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Genetically personalised organ-specific
metabolic models in health and disease
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Understanding how genetic variants influence disease risk and complex traits
(variant-to-function) is oneof themajor challenges in humangenetics. Herewe
present a model-driven framework to leverage human genome-scale meta-
bolic networks to define how genetic variants affect biochemical reaction
fluxes across major human tissues, including skeletal muscle, adipose, liver,
brain and heart. As proof of concept, we build personalised organ-specific
metabolicfluxmodels for 524,615 individuals of the INTERVAL andUKBiobank
cohorts and perform a fluxome-wide association study (FWAS) to identify 4312
associations between personalised flux values and the concentration of
metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic
fluxes associated with the risk of developing coronary artery disease, many of
which are linked to processes previously described to play in role in the dis-
ease. Our work demonstrates that genetically personalised metabolic models
can elucidate the downstream effects of genetic variants on biochemical
reactions involved in common human diseases.

Genome-wide association studies (GWAS) have identified more than
50,000 genetic variants associated with complex traits or diseases1.
While the contribution of individual variants to a given phenotype is
generally small, the effect of multiple genetic variants can be aggre-
gated into polygenic scores (PGS), which are highly predictive of dis-
ease incidence and enhance existing risk models2–4. However, while
GWAS and PGS can be useful for risk stratification5–7, the mechanisms

bywhichgenetic variants influencedisease risk, i.e., variant to function
(V2F), remain largely unsolved. Addressing V2F is a major challenge in
human genetics and has the potential to unveil many new therapeutic
targets6,8,9.

An approach to address the V2F challenge is to quantify how
genetic variation causes disease through the regulation of molecular
traits. To this end, genetic variants affecting gene expression are
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identified and subsequently aggregated into models that can impute
the abundance of transcripts and proteins10–12. For example, PredictDB
is a database that offers a collection of linear models to impute tran-
script levels in specific organs of the human body13. PredictDB models
were trained in the GTEx dataset, which contains genotype profiling
and tissue-specific transcript abundance from post-mortem donors14.
Imputed transcript or protein levels can be used to perform
transcriptome-wide or proteome-wide association analyses, respec-
tively, to identify gene products associated with disease10,15. Alter-
natively, PGSs for disease can be used to identify proteins and other
gene products which may disrupt polygenic risk16. However, tran-
scripts and proteins do not exert their effects in isolation but in highly
connected and complex biological networks. Indeed, previous studies
have shown the merit of analysing genetic variation in the context of
gene co-expression and gene interactionnetworks to characterise how
the effects of genetic variants contribute to complex traits or diseases
by propagating through biological networks17–20.

Metabolism is one of themost prominent biological networks and
a comparatively tractable experimental setting in which to address the
V2F challenge. Essentially, metabolism is a set of interconnected che-
mical reactions and transport processes occurring in a highly ordered,
regulated and coordinated manner across multiple organs in the
human body21. Themetabolic phenotype of a given organ is defined by
both metabolite concentrations and metabolic fluxes (i.e., the rates at
which substrates are converted to products through reactions) and
emerges from the complex interaction of metabolites, enzymes, and
transmembrane carriers22,23. Metabolite concentrations offer a static
snapshot of metabolite distributions, whereas metabolic fluxes pro-
vide a map of metabolite traffic through metabolic pathways24.

Genome-scale metabolic models (GSMMs), mathematical repre-
sentations of the metabolic reaction network arising from the human
genome25,26, simulate steady-state metabolic fluxes by formulating
network stoichiometry as sets of linear equations and directionality
constraints27. GSMMs have emerged as a useful approach to integrate
transcriptomics, proteomics, and metabolomics to characterise meta-
bolic flux maps28,29. For example, proteomics, metabolomics, and phy-
siological data have been used to build human organ-specific GSMMs30.
Similarly, there is increasing interest in integrating individual measures
to build personalised GSMMs that reflect the specific metabolic phe-
notype in each individual, thus facilitating personalised medicine30–34.

Since gene expression is highly heritable10,13, it may be feasible to
leverage human genome-scale metabolic networks to analyse the
system-wide effects of genetic variants on metabolism and build
genetically personalised GSMMs. To this end, we present a framework
where transcript levels imputed from genetic data can be used to
simulate personalised and organ-specific, genome-scale flux maps
using the quadratic metabolic transformation algorithm (qMTA). Such
flux maps provide genetically personalised metabolic models at a
genome scale for each tissue. As proof of concept, we build persona-
lised organ-specific flux maps for over 520,000 individuals across the
INTERVAL35,36 and UK Biobank (UKB)37 cohorts, then perform a
fluxome-wide association study (FWAS) to test the association
between organ-specific flux values and directly measured blood
metabolite levels. Finally, we apply FWAS to identify fluxes associated
with coronary artery disease (CAD), thus demonstrating the potential
of genome-scale flux maps for V2F by elucidating intermediary bio-
chemical reactions between genetic variation and common disease.

