets based on the taxonomy profile of the real-
world metagenomic samples. About 126 samples are simulated and
divided into three groups based on the different relative abundance of
the spike-in contaminant sequences (0.25, 0.50, and 1.00%). There are
42 simulated datasets in each of the groups, representing microbial
communities from seven distinct environments. The details of how
those simulated datasets are generated can be found in the methods
section.

Figure 5 shows the unweighted precision, recall, and F-score of
different simulated sample groups at species rank and the same
measurement weighted by the relative abundance of the taxa in the
non-control samples. The figure also shows the detailed composition
of the taxa, their relative abundance in the spike-in contaminant
community, and the cumulative relative abundance of the correctly

Fig. 4 | Squeegee performance on HMP metagenomic datasets. a Left panel
depicts the Genus level precision, recall, and F-score using previously reported kit
contaminants as the ground truth. Unweighted precision is calculated as the ratio
between the number of predicted contaminant taxa found in the ground truth and
the total number of predicted contaminant taxa. An unweighted recall is calculated
as the ratio between the number of predicted contaminant taxa found in the

ground truth and the total number of taxa in the ground truth. While weighted by
samples, the measurements are weighted by the mean proportion of the reads
assigned to each taxon in the non-control experiment samples. b The right panel
highlights the correctly predicted genera marked in orange with stripes, and the
genera that Squeegee failed to predict are marked in gray. Genera with relative
abundance below 1% are combined. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34409-z

Nature Communications |         (2022) 13:6799 5



predicted contaminants at different relative abundances of spike-in. At
all three different spike-in levels, where contaminant sequences
occupied 0.25, 0.50, and 1.00% of the total reads, Squeegee had the
perfect precision of 1.0. For unweighted recall, the 0.25% spike-in
group scored 0.500, the 0.5% spike-in group scored 0.583, and the
1.0% spike-in group scored 0.750. As a result, the unweighted F-score
for the 0.25% group, 0.50% group, and 1.00% group are 0.667, 0.737,
and 0.857. When each species is weighted by their relative abundance
in non-control samples, the 0.25% spike-in group scored 0.993, 0.5%
spike-in group scored 0.990, and 1.0% spike-in group scored 0.989 for
theweighted recall, and0.25%spike-in group scored0.997, 0.5% spike-
in group scored 0.995, and 1.0% spike-in group scored 0.994 for the
weighted F-score.

When each species is weighted by its relative abundance in the
negative control, the cumulative relative abundance of true positive
prediction for the 0.25% spike-in group is 0.634. As the spike-in level
increases, at 0.5% spike-in abundance, Squeegee scored 0.700, with
one additional species, Salmonella enterica, identified as a con-
taminant. The cumulative relative abundance of true positive predic-
tions continued to increase at a 1.0% spike-in abundance level, and
Squeegee scored 0.844 with two more correct contaminant species
predicted. In general, the unweighted recall and the cumulative rela-
tive abundance of the true positive predictions increase as the number
of spike-in contaminant sequences increases since more contaminant
sequences provide a stronger signal for Squeegee to pick up on and to
make definite calls with respect to contamination.

Alpha diversity analysis with contamination removal
Figure 6a shows Shannon’s diversity index and Simpson’s diversity
index for the maternal/infant dataset before and after contamination
removal. Both diversity metrics for the samples were evaluated before
the contaminant reads were removed (shown in red), after removing
species confirmed by the permissive ground truth contaminants
(shown in blue), and after removing all species predicted by Squeegee
(shown in black). The max removal cutoff is set to 1%, which only
removes specieswith a relative abundanceof less than 1%.Weobserved
significant decreases in Simpson’s diversity index in both placental and
breast milk groups and significant decreases in Shannon’s diversity
index in the placental group. There are also significant decreases in
Shannon’s diversity index in the breast milk group if we remove all
predicted contaminant species, but no significant decreases are found
by only removing contaminant species confirmed by the negative

control experiments. For a more strict max removal cutoff of 0.5%, we
still found significant decreases in both Shannon’s and Simpson’s
diversity index in the placental group (See Supplementary Fig. 3).

Figure 6b shows the same alpha diversity analyses performed on
the HMP samples with the maximum removal cutoff set to 1%. We
observed significant decreases in Shannon’s diversity index values in
oral and nasal samples, and a significant decrease in Simpson’s diver-
sity index in oral samples. With the max removal cutoff of 0.5%, there
are significant decreases in Shannon’s diversity index and Simpson’s
diversity index in the oral samples (See Supplementary Fig. 4).

