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Renewal of planktonic foraminifera diversity
after the Cretaceous Paleogene mass
extinction by benthic colonizers

Raphaël Morard 1 , Christiane Hassenrück 1,2, Mattia Greco 3,
Antonio Fernandez-Guerra 4, Sylvain Rigaud5, Christophe J. Douady6,7 &
Michal Kucera 1

The biotic crisis following the end-Cretaceous asteroid impact resulted in a
dramatic renewal of pelagic biodiversity. Considering the severe and
immediate effect of the asteroid impact on the pelagic environment, it is
remarkable that some of the most affected pelagic groups, like the planktonic
foraminifera, survived at all. Here we queried a surface ocean metabarcoding
dataset to show that calcareous benthic foraminifera of the clade Globotha-
lamea are able to disperse actively in the plankton, and we show using mole-
cular clock phylogeny that the modern planktonic clades originated from
different benthic ancestors that colonized the plankton after the end-
Cretaceous crisis. We conclude that the diversity of planktonic foraminifera
has been the result of a constant leakage of benthic foraminifera diversity into
the plankton, continuously refueling the planktonic niche, and challenge the
classical interpretation of the fossil record that suggests that Mesozoic
planktonic foraminifera gave rise to the modern communities.

Despite the pivotal role of the fossil record of planktonic foraminifera
in revealing past climates and studying plankton evolution, the origin
of the group remains elusive. Conflicting evidence exists between
paleontological and molecular studies on how the planktonic for-
aminifera emerged and diversified. The earliest record of planktonic
foraminifera dates back to the early Jurassic, where their appearance is
thought to have been the response towidespread oceanic anoxia1. The
group became diverse and abundant in the early Cretaceous and in
most paleontological phylogenies2,3, the main extant clades are traced
back to that time. However, molecular genetic data imply that the
extant foraminifera in the plankton may be the result of repeated
invasions from the benthos. This is supported by the independent
colonization of the planktonic niche by the triserial Gallietellia during
theMiocene4 and the ongoing transition into the plankton observed in
the biserial Bolivina5,6. Understanding the origin of the planktonic

foraminifera is of key importance because their stratigraphic record is
used to study the interplay between diversity and climate7 and past
biological crises8. So far, these studies assume that the fossil record of
planktonic foraminifera represents the waxing and waning of diversity
generated by speciation and extinctionwithin long-ranging clades that
were able to survive past environmental crises7. If planktonic for-
aminifera represent different clades bestowed with different life traits
and if the pelagic niche has been repopulated repeatedly from the
benthos, the interpretation of the biotic response of planktonic for-
aminifera to environmental upheavals throughout the Meso- and
Cenozoic would have to be fundamentally reassessed.

The fossil record of the extant foraminifera is largely represented
by agglutinated and calcareous forms belonging to the clades Glo-
bothalamea, Tubothalamea, and Lagenida9, but environmental surveys
show that globally the diversity in the group is dominatedby the naked
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Monothalamea10 that likely emerged during the Precambrian11. One
surprising aspect of the evolution of foraminifera is that many key
innovations, such as biomineralization, emerged repeatedly and
independently in the group (Fig. 1). Yet, despite the existence of the
group since the Precambrian11 and of biomineralization at least since
the upper Devonian12, foraminifera colonized the plankton only in the
Jurassic and all of their planktonic representatives appear to belong to
one clade of the Globothalamea, the Rotaliida. Could it be that unlike
many other innovations in the group, the transition into the plankton
only occurred once? With the emergence of large metabarcoding
surveys13 and improved coverage of barcode references14, the occur-
rence and identity of foraminifera in the plankton can now be studied
from environmental DNA sequences, which would reveal which linea-
ges, irrespective of size and presence of shells, dwell in the plankton.
Here, we show that the benthic foraminifera of the clade Globothala-
mea can disperse actively in the plankton and form independent
holoplanktonic clades that renewed the diversity of the group in the
pelagic realm after the end-Cretaceous biological crisis.