Results
A computational framework for genetically personalised organ-
specific GSMMs
We developed a framework for building personalised organ-specific
flux maps from genotype data (Fig. 1; Methods). First, we extract the
organ-specific models from the Harvey/Harvetta multiorgan model30,
whichprovide a set of curatedmetabolic networks for themain organs

of the human body. Harvey/Harvetta models were built from the
Recon3D human GSMM25, which has been superseded by HUMAN126.
HUMAN1 shares 97% of reactions with Recon3D, but it incorporates a
myriad of improvements in gene-reaction rules, reaction reversibility
and stoichiometric consistency compared to the latter. Hence, we
performed a liftover of the Harvey/Harvetta organ-specific models to
HUMAN1 (Methods).

With theHUMAN1-basedorgan-specificmodels, the next step is to
compute a reference flux distribution for each organ under con-
sideration. This is achieved by defining organ-specific metabolic
objectives thatmust be fulfilled (e.g., synthesis of neurotransmitters in
thebrain), obtaining average organ transcript abundances fromGTEx14

and using them as an input for the GIM3E algorithm38. GIM3E is an
algorithm that, subject to fulfilling the organ-specific metabolic
objectives, seeks to minimise the overall flux through the network
using transcript abundance data to give each reaction a minimisation
weight inversely proportional to the expression of the enzymes cata-
lysing it. Subsequently, flux sampling39 is applied to identify a repre-
sentative flux distribution (i.e., sets of flux values) in the solution space
within 99% of the GIM3E optimal solution. The resulting set of flux
values, termed reference flux distribution, is both enzymatically effi-
cient and consistent with the average transcript abundances in each
organ (Supplementary Fig. 1). The flux distribution can be assumed to
represent the average metabolic state of each modelled organ in the
general population.

Subsequently, models from PredictDB13 are used to impute per-
sonalised organ-specific transcript abundances from genotype data.
The resulting imputed transcript data are mapped to reactions in the
organ-specific subnetworks as putative reaction activity fold changes
relative to the average organ-specific transcript expression in GTEx14.
The imputed personalised reaction activity fold changes and the
reference flux distributions are then utilised by the qMTA to compute
genetically personalised organ-specific flux maps. Briefly, qMTA finds
the flux distributions most consistent with the putative reaction
activity fold changes in each individual (Supplementary Fig. 2;
Methods).

Building flux maps for >520,000 individuals
Using the above framework, we built personalised organ-specific flux
maps for 37,220 and 487,395 individuals from the INTERVAL35,36 and
UKB37 cohorts, respectively. Personalised models were generated for
skeletal muscle, adipose tissue, liver, brain, and heart, which together
account for roughly 66% of body weight in an average adult40. Overall,
14,220 reaction flux values were computed for each individual. Meta-
bolic fluxes “flow” through pathways where the product of one reac-
tion is the substrate of successive reactions; thus, many of the flux
values computed in each individual will have inherent dependencies
(Supplementary Fig. 3A–C). As such, from the 14,220 reaction flux
values, we selected a subset of 4300 flux values without strong pair-
wise correlations (ρ <0.9) for further analysis (Supplementary Fig. 3D;
Methods).

Principal component analysis of the personalised organ-specific
flux values for individuals of INTERVAL and UKB showed the under-
lying structure in the data (Supplementary Fig. 4). Fluxes with the
greatest loadings on top principal components (PCs) tended to be
related to the known metabolism of each organ (Supplementary
Data 1). For example, in the liver, fluxes through reactions and trans-
port processes of amino acid, glycerophospholipid, and nucleotide
metabolism exhibited large loadings along the first five PCs. Key
reactions in cholesterol and bile acid biosynthesis also had large PC
loadings, reflecting the function of the liver in cholesterol
homoeostasis21. In both skeletal muscle and heart, the top PCs were
associated with fluxes through transport processes of amino acids and
reactions related to fatty acid β-oxidation, processes which play key
roles in skeletal muscle and heart41–44. Notably, in the brain, the main
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loadings on the top principal components were distributed across a
wide range of pathways. For instance, PC1 was associated with reac-
tions and transport processes involving bile acids and their precursors.
Bile acids, which can be synthesised within the brain and can also be
transported across the blood-brain barrier, have been reported to act
as regulators of neurological functions45,46. Likewise, PC2, and to a
lesser extent PC3, were related to reactions and transport processes
from amino acid metabolism, including reactions linked to neuro-
transmitters such as dopamine, glycine, glutamate, and nitric oxide.
PC4 was associated with reactions of fatty acid metabolism, most
notably several reactions involving arachidonic acid, a conditionally
essential fatty acid with many roles in brain function in health and
disease47,48. Lastly, PC5 was primarily associated with reactions of
nucleotidemetabolism. Finally, in adipose tissue, all PCs were strongly
associated with fatty acid metabolism, including reactions involved in
their oxidation, biosynthesis and transport. However, PC2 and PC3
were also associated with reactions of steroid metabolism, reflecting
adipose tissue’s capacity to synthesise and convert steroids49.