Reagent-specific contamination detection
We applied Squeegee to a human-derived RNA-Seq dataset from an
index study that aimed to evaluate the potential for contamination
arising during sequencing across 6 different sequencing centers in
Europe in the GEUVADIS consortium31,32. The resultant generated RNA
sequencing data arose from 40 sequencing runs performed at all six
sequencing centers on identical sequencing platforms following
extraction with the same kits on parallel samples. The prediction from
Squeegee indicates that seven species (Human gammaherpesvirus 4,
Proteus virus Isfahan, Escherichia coli, Bacillus megaterium, Bacillus
cereus, Klebsiella pneumoniae, and Cutibacterium acnes) are reagent
specific contaminants and can be found in the sequencing runs across
different sequencing centers. (Supplementary Fig. 5). While Human
gammaherpesvirus 4 is associated with the cell line used during the
sequencing, Escherichia coli, Bacillus megaterium, Bacillus cereus,
Klebsiella pneumoniae, Cutibacterium acnes can be putative common
“kit contaminants” that have been previously reported. However, E.
coli and K. pneumoniae are also prevalent environmental and human
commensal microbes or pathobionts.

Squeegee run time and memory usage
We tested the performance of Squeegee with datasets of different
sizes. Table 1 shows the run time and peakmemory usage of Squeegee
for different sizes of input. The run time of Squeegee (in CPU hours) is
primarily determined by the size of the input data and is also affected
by the number of potential contaminants identified based on the
taxonomic classification results. Since the reads are mapped to refer-
ence genomes of each potential contaminant using Bowtie2 (with
multi-alignments enabled), more contaminants would increase the
CPU time for alignment and the coverage calculation process. The
peak memory usage of Squeegee is mainly driven by the size of the

Fig. 5 | Squeegee prediction accuracy at species ranks on the simulated data-
sets. a The leftmost panel shows the precision, recall, and F-score calculated at
species rank for the different relative abundance of spike-in contaminants. The
unweighted precision is calculated as the ratio between the number of predicted
contaminant taxa found in the ground truth and the total number of predicted
contaminant taxa. The unweighted recall is calculated as the ratio between the
number of predicted contaminant taxa found in the ground truth and the total
number of taxa in the ground truth. b The center panel shows the same

measurements weighted by the mean proportion of the reads assigned to each
taxon in the non-control simulated samples. c The right panel shows the detailed
composition of the taxa, their relative abundance in the spike-in contaminant
community, and the cumulative relative abundance of the correctly predicted
contaminants at a different relative abundance of spike-in. The correctly predicted
species aremarkedwith striped lines, and the species Squeegee failed topredict are
without striped lines. Source data are provided as a Source Data file.
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database used by Kraken for taxonomic classification. The following
runs use the same Kraken database (302 GB) built with NCBI RefSeq
(Release 202); thus they have similar peak memory usage.

Discussion
To the best of our knowledge, Squeegee is the first de novo compu-
tational tool specifically designed to identify and nominate taxa as
potential contaminants in the absence of “kit negative”, environmental

contaminant controls, and other auxiliary data. Squeegee is able to
mark these taxa contained within metagenomic samples without
requiring negative experimental controls, and can identify potentially
widespread contaminants in publicly available data. In order to predict
contaminant species, multiple pieces of evidence are taken into con-
sideration, including the prevalence rate of species, the metagenomic
distance of the samples that contain the species, and how well the
genomes of those species are being covered. A recent study has shown
that the accuracy of the taxonomic classification algorithm has
become a limiting factor of contamination detection due to high levels
of sequence similarity at species rank33. With a breadth of genome
coverage for each contaminant species being calculated, Squeegee
also attempts to address taxonomic classification error that might
occur during the taxonomic binning process, which is a common issue
for k-mer-based methods34,35. Comparisons between Squeegee pre-
dictions and experimental control data show that Squeegee is capable
of accurately inferring contamination at the species level, especially in

Fig. 6 | Alpha diversity indexes before and after contamination removal. The
figure shows the alpha diversity indexes of a maternal/infant dataset and b HMP
dataset. Both Shannon’s and Simpson’s diversity index of the communities in each
of the samples were evaluated before the contaminant reads were removed (red),
after removing species only confirmed by the experimental negative control (blue),
and after removing all species predicted by Squeegee (black). The max removal is
set to 1%. Numbers inside parentheses are the numbers of samples in each sample
type. The significance test was done using a two-sidedMann–WhitneyU–test for all
combined sample types withmore than 20 samples. No adjustments weremade for
multiple comparisons. Significance labeling: n.s.(P >0.05), *(P ≤0.05), **(P ≤0.01),
***(P ≤0.001). Each box plot includes the median line, and the box bounds the
interquartile range (IQR). The Tukey-stylewhiskers extend from the box by atmost
1.5 × IQR. The circle denotes outliers that extend beyond the whiskers. In a, the
exact p-value between Shannon’s index before removal and reference confirmed
contaminants removed is 8.3 × 10−7 for placenta samples. The exact p-value