Results and discussion
Living benthos in the plankton
To evaluate the diversity of foraminifera in the plankton, we re-
analyzed the comprehensive catalog of eukaryotic diversity of the
TARAOcean dataset13. We queried the environmental dataset against a
reference database updated with ~2000 additional foraminifera
reference sequences with curated taxonomy that include 40 of the 45
morphological species of holoplanktonic foraminifera and all main
clades of benthic foraminifera, albeit with Lagenida underrepresented.
We retrieved 1094 Molecular Operational Taxonomic Units (MOTUs)
with at least 90% identity with the updated reference database that
accounted for 1,157,287 sequences and occurred in 1002 of the

1048 samples of the TARAOcean dataset (Supplementary Fig. 1). From
those MOTUs, 346 (32%) were attributed to known holoplanktonic
clades, representing 83%of the sequences (Fig. 2A). The remaining 748
MOTUs (68%) were attributed to foraminifera clades that are only
known from the benthos, with the largest part belonging to the Glo-
bothalamea (416 MOTUs).

Finding DNA of benthic foraminifera in pelagic samples is not
surprising. Some benthic microorganisms will always be found in the
plankton because of the passive entrainment of sediment particles
during stormsor similar events. However, such inadvertent inhabitants
of the plankton would rapidly decrease in abundance away from the
source of their advection. Indeed, the likelihood of observing MOTUs
of each holoplanktonic clade in our analysis does not decrease with
distance from the coast, whereas the benthic Tubothalamea and
“Monothalamea” OTUs always become rarer away from the coast.
(Fig. 2C). Nonetheless, the “benthic” Globothalamea contain some
MOTUs that also persist further off-shore andwhose occurrence in the
plankton thus cannot be explained by passive entrainment.

To unravel which of the Globothalamea MOTUs appeared plank-
ton-like, we carried out the analysis of their occurrence as a function of
distance from shore at the level of single MOTUs (Fig. 2D). This is a
simplifiedmodel because other environmental parameters are likely to
control the presenceor absence of individualMOTUs, but it allowedus
todifferentiateMOTUs thatmaybepassively transported compared to
those capable to persist in the plankton. Indeed, the vast majority of
MOTUs assigned to the holoplanktonic clades showed an increasing or
constant probability of occurrence with greater distance to the coast.
Inversely, the MOTUs belonging to Monothalamea and Tubothalamea
mostly displayed decreasing probability of occurrence with a greater
distance to the coast. Based on this observation, we used the holo-
planktonic MOTUs on the one hand, and the Monothalamea and
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Fig. 1 | Simplified evolutionary history of foraminifera. The scheme depicts the
diversification of foraminifera from their emergence in the Precambrian until the
end of the Mesozoic with a simplified stratigraphy. The polytomies reflect uncer-
tainties in the evolutionary relationships between the depicted lineages. The Glo-
bothalamea and Tubothalamea have a class rank and the status of the

Monothalamea is uncertain. The relationship of Lagenida to other foraminifera
lineages is unclear but it is a distinct lineage from the three other main clades. The
open circles approximately indicate when completely biomineralized shells
appeared in each lineage. The figure is based on refs. 9, 11, 57, 58.
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Tubothalamea on the other hand, to train two complementary
supervised Random Forest models to classify the Globothalamea
MOTUs as either “planktonic” or “benthic” according to (i) their pre-
sence/absence patterns and (ii) probability of occurrence (Fig. 3A). The
Random Forest models performed with an accuracy of 94.4% (i) and
96.9% (ii) associatedwith an F1 score of 0.8 (i) and 0.9 (ii), respectively,
and were in agreement in 71% of the predictions, representing 46
GlobothalameaMOTUs that were considered as “putative planktonic”,
i.e., showing a pattern of occurrence in the plankton, which is con-
sistent with the pattern of occurrence of planktonic taxa.

To determine the taxonomic affiliation of the Globothalamea
MOTUs found in the plankton, we produced a backbone phylogeny of
Globothalamea that encompassed all documented families of the
rotaliids15 and mapped the MOTUs using a phylogenetic placement
approach (Fig. 3B). This analysis revealed that the ability to persist in
the plankton is widespread among the Globothalamea and should
therefore be considered a synapomorphy of the clade. The occurrence
of the “putative planktonic” Globothalamea across all size classes in
the TARA dataset implies (Fig. 2B) that the ability to persist in the
plankton occurs among adult individuals and is not limited to gametes
or juveniles. With the exception of the tychopelagic Bolivina5, actual
specimens (or their shells) of the “putative planktonic”Globothalamea
have only rarely been reported from the plankton16. This is consistent
with the small share of these MOTUs among the sequences and sug-
gests that the ability to persist in the plankton may be a dispersal
strategy rather than a persistent lifestyle.