Fluxome-wide association study for blood metabolites
We next validated that genetically personalised GSMMs could gen-
erate reliable and meaningful flux predictions across cohorts. As
phenotypes, organ-specific flux maps are expected to lead to distinct
profiles in the bloodmetabolome. To demonstrate this, we performed
an association analysis by individually regressing eachmeasuredblood
metabolic feature against the 4300 personalised fluxes computed in
the INTERVAL35,36 and UKB37 cohorts (Supplementary Fig. 2; Methods).
The blood metabolome for INTERVAL comprised both Nightingale
Health NMR assays (N = 37,720 participants) andMetabolon HD4mass

spec assays (N = 8115 participants)50. InUKB, blood samples for 120,266
participants were profiled with Nightingale Health NMR51.

For INTERVAL, an FDR-adjusted significance threshold of
P < 1.0 × 10−6 was applied to control for all tested pairs (Methods). We
identified 4312 significant associations between flux values and blood
metabolic features in total, of which 1066 were for the Nightingale
platform and 3246 for Metabolon (Supplementary Data 2, Fig. 2A, B).
Consistent with the role of the liver in whole-body metabolic
homoeostasis21, the liver was the organ with the most associations
(1301), followed by the heart (1005), skeletalmuscle (896), brain (593),
and adipose tissue (517) (Fig. 2C, SupplementaryData 2).We externally
validated the INTERVAL flux associations with Nightingale metabolites
using UKB (Fig. 2D). We found 83% of the INTERVAL associations
replicated in UKB with an FDR-adjusted significance threshold of
P < 1.0 × 10−6 and consistent direction of the effect sizes. Effect sizes
were themselves highly correlated (ρ =0.82) between INTERVAL and
UKB (Supplementary Fig. 5).

Finally, we also evaluated the effect of the underlying genome-
scale reconstructions of human metabolism in the FWAS for blood
metabolic features. With this aim, we used organ-specific models built
from the Recon3D human GSMM25,30 to compute genetically-
personalised fluxes for the INTERVAL cohort35,36, test their association
to blood metabolic features, and compare the results to the above-
described FWAS that had used fluxes computed with HUMAN1-based
models. We identified 3895 significant associations between blood
metabolic features and the genetically personalised flux values com-
puted using Recon3D-based organ-specific models (Supplementary
Data 2). There was a significant overlap with HUMAN1models as 1761 of
these associations could be replicated in theHUMAN1-based FWAS, and

Fig. 1 | Framework for computing organ-specific personalised genome-scale
fluxmaps fromgenotype data andperformingfluxome-wide association study
(FWAS). First, we extract the organ-subnetworks from the Harvey/Harvetta multi-
organmodels, whichwere built fromRecon3D, andwe perform a liftover to update
them to HUMAN1, the most recent human GSMM. Then, a reference flux map is
computed for eachorganusing theGIM3Ealgorithm to integrate average transcript
abundances and organ-specific metabolic objectives into the organ-specific meta-
bolic subnetwork. In parallel, personalised organ-specific transcript abundances
are imputed from genotype data of the INTERVAL and UK Biobank (UKB) cohorts

using the models from PredictDB. Next, the quadratic metabolic transformation
algorithm (qMTA) is used to integrate the organ-specific transcript abundances and
reference flux distribution and compute personalised organ-specificmetabolic flux
maps. The resulting flux maps can be used to perform FWAS to complex traits or
diseases such as bloodmetabolic features or coronary artery disease. A hypothetic
representation of an organ-specific solution space, reference flux distribution, and
a set of three personalised flux distributions is shown for a reaction network with
three fluxes (vx, vy and vz).
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the associated effect sizes on bloodmetabolites were highly correlated
between HUMAN1 and Recon3D analyses (ρ =0.72). However, 2134
associations were only statistically significant on the Recon3D-based
analysis and could not be replicated with HUMAN1models. Likewise, of
the 4312 significant associations between bloodmetabolic features and
fluxes computed usingHUMAN1models, 2551 associations could not be
detected with Recon3D-based models. Such discrepancy between
HUMAN1- and Recon3D-based analyses is not surprising; HUMAN126,
which is a newer reconstruction of humanmetabolism than Recon3D25,
expands gene reaction annotations and refines reaction reversibility,
both of which can have significant effects on how genetic variation
propagates through the network and, thus, can lead to significant dif-
ferences in the resulting personalised flux maps and the downstream
FWAS. Indeed, many discrepancies between the Recon3D andHUMAN1
results are likely artefacts emerging from erroneous or incomplete
annotations in Recon3D. Throughout this work, we focus on the ana-
lyses and discussion of HUMAN1-based fluxes, as HUMAN1 has been
established to be a better representation of human metabolism26, but
results obtained with Recon3D-based models will also be provided in
the appropriate supplementary data (Supplementary Data 2, Supple-
mentary Data 3, and Supplementary Data 4).