between Shannon’s index before removal and all contaminants removed is
6.2 × 10−8 for placenta samples and 1.3 × 10−2 for breast milk samples. The exact
p-value between Simpson’s index before removal and reference confirmed con-
taminants removed is 9.6 × 10−5 for placenta samples and 3.8 × 10−2 for breast milk
samples. The exact p-value between Simpson’s index before removal and all con-
taminants removed is 3.0 × 10−5 for placenta samples and 1.4 × 10−2 for breast milk
samples. In b, the exact p-value between Shannon’s index before removal and
reference confirmed contaminants removed is 2.0 × 10−30 for oral samples and
3.0 × 10−2 for nasal samples. The exact p-value between Shannon’s index before
removal and all contaminants removed is 1.0 × 10−40 for oral samples and 3.7 × 10−3

for nasal samples. The exact p-value between Simpson’s index before removal and
reference confirmed contaminants removed is 2.0 × 10−12 for oral samples. The
exact p-value between Simpson’s index before removal and all contaminants
removed is 5.5 × 10−17 for oral samples. Source data are provided as a Source
Data file.

Table 1 | Run time and memory usage

Test set 1 Test set 2 Test set 3

Input size (GB) 59.2 59.2 118.0

# of potential contaminants 15 18 26

CPU hours 55.5 63.3 130.3

Peakmemory usage including Kraken (GB) 320.4 320.4 322.0
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regard to contaminants occurring at a relative abundance of 5% or
higher.

For the maternal/infant dataset, a strict contaminant ground
truth and a permissive contaminant ground truth were constructed
with the taxonomic assignment of the sequencing data from the
negative control experiments with the use of prevalence, relative
abundance, and absolute read count filtering, a common practice to
minimize the taxonomic assignment error and determine the pre-
sence or absence of species36,37, with different filtering parameters.
Squeegee predictedmost of the putative contaminants found in the
strict ground truth contaminant set (see Fig. 2b), including species
from contaminating genera (e.g., Methylobacterium, Pseudomonas,
and Xanthomonas) that have been previously reported2,20,38. For the
presumptive false negative contaminant species the Squeegee
failed to predict, all were of relative abundances below 5% except
for Staphylococcus capitis. In addition to other genera and species
unique to the low-biomass maternal/infant samples, we also found
that Squeegee predicted a number of contaminant species from the
genera Staphylococcus, including Staphylococcus haemolyticus and
Staphylococcus cohnii, that are not found in the experimental con-
trol samples. Staphylococcus species are often found in the normal
flora of the skin and have been reported multiple times as
contaminants from DNA extraction kits and laboratory
environments18,20,39. Staphylococcus species are also well-known for
their highly similar genomes, which creates a big challenge for the
taxonomic assignment task33. Additionally, Squeegee identified
Rothia mucilaginosa, which is a part of the normal oropharyngeal
flora, and Escherichia coli as contaminants. Both species may
represent bonafide species shared across body niches40. It is also
possible that the experimental control samples were not sequenced
deeply enough to reveal these species or the species were at a low
enough relative abundance in the experimental control samples
that were filtered out during quality control.

We benchmarked Squeegee against a “gold-standard” con-
tamination detection approach in Decontam, with its prevalence-
based method requiring negative control samples as input. We note
that we view both tools as complementary, especially since using
negative controls is recommended best practice for contamination
removal. From the results (Fig. 2b), we see that Squeegee is able to
achieve performance that meets or exceeds Decontam predictions
at species rank using the strict ground truth, with respect to
unweighted F-score, weighted F-score by the relative abundance in
the non-control samples, and cumulative relative abundance of the
putative correctly identified contaminants from the negative con-
trol experiment samples. On the other hand, at the genus rank,
Squeegee is unable to match Decontam performance when F-score
is weighted by the relative abundance in the non-control samples
while performing on par with Decontam with respect to the cumu-
lative relative abundance of the correctly identified contaminant
genera in negative controls. Although Decontam failed to recognize
Pseudomonas tolaasii and Xanthomonas euvesicatoria as putative
contaminant species, multiple species under the same genera were
successfully identified, increasing its genus rank score. While eval-
uating using the permissive ground truth contaminant set, Squee-
gee performed equally well at species rank with respect to weighted
F-score (Fig. 2a), with a drop in unweighted recall given Squeegee
failed to recognize most contaminant species with mean relative
abundance less than 1% in the negative controls.