A widespread ability to disperse in the plankton, being able to
remain buoyant and feed in the plankton5 provides an obvious step-
ping stone on the transition from the benthos into the plankton17.
However, this innovation was apparently in itself not sufficient to
develop a full holoplanktonic lifestyle. Since among the Globothala-
mea, only lineages with biomineralized shells have completed the full
transition to the planktonic lifestyle, the second stepping stone on the
transition into the plankton may have been the ability to secrete
mineralized shells. The reason why biomineralisation would be the key

to holoplanktonic lifestyle among the Globothalamea may be simple:
we note that the non-biomineralising Globothalamea (textulariids)
build their shells by agglutinating sediment particles and suchparticles
are not present in the plankton, possibly preventing holoplanktonic
lifestyle in the absence of complete biomineralization.

Origin of the extant holoplanktonic foraminifera clades
The evolutionary history of planktonic foraminifera is typically pre-
sented as a narrative of a Mesozoic origin and a history of extinction
and radiation events leading to theirmodern diversity3,8. This narrative
is supported by the observed continuous occupation of the planktonic
niche by planktonic foraminifera since their emergence in the Jurassic.
It implies that the transition into the plankton occurred once, or was
rare afterward, and that the main clades survived all environmental
and biotic crises at least since the early Cretaceous where the fossil
record is resolved, including the Cretaceous–Paleogene mass
extinction8. Considering that the two main prerequisites for con-
quering the plankton, the ability to disperse in the plankton and the
ability to produce biomineralized shells, were widespread among the
Globothalamea, it would be surprising that this transition did not
occur repeatedly.

The extant planktonic foraminifera have long been considered
to represent descendants of Cretaceous lineages, with the two most
diverse clades (the macroperforate Globigerinidae and Globor-
otaliidae) originating from among the rare survivors of the K/Pg
crisis2. However, there exists no independent evidence for a common
origin of the extant holoplanktonic clades, not even for a common
origin of the two macroperforate clades. Having barcoded the entire
diversity of the extant planktonic foraminifera using their SSU rRNA
gene, we can now ask whether or not their molecular phylogeny
supports a shared common ancestry hypothesis. To this end, we
constructed a reference phylogeny using representative sequences
of major benthic families of the Globothalamea, adding sequences
representing all holoplanktonic foraminifera clades, but excluding
long-branch taxa (see “Methods”).
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dataset.D Probability of occurrence of individual MOTUs of planktonic clades as a
function of distance to coast based on their absence/presence in the TARA Ocean
dataset. The data used to produce the figure are provided in SupplementaryData 2.
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The phylogenetic inferences (Fig. 4) revealed topologies with all
Globothalamea families resolved and all three main holoplanktonic
clades being monophyletic (Supplementary Fig. 2). The holoplank-
tonic clades, however, branch in different parts of the tree, implying at
least five independent origins of the extant holoplanktonic for-
aminifera. This topology is consistent with earlier molecular
phylogenies18, but since the bootstrap support is not sufficient to
robustly resolve their phylogenetic relationships, we subsequently
formally tested two alternative hypotheses for the origin of the extant
planktonic foraminifera. A Swofford Olsen Waddell Hillis test imple-
mented in SOWHAT19 confirmed that it is unlikely that all the extant
planktonic foraminifera are monophyletic (P =0.001), or that even the
two macroperforate lineages are monophyletic (P =0.003). A similar
result is obtained using the Approximately Unbiased (AU) test20, which
rejected the monophyly of all clades (P < 0.05 irrespective of internal
topology, Supplementary Fig. 3) and provided no support for mono-
phyly of the two macroperforate clades (P =0.15 against P =0.91 for
the topology in Fig. 4). This would explain why the two main clades of
planktonic foraminifera that diversified after the K-Pg boundary have
stark morphological differences (with and without spines), which was
difficult to reconcile with a common ancestry. Clearly, a complete or
partial monophyletic origin of the holoplanktonic clades is not com-
patible with the molecular dataset and the extant diversity of plank-
tonic foraminifera is therefore more likely the result of multiple
independent invasions of the plankton from different benthic
ancestors.