Fluxome associations by metabolic feature class and reaction
system
The 4312 significant associations comprised 229 unique blood meta-
bolic features and 763 unique organ-specific metabolic fluxes. Con-
sistent with the coverage of the Nightingale Health and Metabolon
HD4 platforms, we found that most of these blood metabolic features
were lipid-related (Fig. 3A, Supplementary Data 2). Glycerides and
phospholipids were enriched in associations across all organs relative
to all features profiled with the Metabolon HD4 assay (Methods),
suggesting an association with core reactions (i.e., active in all mod-
elled organs). The liver and adipose tissue were also enriched in
associations with steroids, reflecting the role of such organs in
cholesterol21 and steroid hormone metabolism49.

We further assessed the metabolic systems of the 763 organ-
specific metabolic fluxes from the significant associations (Fig. 3B,
Supplementary Data 2) and found that most reactions were function-
ally part of lipid metabolism, consistent with a large number of asso-
ciations with lipid metabolic features. Reactions of fatty acid
metabolism were significantly enriched in associations with blood
metabolic features in all organs relative to all analysed reactions in
each organ-specific metabolic network. In the liver, reactions of

Fig. 2 | Fluxome-wide association study (FWAS) between genetically persona-
lised fluxmaps and bloodmetabolic features. a, b, dQuantile-quantile (QQ) plot
of the observed P values for associations between flux values and bloodmetabolic
features measured with the Nightingale Health platform in INTERVAL (a), Meta-
bolon HD4 platform in INTERVAL (b) and Nightingale Health platform in UK Bio-
bank (d). The red lines indicate the expected distribution of P values under a
uniform distribution (i.e., null hypothesis). c Plot of statistically significant (FDR-

adjusted P value < 10−6) flux effect sizes per organ to blood metabolic features
measuredwith either the Nightingale Health orMetabolonHD4 assay in INTERVAL.
A violin plot, coloured in pale azure, shows the distribution of both significant and
non-significant effect sizes. The statistical significance of each flux to blood meta-
bolic feature associations was evaluated with linear regression (two-tailed t-test for
flux effect size; Methods).
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glyceride andphospholipidmetabolismandbile acidmetabolismwere
also enriched.

There was widespread consistency between biochemical path-
ways and blood metabolic feature classes (Fig. 3C, Supplementary
Data 2). For example, reactions from the glycerides and phospholipids
system were primarily associated with blood metabolic features of
glycerides and phospholipids as well as lipoprotein fractions and their
constituents. We found that reactions of fatty acid metabolism were
associatedmainlywithbloodglyceride andphospholipids, followedby
fatty acids, which themselves provide acyl chains to glycerides and
phospholipids. Similarly, reactions from nucleotide metabolism and
amino acid metabolism were primarily associated with blood meta-
bolic features of nucleotides and amino acids, respectively.

Fluxes of the hepatic triacylglycerol to cholesteryl ester path-
way and blood lipoproteins
In the liver, we identified 555 associations between fluxes and lipo-
protein fractions (Supplementary Data 2). Most of these associations
were to reactions of glycerides and phospholipids metabolism, which
were enriched in associations relative to all analysed liver fluxes

(Methods; Fig. 3B). FWAS revealed that a major determinant of tria-
cylglycerols (TAG), free cholesterol (FC), and cholesteryl esters (CE)
fractions in lipoproteins was a sequential set of reactions which we
term the TAG to cholesterol esterification (TAG-CE) pathway (Fig. 4). In
the TAG-CE pathway, TAGs are hydrolysed to diglycerides and fatty
acids in the liver, diacylglycerides are then used as a substrate to
synthesise phospholipids (i.e., phosphatidylcholine and phosphatidy-
lethanolamine) which are subsequently used as substrates to esterify
FC. We found that fluxes through reactions of the TAG-CE pathway
were strongly associated with an increased percentage of CE in HDL
and decreased TAG levels in LDL and HDL (Table 1, Supplementary
Data 3). The pathway was also strongly associated with reduced HDL
size, likely driven by a reduction of TAG levels in HDL52. While the
associations were primarily found in the liver-specific flux map with
mediation by liver-expressed enzymes, these pathways are not
necessarily constrained to the liver. For example, the hepatic TAG
lipase localises to both the liver and blood53. Similarly, phospholipids
synthesised in the livermaybe transferred toHDL in circulation, where
they can fuel cholesterol esterification catalysed by the liver-secreted
lecithin-cholesterol acyltransferase (LCAT)52,54.