As expected, Decontam with the experimental negative control
data performs best in terms of unweighted recall (see Fig. 2a).
Decontam identified 24 out of 31 species within the permissive con-
taminant ground truth set, only missing Pseudomonas tolaasii, Xan-
thomonas euvesicatoria, Cupriavidus oxalaticus, Staphylococcus
aureus, Pasteurella multocida, Klebsiella pneumoniae, and Escherichia
coli. It is possible that Decontam did not flag some species as

contaminants that are shared between the source of contamination
and the sampling environment, such as Staphylococcus aureus and
Escherichia coli. At the same time, Squeegee identified all those seven
species, which the relative abundance in the permissive ground truth
adds up to 35.5%, as contaminants, which completes the entire con-
taminant ground truth set if we take the union of the predictionsmade
by the twomethods. Alternatively, we acknowledge that thismay over-
call “contamination” by virtue of shared species among body niches.
This once again highlights the complementarity of Decontam with
negative controls and Squeegee, and also the value of Squeegee either
when negative controls are unavailable (existing metagenomic
sequence datasets) or for lab contamination that affects both the
negative control and samples.

In addition to identifying microbial contaminants within micro-
biome datasets lacking negative controls, Squeegee can also identify
contaminants in human RNA-seq data. In our experiments with the
GEUVADIS consortium human RNA-Seq dataset, Squeegee predicted
that seven species were lab preparation related. In this dataset, since
non-human reads are all classified as contamination, by identifying
reagent-specific contaminants shared across different sequencing
labs, one can backtrack and identify lab-specific contaminants using
the classification report provided by Squeegee.

Another use case for Squeegee is to detect batch-specific con-
taminants, as well as cross-contaminants. Suppose negative control
samples are not prepared and sequenced for every batch run. In
this case, batch-specific contaminantsmay getmixed into the samples,
causing bias in the downstream analysis. A similar scenario is that
cross-contamination occurs in a single batch but happens not to affect
the negative control sample. Running Squeegee on each individual
batch allows the user to detect such batch-specific contaminants or
cross-contaminants since the Squeegee detection method does not
depend on the negative control profiles.

Squeegee is designed for de novo identification of microbial spe-
cies that are likely contaminants; a higher combined contaminant score
indicates the species has a higher potential for being an actual con-
taminant. However, Squeegee’s failure to flag a microbial species in a
sample as a likely contaminant does notmean it is not a contaminant. As
mentioned before, one of the limiting factors is the relative abundance
of the species within the source of the contamination. Figures 2 and 4
show that contaminant species with low relative abundances in the
control samples are more challenging to identify since the sequencing
signals of such species become even weaker in the non-control meta-
genomic samples. Squeegee failed to predict some of the low-
abundance genera/species in the simulation dataset due to similar
reasons (see Fig. 5). In order to challenge Squeegee, the simulation
datasetwedesigned contains very lowproportions (0.25–1%) of spike-in
contaminant sequences. Among the 12 spike-in contaminant species, all
except Ralstonia pickettii have relative abundance below 0.1 within the
spike-in. As the relative abundance of the total spike-in sequences
increases, we observed that the unweighted recall increased aswell, and
Squeegee is able to pick up more and more contaminant species. As
shown in our experimental results (both simulated and real), Squeegee
can exhibit low recall on low-abundance contaminant species, which
means there will be residual reads not able to be characterized by
Squeegee (e.g., they could either represent microbial contaminants or
bonafide metagenomic signal). In order to detect low-abundance con-
taminants, using Decontam with negative control samples is
recommended.

Squeegee tracks contaminants that came from the same source,
such as DNA extraction kits or laboratory surfaces, and in order for
Squeegee to performwell, the input samples should be collected from
different ecological communities, for example, the microbiota of well-
distinct body sites (skin, gut, and oral). One of the other limitations of
Squeegee is that it cannot trace contaminants originating from the
sample collection process since different sample collection operations
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may introduce different contaminant species. Therefore, further
investigation is required to validate whether the species truly origi-
nated from the sampledmetagenome for species that are not included
in the predicted contaminants.

A stable community member of a specific body site has the
potential also to be a contaminant taxon from an external source.
Since Squeegee operates without prior knowledge of the input
dataset, ubiquitous species that are commonly found in a wide
range of environments could allow Squeegee to make false pre-
dictions. Although the Staphylococcus genus has been reported as
external contamination from multiple studies, it is hard to ignore
that some of the Staphylococcus species may be truly present
among multiple body sites, including skin and nasal samples. Such
ubiquitous species may introduce noise in Squeegee’s predictions.
Combined with the prior knowledge of the input dataset and the
comprehensive information that Squeegee outputs, the user may
further filter the predicted list of contaminants if needed. For any
individual sample type, the user should treat the predicted result
with care to avoid potential community members being falsely
labeled as contaminants. We looked closer into the low weighted
precision of non-control sample abundance at species and genus
rank for Squeegee in the maternal/infant dataset. Streptococcus
mitis, a common member of the microbial communities from the
oral, skin, female genital tract, and gastrointestinal tract41,42, was
incorrectly identified as a contaminant. Given the high relative
abundance of Streptococcus mitis (Fig. 3), this false positive con-
taminant species received an abnormally high weight compared to
the other true positive contaminant species, lowering Squeegee’s
weighted precision. At genus rank, the relative abundance differ-
ence between Streptococcus and the true positive putative con-
taminant genera becomes even greater, which explains why
Squeegee genus rank performance is lowered compared to species
rank in this dataset. These results highlight areas for future
improvement to Squeegee that would allow it to take into account
microbial species ubiquitous in many different environments.