Next, we can use phylogenetic inference to estimate the time of
divergence of each of the extant planktonic clades from their nearest
extant benthic relative. Because the foraminifera has different rates of
evolution21, we used a relaxed clock model and applied multiple dates
to calibrate the molecular tree. Since the topologies of the dated trees
are not supported, we cannot assume that the nodes between the
sister benthic and planktonic clades represent their closest, thus
youngest, last common ancestry. However, since there is no evidence
for any of the known fossil or extant clades of planktonic foraminifera
to have returned back to the benthos, the last common ancestor of an
extant planktonic lineage and any relative from among the extant
benthic foraminifera must have been benthic and therefore the age of

the inferred divergence is informative, irrespective of the support for
the topology. In fact, it is important to stress that the resulting diver-
gence age estimates provide themaximumages of a transition into the
plankton in each clade. This is because the earliest representative of a
lineage leading to the planktonic clade could have still been benthic
and the transition into the plankton may have occurred later. Here we
retain the divergence age from the nearest benthic ancestor as a
conservative estimate of the benthic-planktonic transition and use
these conservative estimates to discuss the compatibility between
fossil andmolecular evidence concerning the evolution of themodern
planktonic foraminifera (see Fig. 4 and “Methods” for details). The
results reveal that the mean benthic divergence age estimates for the
four main clades all cluster around the K/Pg boundary, and that the
most recently diverged D. anfracta and G. vivans very likely colonized
the plankton later, during the last 30Ma of the Cenozoic (Fig. 5). The
time-calibrated phylogenies based on the maximum likelihood and
Bayesian inferences returned essentially the same results (Supple-
mentary Data 5). The large uncertainties on the divergence age esti-
mates reflect the heterogeneity in substitution rates, and are a
common feature for time-calibrated trees even for inferences based on
phylogenomic datasets that have perfect branch support and include
sequences from hundreds of genes22. However, even with these large
uncertainties, the divergence age estimates for all four main extant
clades are incompatible with their origin from the Cretaceous plank-
tonic foraminifera.

If the extant clades originated among the Cretaceous planktonic
foraminifera, their divergence from nearest benthic ancestors must
have occurred before the planktonic lineages emerged in the fossil
record. Since the fossil recordof Cretaceous planktonic foraminifera is
well documented3, and it is well known that these lineages have been
planktonic throughout their existence23, their divergence from the
benthos must have occurred in the Early Cretaceous at the latest.
Specifically, the macroperforate Cenozoic planktonic foraminifera are
considered to have originated from two species of Hedbergella, which
appear to have survived the K/Pg crisis24. However, the Hedbergella
lineage can be traced in the fossil record to 140Ma, implying a diver-
gence age from the benthos, which is older than any of the molecular
clock estimates for the benthic divergence of the extant taxa, even

Fig. 3 | Identification of “putative planktonic” Globothalamea. A Random
Forest classification of the GlobothalameaMOTUs as either planktonic or benthic.
B Phylogenetic placement of the MOTUs on the Globothalamea tree. The main
clades of benthic foraminifera are delimited on the tree. The size of the circles
represent the number of potential MOTUs affiliated with a branch. Note that the

genera Ammonia and Bolivina are branching out of their home clades (Serioidea
and Rotalioidea). Rot X = Rotaliida X, Plan. = Planorbulinoidea, Calc. =
Calcarinoidea, Nummulit. = Nummulitoidea, Glab. = Glabratelloidea. The data used
to produce the figure are provided in Supplementary Data 2 for panel A and
Supplementary Data 3 for panel B.
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when the large age uncertainties are considered (Fig. 5). Therefore, the
molecular clock estimates are inconsistent with a descent of the
modern macroperforate foraminifera from the Hedbergella lineage
and in a similar manner from any other candidate ancestral lineage of
Cretaceous planktonic foraminifera.