Fig. 3 | Characterisation of the significant associations between blood meta-
bolic features and metabolic fluxes. a Classes of blood metabolic features with
one or more significant associations to the fluxome. *denotes classes that are sig-
nificantly enriched (one-sided Fisher’s exact test, FDR-adjusted P value < 0.05).
FDR-adjusted P values for significantly enriched classes: Glycerides and phospho-
lipids (Metabolon): Liver: 2.5 × 10−12, Brain: 3.7 × 10−12, Heart: 6.9 × 10−12, Skeletal
Muscle: 2.9 × 10−11, Adipose tissue: 3.3 × 10−06; Steroids and sterols (Metabolon):
Adipose tissue: 0.019, Liver: 0.045. Unannotated features and classes with few
features are omitted for clarity. b Systems of the reactions whose flux values are
significantly associated with one or more blood metabolic features. *denotes sys-
tems that are significantly enriched (one-sided Fisher’s exact test, FDR-adjusted

P value < 0.05). FDR-adjusted P values for significantly enriched systems: Fatty acid
metabolism: Skeletal muscle: 3.3 × 10−30, Heart: 3.6 × 10−27, Adipose tissue:
2.0 × 10−17, Brain: 1.2 × 10−15, Liver: 5.5 × 10−10; Bile acid metabolism: Liver: 2.6 × 10−05;
Glyceride and phospholipid metabolism: Liver: 0.041. Unannotated reactions and
systems with few features are omitted for clarity. c Heatmap of the intersection
between blood metabolic feature classes and reaction systems in significant asso-
ciations. Numbers at each intersection denote the number of significant associa-
tions between reaction fluxes of a given system and blood metabolic features of a
given class. The colour key denotes the fraction of reactions of each system in each
intersection.
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Components of the TAG-CE pathway have been the subject of
various studies. For example, rare deficiencies in hepatic lipase activity
have been linked to increased TAG levels and decreased CE levels in
HDL55. Similarly, genetic variants in hepatic lipasehavebeen associated
with total cholesterol levels in HDL56,57. For phospholipids, blocking
phosphatidylcholine synthesis has been shown to result in cellular
accumulation of TAG both in vitro and in vivo58,59. Similarly, LCAT
deficiencies have been associated with reduced cholesterol ester-
ification and increased triglycerides in plasma60,61. It has also been
suggested that cholesterol may be inefficiently esterified by LCAT in
patients with CAD, leading to a lower CE to FC ratio62.

Conversely, flux through reactions disrupting TAG-CE, such as
cholesterol esterase, are predicted by our FWAS to have the opposite
effect and are associated with increased TAG levels and decreased
cholesterol esterification (Table 1, SupplementaryData 3). Among such
reactions, there is the hydrolysis of retinyl esters which can act as an
alternative source of free fatty acids inhibiting TAG lipase activity
(Fig. 4). Retinyl esters are the most abundant form of vitamin A in the
human body and are its most common form in diets and vitamin
supplements63. Dietary retinol is esterified in enterocytes, and most of
it is transported to hepatocytes by means of lipoproteins, where it is
subsequently hydrolysed and transferred to stellate cells for storage64.
Notably, the administration of high doses of retinol derivatives has
been reported to increase total triglyceride levels and, in some
instances, increase total cholesterol in LDL while decreasing total
cholesterol inHDL65–68.Wehypothesise that this occursbecause retinyl
esters disrupt the hepatic TAG-CE pathway, inhibiting triglyceride
lipase and reducing cholesterol esterification, thus reducing the
capacity ofHDL to collect FC fromother lipoproteins such asLDL52,62,69.

FWAS identifies metabolic fluxes associated with coronary
artery disease
We extended our approach of fluxome-wide analysis to common
diseases and performed a multi-tissue FWAS for CAD in UKB. We
evaluated the association of the 4300 metabolic fluxes with CAD
using Cox regression (Methods), which identified 92 significant
associations (FDR-adjusted P value < 0.05 controlling for all tested
fluxes). Of such associations, 31 could be replicated with genetically
personalised fluxes computed with Recon3D-based models,
whereas 61 were specific to the HUMAN1-based models. Liver fluxes
yielded the largest number of significant associations with CAD
(N = 32), followed by fluxes from the adipose tissue (N = 26), heart

(N = 15), brain (N = 10), and skeletal muscle (N = 9) (Fig. 5; Supple-
mentary Data 4).

The flux of histamine synthesis through histidine decarboxylase
was shown to be strongly associated with CAD in adipose tissue with a
hazard ratio (HR) per s.d. of log-transformed flux value of 1.060 and a
P value of 2.33 × 10−27 (Supplementary Data 4). Such association was
also detected in the liver, where both the fluxes through histidine
uptake (HR = 1.024 per s.d., P = 1.65 × 10−5) and histidine decarboxyla-
tion (HR= 1.027per s.d.,P = 8.60 × 10−7) were associatedwith increased
CAD risk. Histamine is an inflammatory mediator synthesised from
histidine primarily in mast cells70, which reside in most tissues,
including liver and adipose tissue71,72. Histamine has been reported to
be associated with atherosclerosis via blood lipids and lipoprotein
fractions as well as by promoting inflammation73–76. In adipose tissue,
polyamine synthesis was also associated with reduced CAD risk
(spermidine synthase: HR =0.9517 per s.d., P = 6.06 × 10−21). Notably,
polyamine-rich diets have been established to have a protective effect
against cardiovascular disease77,78. Moreover, it has recently been
determined that polyamines produced by adipose endothelial cells
might protect against obesity, a known risk factor for CAD79, by pro-
moting vascularisation and lipolysis in white adipose tissue80.