By no means is Squeegee meant to be a replacement for
experimental negative controls. It does not estimate the relative
abundance of each predicted potential contaminant since the
relative abundance of the contaminants varies in different sample
types. Squeegee makes predictions based on the assumption that
the input data are sampled frommultiple distinct microbiomes, and
does not apply to cases where the sequencing data are from similar
microbiomes. If possible, performing negative control experiments
will likely provide a more accurate profile of the external con-
taminants. However, as discussed, it is common for experimental
negative control samples to be unavailable for publicly available
metagenomic datasets. Themetagenomic datasets from the Human
Microbiome Project is one such high-profile example. When com-
pared to other contamination removal methods, Squeegee is the
only existing tool able to predict contamination from multiple

sources without experimental negative control samples (see
Table 2), and its contaminant predictions can have a significant
impact on diversity measures which are often a key part of the
results of a vast range of microbial studies3,23,30,43,44.

Another possible solution for contamination detection without
negative control sequencing data is to use a contaminant database. If a
database of genomes containing known contaminant species exists,
we could identify the contaminant sequences in the data by mapping
reads against this database45. Building such a contaminant database
can be challenging because it requires sequencing data from all pos-
sible sources of contamination. Since Squeegee is a negative control-
free tool for identifying novel contaminants, it can also be used as an
important step in filling out such a comprehensive database of
likely putative contaminants.

Over 81% of the contaminant species predicted by Squeegee for
the HMP dataset match the bacterial genus described as inherent
contaminants of theMoBio DNA extraction kit, which was used for the
Human Microbiome Project18. The cumulative relative abundance of
correct prediction is 68.6%, while Squeegee failed to predict most of
the genera from phylum Proteobacteria. This may be due to the fact
that the kit used in the Mobio contamination study18 is closely related
to theoneused forHMPbut not identical. The contaminationprofile of
the same kit might change over time, and samples processed in dif-
ferent labs may also affect the results since contaminants from lab
surfaces and lab members can potentially contribute to the composi-
tion of the contamination.

Finally, though Squeegee was tested and evaluated with metage-
nomic shotgun sequencing datasets, it could be extended for use on
16S rRNA sequencing data. However, Squeegeewouldn’t be able to use
the breadth and depth of genome coverage of the alignment to
determine classification errors. Therefore, choosing an accurate
taxonomic classifier is critical for running Squeegee on 16S rRNA
sequencing data.

In summary, as far as we are aware, Squeegee is the first de novo
computational method for identifying potential microbial con-
taminants in microbiome datasets in the absence of environmental
negative control samples and auxiliary information such as DNA con-
centration information. Squeegee predictions on multiple datasets
have shown that contaminant sequences from the same source, such
as DNA extraction kits and other reagents used during the sample
processing and sequencing, can be accurately identified across mul-
tiple samples using this computational method without experimental
negative controls or DNA quantitation data. Squeegee achieves high
weighted recall (weighted by both relative abundance of taxa in
negative control and non-control samples) and low false positive rates
on real metagenomic datasets, and can help to identify putative con-
taminant sequences of suspicious taxa for low-biomass microbiome
studies, enabling sample-independent and orthogonal approaches
aimed at distinguishing true microbiome signals from environmental
contamination.

Table 2 | Tools comparison on handling contamination from a different source

Squeegee Recentrifug-
e30

Decontam3 DecontaMine-
r43

Conterminator23

Lab environment ✓ ✓ ✓

Lab reagents ✓ ✓ ✓

Taxonomic classifica-
tion errors

✓

Cross-contamination ✓ ✓

DNA from host/human ✓

Contaminated database ✓

Negative control free ✓ ✓(*) ✓ ✓

*Decontam requires either auxiliary DNA quantitation data or negative control data.
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Methods
Samples from distinct environments
In order to generate reproducible estimates of contaminants and
their composition among the samples, the user must collect
sequencing data from multiple metagenomic samples. The micro-
bial community composition should be largely distinct between any
two samples included in the analyses. Here, distinct refers to dif-
ferent metagenomic environments or sample types in which it is
rare to observe a given microbial species present across most
samples. Each sample should be provided with a tag or descriptor
that distinguishes the different types of samples (e.g., oral, vaginal,
fecal, soil, ocean, etc.).