Instead, the inferred chronology of the emergence of the extant
holoplanktonic clades implies that the foraminifera colonized the
planktonic niche repeatedly and that different groups of the calcifying
Globothalamea gave rise to the extant clades. It also implies that the
Cretaceous planktonic foraminifera community did not leave any
descendants surviving to the present. This means that although some
Cretaceous planktonic foraminifera may have survived the crisis, such
as Guembelina and Muricohedbergella, these lineages were less suc-
cessful in populating the pelagic habitat than the clades newly emer-
ging from the benthos. This conclusion is consistent with the
interpretation of the post-K/Pg fossil record by refs. 25, 26, who
questioned the postulated continuity between the Cretaceous Mur-
icohedbergella and the earliest Cenozoic macroperforate planktonic
foraminifera. Furthermore, ref. 27 suggests that the Microperforates
clade diverged from a benthic ancestor (Praepararotalia) during the
Lutecian (47.8–41.2Ma) which is in the range of our estimation. Thus,
in the scenario implied by our molecular clock estimates, the few
Cretaceous planktonic foraminifera species that survived the crisis and
their descendant did not gave rise to the modern communities during
the Paleogene and the planktonic niche has been colonized from
among diverse benthic Globothalamea which survived the crisis rela-
tively unscathed28,29 and renewed the foraminifera pelagic diversity.

Consequences for the interpretation of the fossil record
In our inferred evolutionary model, the ability to invade the pelagic
habitat from the benthos emerged in the foraminifera because of the
existence of a pelagic dispersal and biomineralized shells. This model
provides an explanation for several unresolved questions regarding the
emergence and evolutionary history of planktonic foraminifera. The
observation that pelagic dispersal is limited to the Globothalamea and
that the holoplanktonic lifestyle has only been adopted by the Rotaliida
explains the timing of the emergence of the first planktonic

foraminifera in the Jurassic1 as a consequence of the radiation of the
Globothalamea following the Permo–Triassic mass extinction and bio-
tic exchange. The evidence for repeated colonization of the plankton
explains the apparent phylogenetic discontinuity among the earliest
Jurassic planktonic foraminifera, which have aragonitic shells and may
have originated from a different lineage30,31, and the Cretaceous clades,
as well as the emergence of the conspicuous Cretaceous biserial and
multiserial forms3 as the results of multiple independent colonization
events. It also implies that the extent of the K/Pg extinction among
planktonic foraminifera was larger than previously thought and it is no
longer necessary to find explanations on how some species could sur-
vive in the plankton in the wake of the extinction event, when the
pelagic food chain broke down and primary production was virtually
halted32. The repeated seeding of the pelagic niche from benthic
ancestors appears to be a continuous process that has also taken place
outside of the mass extinction intervals, as documented by the young
divergence ages of Dentigloborotalia and Gallitellia4. This observation
implies that the evolutionary history of planktonic foraminifera cannot
be interpreted as an extinction-speciation process actingwithin a single
clade and that this conclusion applies even to the dominant macro-
perforate clades7. Instead, diversity among the planktonic lineages can
also be generated by colonization from unrelated benthic lineages.
Clearly, the interpretationof the fossil recordofplanktonic foraminifera
biodiversity, a key testing ground for macroevolutionary models,
requires a fundamentally different approach.

Methods
TARA Ocean dataset re-classification
We downloaded the entire V9 TARA Ocean dataset and associated
metadata available at https://doi.org/10.5281/zenodo.3768509
and https://doi.org/10.1594/PANGAEA.875577 that included
1,775,314,734 sequences represented in 474,303 MOTUs from
1046 samples collected at 189 sampling stations13 mostly in the
upper 100m of the water column. To retrieve the all foraminifera
MOTUs, we updated the reference database PR²_V9 (https://
zenodo.org/record/3768951) used for the assignment of the
environmental metabarcodes. We removed the 927 reference
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Fig. 4 | Phylogenetic relationship of extant benthic Globothalamea with
planktonic clades. RAxML consensus topology showing the evolutionary rela-
tionships between benthic Globothalamea clades (gray boxes) and the planktonic
clades (colored lines). The tree is based on 44 benthic and 25 planktonic for-
aminifera sequences. Bootstrap and posterior probability values above 80% or 0.9

are indicated next to the branches. Dates used to calibrate themolecular clock are
indicated next to the nodes; see “Methods” for details of the calibration dates. The
tree is rooted on the Textulariida. The RAxML and Bayesian topologies with the
branch lengths are provided as Supplementary Fig. 2 and all relevant data files are
provided in Supplementary Data 4.
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sequences labeled as Foraminifera in the PR²_V9 database and
replaced them with 3390 foraminifera barcode sequences with
updated taxonomy following the 10 rank system of the PR²
database14. The database then included 2044 planktonic for-
aminifera sequences from the PFR² database33 and sequences
published in recent work34,35, that are organized in 4 clades (Spi-
nose, Non-Spinose, Microperforates, Basal) and cover 40 of the
~45 species described by morphotaxonomy. The benthic for-
aminifera sequences are classified in the three major clades
Monothalamea, Tubothalamea, and Globothalamea after ref. 9 and
the taxonomy of the Globothalamea has been further updated
after ref. 15. The updated V9 reference for foraminifera includes
496 unique taxonomic paths and is provided as Supplemen-
tary Data 1.