Concerning lipid metabolism, the fluxes through the TAG lipase
reactions in adipose tissue (HR =0.9652 per s.d., P = 6.48× 10−11), heart
(HR =0.9675 per s.d., P = 1.06 × 10−9) and skeletal muscle (HR =0.9693
per s.d., P = 9.83 × 10−9) were strongly associated with reduced CAD
risk, consistent with the anti-atherogenic effect of lipoprotein lipase
activity in these organs81. Similarly, the release of free fatty acids from
adipose tissue was also associated with reduced CAD risk (e.g., the
release of oleic acid: HR =0.9688per s.d., P = 5.09 × 10−19 and releaseof
myristic acid: HR =0.9691 per s.d., P = 6.64 × 10−9). Interestingly, not
only is the release of free fatty acids part of normal adipocyte
function21, but it is also a key part of the polyamine-driven signalling
cascade in adipose tissue80. Conversely, the flux through the phos-
pholipase reaction was associated with increased CAD risk in adipose
tissue (HR = 1.027 per s.d., P = 9.48 × 10−7). Notably, phospholipase
activities have been suggested to have a causal role in atherosclerosis
and have been investigated as potential pharmacological targets to
prevent atherosclerosis and CAD82–85.

The fluxes through several transport processes were also identi-
fied as associated with CAD. For instance, histamine transport in the
liver appears to be associated with CAD risk in a transport process-
specific manner, with histamine transport through uniport being
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Fig. 4 | Triacylglycerol to cholesteryl ester pathway in the liver. Fluxes through
reactions of the pathway are negatively associatedwith triacylglycerol levels in LDL
andHDL and positively associatedwith the percentage of cholesteryl esters in HDL.

Fluxes through reactions disrupting the pathway have the opposite effect. Trans-
port processes and somemetabolites (e.g., glycerol) have been omitted for clarity.
CEPTE ethanolamine phosphotransferase, CEPTC choline phosphotransferase.
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Table 1 | Top associations between metabolic fluxes and lipoproteins in the hepatic triacylglycerol to cholesteryl ester
pathway

Reaction Blood metabolic feature Effect size FDR-adjustedP value (INTERVAL) FDR-adjusted P value (UKB)

Triacylglycerol lipase HDL_CE_pct + 3.48 × 10−31 2.22 × 10−72

HDL_CE_pct_C + 1.86 × 10−73 <2.225 × 10−308

HDL_size − 2.97 × 10−50 4.67 × 10−292

HDL_TG − 9.88 × 10−74 1.12 × 10−245

LDL_TG − 3.37 × 10−78 3.30× 10−250

Ethanolamine phosphotransferase HDL_CE_pct + 1.49 × 10−29 5.98 × 10−70

HDL_CE_pct_C + 4.39 × 10−74 <2.225 × 10−308

HDL_size − 4.25× 10−53 9.52 × 10−307

HDL_TG − 2.86 × 10−73 1.60 × 10−249

LDL_TG − 3.99× 10−79 1.97 × 10−259

Lecithin-cholesterol acyltransferase HDL_CE_pct + 5.45 × 10−22 1.15 × 10−52

HDL_CE_pct_C + 4.60× 10−46 1.12 × 10−235

HDL_size − 4.24 × 10−33 2.17 × 10−206

HDL_TG − 7.02 × 10−54 3.70× 10−171

LDL_TG − 9.03 × 10−55 2.05 × 10−171

Cholesteryl ester release HDL_CE_pct + 3.76 × 10−26 4.17 × 10−62

HDL_CE_pct_C + 5.19 × 10−59 8.75 × 10−291

HDL_size − 2.17 × 10−41 8.02 × 10−254

HDL_TG − 1.97 × 10−61 8.76 × 10−206

LDL_TG − 1.23 × 10−66 1.35 × 10−215

Cholesterol esterase HDL_CE_pct − 1.50× 10−23 4.31 × 10−57

HDL_CE_pct_C − 4.32 × 10−60 2.10× 10−264

HDL_size + 5.11 × 10−37 1.29 × 10−226

HDL_TG + 3.90× 10−51 7.37 × 10−186

LDL_TG + 2.92 × 10−60 2.56 × 10−200

Retinyl ester hydrolase HDL_CE_pct − 3.76 × 10−23 1.04 × 10−53

HDL_CE_pct_C − 8.90× 10−57 1.24 × 10−261

HDL_size + 2.15 × 10−37 1.87 × 10−227

HDL_TG + 3.14 × 10−49 1.54 × 10−175

LDL_TG + 2.19 × 10−57 3.34 × 10−193

A complete list of significant associations is provided in Supplementary Data 3. The statistical significance of each flux to lipoprotein associations was evaluated with linear regression (two-tailed t-
test for flux effect size; Methods). HDL_CE_pct cholesteryl esters to total lipids ratio in HDL, HDL_CE_pct_C esterified cholesterol to total cholesterol ratio in HDL, HDL_sizemean diameter for HDL
particles, HDL_TG triglycerides in HDL, LDL_TG triglycerides in LDL.