Taxonomic classification
Squeegee first performs taxonomic classification using Kraken
v1.1.146,47 with default settings (k = 31). The reference database for
Kraken was built with complete bacterial/archaeal/viral genomes
fromNCBI RefSeq (Release 202). A classification report is generated
for each of the samples. Based on the classification, Squeegee
chooses a set of candidate contaminant species based on the pre-
valence of the species across the samples. The prevalence score is
weighted by the number of samples of the same type to avoid bias
introduced by an unbalanced number of samples between sample
types. Higher prevalence rates of a species indicate that the species
is shared by more samples across more sample types, and it is more
likely to be a contaminant.

Metagenomic distance estimation
Squeegee also calculates the metagenomic similarity between the
samples using Mash v2.2.2, a tool that estimates the Jaccard index
using MinHash47,48. This is done by first generating a sketch of each
sample (Mash sketch -s 100000 -k 21 -m 2) and then calculating the
pairwise Mash distance between all pairs of samples (Mash dist).
High Mash distances indicate that the metagenomes of the two
samples are more distinct (i.e., there are fewer genera and species
shared between the samples). Squeegee weights shared species
coming from more distinct samples as more likely to be a
contaminant.

Read alignment and error identification
Squeegee then fetches the representative genomes for each of the
candidate contaminant species from the NCBI RefSeq database
used to build the Kraken database. These representative genomes
are used as references to perform a multi-alignment for all reads in
the samples using Bowtie2 v2.3.5 with the multi-alignments enabled
(bowtie2 –local -a –maxins 600)47,49. To accelerate this process, k-
mer-mask from meryl v1.0 is used to filter out reads that do not
contain any 28-mers from the reference genomes (k-mer-mask -ms
28 -clean 0.0 -match 0.01 -nomasking)47,50. Based on the alignment
results, the breadth and depth of genome coverage is calculated for
each of the sample type using samtools v1.11 (samtools depth)47,51.
The breadth and depth of genome coverage are used to determine
whether the species is truly present or is a potential misclassifica-
tion from the taxonomic classifier. A species that is truly present
should have a large proportion of its genome covered. On the other
hand, a large number of reads covering only a small proportion of
the genome often suggests that the species was amisclassification45.
Since contaminant species are often low in abundance, combining
samples from the same type would give us a better indication of the
presence of the species.

Contaminant predictions
In the last step, Squeegee combines multiple pieces of evidence,
including the prevalence score, Mash distance score, and alignment
score, and makes a final prediction for contaminant species using the

following equation,
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In Eq. (1) above, Pi is defined as the prevalence score of candidate
contaminant species i, which is calculated as the weighted mean pre-
valence rate of species i among all sample types. Mi is the Mash dis-
tance score of candidate contaminant species i. Squeegee takes the
Mash distance values (from0 to 1) of all sample pairs that both contain
species i, and calculates Mi by averaging the top 10% of the pairwise
Mash distance value. Ai is the alignment score of candidate con-
taminant species i, which is defined as the mean breadth of genome
coverage of species i across sample types with a minimum depth of
coverage of 3.min_cov is the minimum coverage threshold defined by
the user.

While calculating the combined contaminant score of each taxon,
both the prevalence score andMash score are normalized by themean
of those scores for all candidate contaminant species (Pi andMi). The
alignment score is capped at 1 for those taxa which have a mean
breadth of genome coverage exceeding 5× of theminimumbreadth of
coverage threshold (min_cov) since the breadth of genome coverage
can vary greatly between species. For example, if the minimum
breadth of coverage is set to 5%, taxa with amean breadth of coverage
exceeding 25% will receive an alignment score of 1, and taxa with a
mean breadth of coverage of 5% will receive an alignment score of 0.2,
and taxawith amean breadth of coverage less than 5%will be classified
as false calls and be eliminated by the filter. Details about how each
score is calculated can be found in Supplementary Table 3.

Such a scoring mechanism allows Squeegee to automatically dis-
tribute differentweights based onwhich evidence contributesmore to
distinction for the candidate contaminants. For example, if all candi-
date contaminants have similar Mash scores and similar breadth of
genome coverage, but distinguishable prevalence across different
sample types, then the algorithms for the contaminant predictor
would be automatically favoring prevalence over other factors.

After the combined contaminant scores are calculated, Squeegee
filters out species below a user-defined minimum combined score
threshold. The combined score averages all three normalized scores
for each piece of contaminant evidence. Candidate contaminants with
a low combined score suggest insufficient evidence supporting the
argument that the candidate species is both an actual contaminant and
present in the samples. Squeegee also provides a comprehensive
output for the user if the further downstream analysis is required.