We re-classified the TARA Ocean V9 MOTUs using blastn36 v. 2.7.1
against the updated reference database. We retrieved all sequences
with a percentage of identity of 90% or more to the reference for
further downstream analysis. Based on the taxonomic affiliation
returned by BLAST, we classified each MOTUs into four categories for
planktonic foraminifera: “Spinose”, “Non-Spinose”, “Microperforates”
and “Basal”, and three categories of Benthic foraminifera: “Tubotha-
lamea”, “Monothalamea” and “Globothalamea”. The results of the
assignment are shown in Supplementary Fig. 1 and the occurrence of
foraminifera MOTUs with the updated assignment is available in
Supplementary Data 2.

Dispersion of benthic OTUs in the plankton
Based on the updated taxonomic assignment, we calculated the por-
tion of the diversity (percentage ofMOTUs) and the volumeof the data
attributed to each clade (Fig. 2A), their distribution in each size class of
the TARAOceandataset (Fig. 2B), the average proportion of each clade
against the distance to the coast (Fig. 2C), and the probability of
occurrence of individual MOTUs based on their presence/absence at
each station using logistic regression (Generalized Linear Model
implemented in R v. 4.0.237; Fig. 2D). To predict the lifestyle of the
Globothalamea OTUs as either planktonic or benthic, we pursued a
dual approach. We applied random forest models using (1) the coef-
ficients of the logistic regression models, implemented in the package
randomForest38, and (2) the presence/absence MOTU table directly,
implemented in the mlr3 package39. Only MOTUs occurring in at least
five stations were considered for this approach. The random forest
models were trained and validated with 112 MOTUs affiliated with
holoplanktonic foraminifera lineages (“Planktonic”) and 32 MOTUs
affiliated with the monothalamids and Tubothalamea clades
(“Benthic”), to predict the ecology of 126 Globothalamea MOTUs. To

reduce the risk of false positives, we only considered the Globothala-
meaMOTUs thatwere predicted as putative planktonic and benthic by
both approaches for further analyses. The results of the classification
approaches are provided as part of Supplementary Data 2 and the
analysis code is provided on Github (https://github.com/chassenr/
ForamsOrigin) andZenodo (https://doi.org/10.5281/zenodo.7274980).

Phylogenetic placement of Globothalamea MOTUs
To compare the phylogenetic affiliation of the Globothalamea for-
aminifera MOTUs classified with either a “planktonic” or “benthic”
behavior, we relied on a phylogenetic placement approach. We
constructed an alignment that included 137 non-redundant SSU
rRNA gene sequences representative of Globothalamea foraminifera
diversity that covered the V9 region. We automatically aligned the
sequences with MAFFT v.740, chose the best model of evolution
according to Modeltest-ng41 and inferred the topology using RAxML-
ng42 with 100 rapid bootstraps using the model TVM+ I + G4. The
returned topology was consistent with the results of ref. 15 that
indicated the respective monophyly of the families within the Glo-
bothalamea. Then, we separately aligned the MOTUs classified as
“Benthic” or “Planktonic” to the backbone alignment using the –add
option of the online version of MAFFT. We then used phylogenetic
placement EPA-ng43 with default options and ITOL44 to display the
results (Fig. 3). The results of the automated alignments, model
selection, phylogenetic inference, and EPA-ng placement are pro-
vided as Supplementary Data 3.