Fig. 5 | Fluxome-wide association analysis (FWAS) between genetically perso-
nalised flux values and coronary artery disease. a quantile-quantile (QQ) plot of
the observed P values for associations between flux values and coronary artery
disease risk. The red line indicates the expected distribution of P values under a
uniform distribution (i.e., null hypothesis) and the area coloured in grey shows the
95% confidence intervals of such distribution. b Plot of the statistically significant

(FDR-adjusted P value < 0.05) flux hazard ratios per organ on coronary artery dis-
ease risk. The violin plot, coloured in pale azure, shows the distribution of both
significant and non-significant hazard ratios. Statistical significance of the asso-
ciation of each flux to coronary artery disease was evaluated with a Cox propor-
tional hazards regression (two-tailed Wald test for flux hazard ratios; Methods).
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associated with decreased CAD risk (HR =0.942 per s.d.,
P = 2.60 × 10−28) and its antiport with glutathione being associated to
increased risk (HR= 1.051 per s.d., P = 9.77 × 10−20). Also in the liver,
transport of bilirubin conjugates was associated to decreased CAD risk
(transport of bilirubin-monoglucuronoside: HR =0.9629 per s.d.,
P = 2.74 × 10−12 and transport of bilirubin-bisglucuronoside: HR =
0.9808 per s.d., P = 3.49 × 10−4). Notably, the transport process of
bilirubin-monoglucuronoside is mediated by SLCO1B1, which also
mediates the hepatic uptake of statins, enhancing their therapeutic
efficacy86,87. Interestingly, high levels of total bilirubin in blood have
been associated with decreased risk of CAD88,89, likely mediated by the
modulation of arterial diameter and reactivity90. In both the brain and
heart, the flux of prostaglandin E2 transport was also associated with
increasedCAD risk (brain: HR = 1.058per s.d., P = 4.23 × 10−26 andheart:
HR = 1.049 per s.d., P = 5.27 × 10−19). Prostaglandin E2 is an inflamma-
tory mediator that promotes inflammation and has been reported to
contribute to the development of atherosclerotic lesions91,92. Addi-
tionally, in the brain, the transport of norepinephrine, a neuro-
transmitter that can increase blood pressure and may play a role in
atherosclerosis93,94, was also associated with increased risk of CAD
(HR = 1.041 per s.d., P = 4.49 × 10−14).

Discussion
Here, we present a new framework that uses metabolic modelling to
leverage the stoichiometric relationships of enzymes in human
genome-scalemetabolic networks to characterise howgenetic variants
affect metabolic phenotypes. We achieve this by integrating genetic
effects on transcript levels into organ-specific GSMMs and simulating
how they propagate and interact into genome-scale fluxmaps ofmajor
human organs. To validate ourmethod, we built organ-specificmodels
for the liver, heart, skeletal muscle, brain, and adipose tissue for over
520,000 individuals from the INTERVAL35,36 and UKB37 cohorts, sur-
passing by more than two orders of magnitude the number of perso-
nalised GSMMs built in previous works30–33. Association analyses were
performed between genetically-personalised flux values and directly
measured blood metabolites in both INTERVAL and UKB, identifying
many significant and replicable associations. As expected, we found
that most blood metabolic features were associated with functionally
related flux pathways. Finally, we demonstrate that fluxome-wide
analysis can be used to identify putative metabolic drivers of CAD.

With cardiovascular disease being a leading cause of mortality and
comorbidity worldwide95, the identification of specific biochemical
reactions linked to CAD using population-scale genomic data is of sig-
nificant interest tobothbasic discovery science and thedevelopment of
therapeutics. Indeed, many of the 92 flux associations we identified
involve pathways or metabolites that have been associated with CAD in
existing studies, such as histamine73,76, TAGs96, or phospholipase
activity82,83,85. Themodulationof someof thesefluxes has been explored
as therapies for CAD, namely several phospholipase inhibitors83,84.

Our analysis has several limitations. For instance, as a proof of
concept, this study focusedonmodelling only thefivemostprominent
human organs40, and thus we can only identify flux to phenotype
associations in the liver, heart, skeletal muscle, brain, and adipose
tissue. However, given the availability of models to impute tissue- or
cell-specific transcript abundance from genotype13, this analysis can
easily be expanded to other tissues and cell types. Indeed, we envision
that future applications may select organs for modelling based on the
target diseases or phenotypes. Furthermore, themodelling framework
presented here is limited to only simulating the effect of genetic var-
iants affecting transcript levels. In the future, it could also be expanded
to model the impact of gain or loss of function variants97 and envir-
onmental variables (e.g., diet, lifestyle, and medication) on the perso-
nalised flux maps. Additionally, while transcript levels are widely used
in genome-scalemetabolic modelling26,29,38, protein levels have a more
direct effect on enzymatic activity, and new methods are being

developed to fully integrate them into GSMMs26,98. With models to
impute the levels of proteins becoming increasingly available12,15, we
expect that the framework for computing genetically personalised
fluxes will be extended to integrate the protein layer in the future.
Finally, an inherent limitation of our analysis is that it is dependent on
the quality of the underlying metabolic networks and their gene-
reaction annotations. Indeed, we determined that an important num-
ber of the associations between fluxes and blood metabolomics or
CAD risk could not be replicated with models based on an earlier
reconstruction of human metabolism (i.e., Recon3D25). However, with
human GSMMs becoming increasingly more well-annotated26, differ-
ences in FWAS results using models built from different genome-scale
reconstructions of humanmetabolismwill progressively becomemore
subtle.