The parameter settings retain the potential to affect the precision
and recall of Squeegee. Based on the basic understanding of the
samples, the user is able to control how likely a taxon is to be recruited
as a candidate contaminant by setting a minimum prevalence thresh-
old (Default:0.6) to different values. If the users are processing sam-
ples that have similar microbiome communities, increasing the
minimum prevalence threshold will reduce the number of false posi-
tives caused by shared true community members. Lowering the
minimum prevalence threshold allows the program to consider more
candidate contaminants, potentially increasing recall but will increase
the run time. The minimum read support threshold, minimum abun-
dance threshold, and minimum alignment coverage threshold all
contribute to how restrictive a taxon is considered present. Based on
different sequencing technologies, more than 5% of the reads may be
misclassified by the taxonomic classifier even at the genus level35,46,52.
Increasing those thresholds allows more confident identification of
whether a taxon is truly present or not.On the other hand, in a scenario
where contaminant species are low abundant, setting those para-
meters at high values could cause an increase in false negatives.
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Evaluation of Squeegee
Evaluation of Squeegee predictions was performed by comparing the
predicted contaminant species using three datasets: (1) a simulated
dataset with ground truth contaminant species, (2) a real dataset with
available negative control samples, and (3) a real dataset without a
negative control (HMP samples) but with associated kit contaminants.
The simulated dataset contains a total of 126 simulated samples
representing seven distinct microbial communities. The real dataset
contains 344 samples over 9 distinct sample types collected of adult
females and infants, as well as sequencing data from ten negative
control experiment samples. The HMP dataset includes 749 samples
collected and sequenced from healthy individuals across 16 different
body sites. The parameters and data characteristics are shown in
Supplementary table 1.

For (1), the simulated dataset, the contaminant species in the
ground truth were generated based on the species of a simulated
spike-in of contaminant sequences. In order to simulate a realistic
dataset and test the detection limit of Squeegee, 42 real-world meta-
genomic samples were chosen from seven distinct environments,
including six soil samples of mining sites, one soil sample collected
from the wetland, six freshwater samples, seven hot spring samples,
six skin samples of cows, ten healthy human skin samples, and six
healthy human gut samples.18,53–57. We filtered out the species with
relative abundance lower than 0.0005 or with supported read count
less than 300 in those samples, and used the remaining species and
their relative abundance as a reference to simulate the dataset. We
then used the species with relative abundance greater than 0.01 found
in the FastDNA SPIN Kit for Soil (MP Biomedicals) from the previous
study2 to simulate contaminant sequences. Each distinct sample was
simulated three times with spiked-in contaminant sequences that
occupy 0.25, 0.5, and 1% of the total sequences in the sample. A total of
126 simulated samples were generated using CAMISIM and ART,
simulating Illumina paired-end reads with an average read length of
150 bp58,59 and an average read pair count of 6664348. The simulated
samples are grouped into three groups by the spike-in contaminant
level, and we evaluate Squeegee on each of the groups individually.

For (2), maternal/infant metagenomic datasets, the contaminant
species in the ground truth were generated based on the classification
of multiple experimental negative controls. To minimize classification
errors, we applied a set of criterion to include a species in the con-
tamination ground truth. Species with relative abundance above 0.5%
andmore than 20 reads assigned in at least half of the negative control
samples and species with relative abundance above 10% in a single
sample were chosen for inclusion in the ground truth contaminant set,
resulting in a strict ground truth set with 15 species from 13 genera.We
also applied more permissive filtering and generated a permissive
ground truth contaminant set that contains 31 species that belong to
16 genera by lowering the minimum relative abundance threshold to
0.2%. We then aligned the sequencing reads in the experimental con-
trol samples to the representative genomes. Reads assigned to the
Staphylococcus virus Andhra stacked in a small 449 bp region with an
average depth of 1429, indicating a false classification call, so we
removed it from both strict and permissive ground truth contaminant
sets. Once the ground truth contaminants were identified, the relative
abundance of the ground truth contaminants was calculated as the
average relative abundance across all negative control samples over
the sum of the average relative abundance of each contaminant.

For (3) the HMP dataset, which was extracted using the MoBio
DNA extraction kit60, we used the 61 bacteria genus (excluding lot-
dependent organisms), which were identified as inherent con-
taminants within a latter version of a related MoBio extraction kit, the
MoBio PowerMax® Soil DNA Isolation Kit 12,988-10 (MoBio Labora-
tories, USA), in a recent study18 as the ground truth contaminants.
Relative abundances of each genus were also obtained in the same

study. Since Squeegeemakes contamination predictions at the species
level, predicted contaminant species from the reference genus are
counted as true positives. During the evaluation, Cutibacterium acnes
(formerly Proprionibacterium acnes) was assigned to the genus Pro-
prionibacterium to keep the ground truth and Squeegee prediction
consistent.