Phylogenetic context of the emergence of planktonic
foraminifera
We established a phylogenetic framework to contextualize the
emergence of modern planktonic foraminifera. We selected 44
representative sequences of the recognized seven superfamilies of
Rotaliida and the “Clade 3” as describe in ref. 15 complemented with
textulariid sequences to root the phylogeny, the aim being to
reconstruct all evolutionary splits leading to the present day
diversity of the Rotaliida. We thus included 11 sequences belonging
to the spinose and monolamelar planktonic foraminifera clades,
seven sequences of the non-spinose clade, five sequences of the
microperforate clade and two sequences of planktonic species with
uncertain phylogenetic affiliations labeled as “Basal”. We purposely
excluded species with long branches to avoid artifacts and not
disrupt the phylogenetic inference (G. minuta, N. incompta, G.
truncatulinoides, G. menardii, G. ungulata, G. tumida). We used the
partial fragment of ~1000 bp located at 5’-end of the 18 S because
most of the planktonic foraminifera sequences are covering this

Fig. 5 | Emergence of modern planktonic foraminifera. The emergence of the
modern clades of planktonic foraminifera in relation to the evolution of their
diversity through the Mesozoic and Cenozoic following the classical hypothesis
basedon fossil recorddata andour alternative hypothesis based onmolecular data.
The gray curve represents the number of planktonic species observed in the fossil
record (from ref. 8). The time of divergence between the extant clades and their

nearest benthic relative in the maximum likelihood molecular phylogeny is repre-
sented by a star. It represents the earliest possible date of transition into the
plankton. Dashed lines represent the uncertainty of the time of divergence. Time
range of evolutionary events in the Mesozoic are provided above the graph. The
molecular clocked phylogenies are provided as Supplementary Data 5.
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fragment only. We automatically aligned the 69 sequences with the
phylogeny aware alignment method PRANK45 that is better suited
than MAFFT because of the higher heterogeneity between the
sequences. The model GTR + I + G4 was selected with Modeltest-ng
and the Maximum Likelihood topology was inferred using RAxML-
ng with 1000 rapid bootstrapping pseudo-replicates. The bayesian
inference was performed with MrBayes v.3.2.746 and consisted of
two simultaneous chains run for 10,000,000 generations that
converged with an average standard deviation of split frequencies
of 0.01, and 40,000 trees there were sampled of which 10,000 were
discarded as burn-in. The results of the automated alignments,
model selection, and phylogenetic inferences are provided as
Supplementary Data 4. The RAxML majority rule is shown as Fig. 4
with the bootstrap values and posterior probability provided next
to the branches and the topologies with branch lengths are show on
Supplementary Fig. 2.

Because the inferences with all planktonic clades returned a
topology with each planktonic foraminifera clade being mono-
phyletic, hence suggesting a polyphyletic origin, but with poor
branch support (Fig. 4), we tested for the two hypotheses for the
origin of planktonic foraminifera suggested by the fossil record. The
first hypothesis postulates a single origin of the three main clades of
planktonic foraminifera, consistent with the hypothesis of a single
emergence in the early Jurassic1. We tested two topologies for this
hypothesis, one where themicroperforate clade would be at the base
of the planktonic clade, and one topology where the spinose would
be at the base. The second hypothesis assumes a common origin of
the Spinose and Non-Spinose clade as descending from the Hedber-
gella genus that survived the KT crisis as suggested by ref. 2. We
manually constructed the corresponding phylogenetic trees and
used the Swofford Olsen Waddell Hillis test implemented in
SOWHAT19 and the Approximately Unbiased test20 implemented in
IQ-TREE247 to assess if these constructed topologies were potentially
congruent with the dataset. The constructed topologies and the
results of the SOWHAT and AU test are provided as Supplemen-
tary Fig. S3.

To estimate the time of divergence of the planktonic clades from
their benthic ancestors, we applied a molecular clock estimation to
the Maximum Likelihood and Bayesian topologies. Molecular
clocked phylogenies aim to translate molecular distances into
absolute times of divergence between the branches and rates of
evolution, which requires the establishment of prior probability of
distributions on parameters such as fossil calibration and branching
model48. Bayesian molecular clock dating uses statistical distribu-
tions to characterize uncertainties in model parameters which is
translated into large confidence intervals in the time divergence
estimation between branches, even when using genome wide
datasets22. The uncertainties in posterior time of divergence esti-
mates are influenced by fossil calibration that is crucial to detect
variation of the rate of evolution between species or clades. Because
foraminifera display high heterogeneity in their rate of evolution, we
provided the tree with multiple calibrations. Although the Glo-
bothalamea appeared during the Paleozoic11, the fully calcified extant
taxa of the group occurred in the Mesozoic after the end-Permian
crisis that caused a drastic loss of foraminifera diversity and the
disappearance of the largest benthic foraminifera species49. Right
after the crisis during the Olenekian (251.2–247.2Ma) emerged the
first robertinids characterized by arago-agglutinated or mixed arago-
agglutinated-secreted (with aragonite) walls30,31 from which the
robertinids developed fully mineralized tests. The emergence of the
rotaliids, with fully calcitic tests is not clear. The traditional view is
that the rotaliids are directly descended from the robertinids and
their earliest occurrences were in the lower Jurassic (199.3–170.3Ma)
with the first observation of buliminids50. An alternative hypothesis is
that the rotaliids evolved directly from the textulariids and

developed calcitic mineralization independently from the
robertiniids51. We chose to be conservative and considered a diver-
gence between the textulariids and the rotaliida during Olenekian
(251.2–247.2Ma), which is compatible with either a direct divergence
from the textulariids or the robertiniids and places this split at the
earliest possible date. Second, we added a constraint within the
benthic Rotaliida using the divergence between the clades Nummu-
litoidea (planispiral) and Calcarinoidea (trochospiral). Their separa-
tion from each other and from early Rotaliidae took place in the
Cretaceous52. The first illustrated occurrence of the calcarinoid genus
Pararotalia being in the Cenomanian (93.9–100.5Ma)53, the separa-
tion of the two clades is necessarily older. To not artificially constrain
the tree toward younger date estimates, we retained a potential split
between these two clades in the lower Cretaceous–Cenomanian
(145–93.9).

Finally and to calibrate the planktonic foraminifera, we deliber-
ately chose split dates in the recent historyof the cladebecauseof their
higher reliability and to not constrain the most internal nodes close to
the divergence frombenthic clades. For the Spinose clade, weused the
divergence between G. rubescens and the genus Globigerinoides at
23.8Ma7, the divergence between Beella digitata and Globigerinella at
11.08Ma54, and the divergence between Turborotalita humulis and
Turborotalita quinqueloba at 12.9Ma7. For the Non-Spinose clade, we
used the divergence time between Globorotalia hirsuta and Globor-
otalia scitula at 8.2Ma, and the divergence between Globorotalia
inflata and Neogloboquadrina dutertrei at 18.8Ma7. Last, for the
microperforate clade, we used the divergence time between Candeina
nitida and Globigerinita glutinata at 9.9Ma and the first appearance
datum of Globigerinita uvula at 29Ma54.

To calculate the molecular clock phylogeny, we used a relaxed
clock model implemented in BEAST v.1.8.455 and model parameters
were set using BEAUti v1.8.455. The distribution of the fixed node age
prior was considered normal and the speciation rate was assumed
constant under the Yule-Process. The GTR model was selected as a
substitutionmodel. A customR script was used to derive a rooted and
fully bifurcated tree from theRAxML andMrBayes returned topologies
that were then used as starting tree. Markov-Chain- Monte Carlo
(MCMC) analyses were conducted for 10,000,000 generations for the
RAxML topology and 15,000,000 generation for the Bayesian topol-
ogy, with a burn-in of 1000 generations and saving each 1000th gen-
eration. Themaximum clade credibility tree withmedian node heights
was calculated in TREEAnnotator from the BEAST package, with a
burn-inof 100 trees and aposterior probability limit of0. The resulting
trees were then visualized in FigTree v. 1.3.156 and provided as Sup-
plementary Data 5, and the date of divergence between the planktonic
clades and their nearest neighbor in the RAxML phylogeny is shown
in Fig. 5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the manuscript are publically available on Zenodo
(https://doi.org/10.5281/zenodo.3768509, https://zenodo.org/record/
3768951) and PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.
875577), the relevant intermediary files are provided as part of the
Supplementary Data files. Source data for Fig. 2, consisting of occur-
rences of foraminifera MOTUs in Tara Ocean samples and relevant
metadata of the samples, are provided in Supplementary Data 2.

Code availability
The codeused to run the random forest analyses is providedonGithub
https://github.com/chassenr/ForamsOrigin and Zenodo (https://doi.
org/10.5281/zenodo.7274980).
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