Performance is evaluated via precision, recall, and F-score. The
unweighted precision is calculated as the ratio between the number of
predicted contaminants found in the ground truth and the total
number of predicted contaminants. The unweighted recall is calcu-
lated as the ratio between the number of correctly predicted con-
taminants and the total number of contaminants in the ground truth.
The unweighted F-score is calculated as 2 × (unweighted precision ×
unweighted recall)/(unweighted precision + unweighted recall). Those
threemeasurements are also calculated using themean fraction of the
reads of each taxon in the non-control samples as weight. The
weighted precision is calculated as the average fraction of reads from
the non-control samples in the true positive (TP) taxa over those in the
true positive and false positive (TP + FP) taxa. The weighted recall is
calculated as the average fraction of reads from the non-control
samples in the true positive (TP) taxa over those in the true positive
and false negative (TP + FN) taxa. The weighted F-score is calculated as
2 × (weighted precision ×weighted recall)/(weighted precision +
weighted recall). We also evaluated the methods using the cumulative
relative abundance of true positive taxa, which is a weighted recall
score that is weighted by the mean relative abundance of the taxa in
the negative control samples.

Reagent-specific contamination detection in human RNA-
seq data
To further demonstrate the contamination detection capabilities of
Squeegee, we leveraged a human-derived RNA-seq dataset from a
study performed by the Genetic European Variation in Health and
Disease (GEUVADIS) consortium. The dataset contains parallel RNA-
Seq samples from Epstein-Barr virus (EBV)-positive lymphoblastoid
cell lines that are sequenced across seven different sequencing centers
with identical library preparation kits.We used samples from six out of
seven sequencing centers that used the Illumina sequencing platform
(Illumina Genome Analyzer II) and excluded the ones that used AB
SOLiD System 3.0, leaving us with a total number of 40 paired-end
sequencing runs.

We then mapped each of the sequencing runs with bowtie2
against the human reference genome (Homo sapiens GRCh38.p13)
with the parameter –maxins 600 to remove human reads.Wegathered
the unmapped reads for each of the samples and used them as input
for Squeegee. The sample type for eachof the samples is labeled by the
sequencing center where it was run. The parameter settings for
Squeegee and data characteristics are shown in Supplementary
Table 1.

Contamination detection using Decontam
In order to benchmark the performance of Squeegee, we also ran
Decontam v1.10.03 on the maternal/infant metagenomic datasets with
the negative control samples. After taxonomic classification with
Kraken, all species with at least 30 read support or relative abundance
greater or equal to 0.0005 were collected to construct the abundance
input table for Decontam. Contamination detection was done using
isContaminant function with the prevalence method from the
Decontam R package with the default parameters.

Alpha diversity analysis of predicted contaminants
We categorized the labeled sample types of the maternal/infant
dataset and HMP dataset into combined sample types based on the
body site. The combined sample types for the maternal/infant
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dataset include placenta, breast milk, oral, stool, and vaginal. The
combined sample types for HMP include vaginal, throat, stool, oral,
skin, and nasal samples. Samples from the same combined sample
types in each dataset were used for alpha diversity analysis. Both
Shannon’s diversity index and Simpson’s diversity index were
measured before and after contamination removal. Only reads
assigned to the species rank by Kraken were used in calculating
Shannon’s diversity index and Simpson’s diversity index. Since
contamination originating from external sources can also be actual
community members of the metagenomes, we set a max removal
cutoff and only remove species with relative abundance below this
cutoff. The significance test was done using a two-sided
Mann–Whitney U-test for all combined sample types with more
than 20 samples.

Stable community members for human body sites
We used the samples from the HMP dataset and their combined
sample types to generate a set of stable community members for dif-
ferent human body sites. Stable community members were defined as
genera with more than 1% of their reads assigned from Kraken classi-
fication in more than 50% of the samples from the same combined
sample types.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper and have been deposited in
the OSF database with accession AP7CD61. All sequencing data sup-
porting the findings of this study is publicly available. The simulated
datasets generated in this study have been deposited in the Zenodo
database with accession 706470562, 706295363, and 706459964. The
maternal/infant metagenomic datasets are available for download via
NCBI BioProject PRJNA725597. The HMP samples are downloaded
from http://www.hmpdacc.org/HMASM/. The human RNA-Seq data-
sets are available for download via NCBI BioProject PRJEB2123. The
datasets were simulated/sequenced from distinct samples, and no
sample was simulated/sequenced repeatedly.

Code availability
The source code for Squeegee is publicly available at https://gitlab.
com/treangenlab/squeegee, and we used version 0.2.0 of Squeegee65

for the result and analysis presented in thismanuscript. The code used
for analysis andfiguregenerationused in this study canbe found in the
OSF database with accession AP7CD61.
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