Concerning translating genetically personalised models and
fluxes to clinical applications,GSMMshave already been established to
have utility for drug discovery and repositioning32,99–102. Therefore,
FWASmay enable identifying fluxes associatedwith disease states and,
by extension, the gene knockdowns or metabolic interventions (e.g.,
dietary supplements or metabolic inhibitors) to target them. FWAS to
blood metabolic features may also help screen for potential adverse
side effects ofmetabolic interventions. For example, we identified that
retinyl esters might increase TAG levels and reduce cholesterol ester-
ification in lipoproteins, consistent with reports that administering
high doses of vitamin A derivatives results in hypertriglyceridemia and
dysregulation of cholesterol levels65–68. Furthermore, while it is very
early days, personalised fluxes associated with disease risk could also
be incorporated into existing risk prediction models, potentially
enhancing their predictive capacity.

Overall, this work demonstrates that genome-scale metabolic
modelling can contribute to addressing the V2F challenge by char-
acterising how the effects of genetic variants propagate through the
metabolic networks of specific human organs.

Methods
INTERVAL cohort
INTERVAL is a cohort of approximately 50,000 participants nested
within a randomised trial studying the safety of varying the frequency
of blood donation (https://clinicaltrials.gov/ct2/show/NCT01610635).
Participants were blood donors aged 18 years and older (median 44
years of age; 50% women) recruited between 2012 and 2014 from 25
NHS Blood and Transplant centres35,36. Genetically personalised fluxes
were computed for the 37,220 individuals with genotype and blood
metabolome data that had passed quality control.

Genotyping of INTERVAL samples, their quality control and
imputation were performed as previously described:103 Participants
were genotyped in ten batches using Affymetrix UK Biobank arrays.
Duplicate samples, samples with extreme heterozygosity or sex mis-
match, were removed, and participants of non-European descent were
excluded. First- or second-degree relatives (identity-by-descent
π̂>0:187) were also removed, keeping one sample at random from each
pair of close relatives. Genotyped variants were removed if they had a
call rate <99%,weremonomorphic, or hadHardy-Weinberg equilibrium
P value < 5 × 10−6. Variants were subsequently phased using SHAPEIT3,
then imputed to the UK10K/1000 Genomes reference panels using the
Sanger Imputation Server (https://imputation.sanger.ac.uk).

UK Biobank
UKB is a cohort of approximately 500,000 participants from the
general UK population (https://www.ukbiobank.ac.uk/). Participants
were between age 40 and 69 at recruitment (median 58 years of age;
54% women) and accepted an invitation to attend one of the assess-
ment centres that were established across the United Kingdom
between 2006 and 201037. Genetically personalised fluxes were com-
puted for the 487,395 individuals in the version 3 release of the UK
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Biobank genotype data104 (https://biobank.ndph.ox.ac.uk/showcase/
label.cgi?id=263), which has been imputed to the UK10K/1000 gen-
omes and haplotype reference consortium (HRC)105 panels.

Building organ-specific models
For each analysed organ (i.e., adipose tissue, brain, liver, heart, and
skeletal muscle), the set of organ-specific metabolic reactions was
extracted from the Harvey/Harvetta models (version 1_03c)30, which
contain manually curated metabolic networks for the major organs of
the human body. To avoid any gender biases, any reaction present in
either the male (Harvey) or female (Harvetta) models was included.

Harvey/Harvetta models were built from the Recon3D human
GSMM25, which has been superseded by HUMAN126. Hence, we per-
formed a liftover to update theHarvey/Harvetta organ-specificmodels
to HUMAN1. Briefly, the IDs of the organ-specific metabolic reactions
from the Harvey/Harvetta models were mapped to HUMAN1 (version
1.11.0) using the mapping provided in the HUMAN1 reaction
annotations26. Subsequently, the resulting set of HUMAN1 reaction IDs
was used to assemble organ-specific models from HUMAN1 reactions.
Manual curation was used to identify and, when possible, correct gaps
and missmaps. Some reactions in the Harvey/Harvetta models that
were not present on the base Recon3D and thus could not be mapped
toHUMAN1, were also added to the resulting network. These reactions
included phospholipase, cholesterol esterase, and extracellular LCAT.
Additionally, the side acyl chains of triglycerides and phospholipids
were simplified to a stoichiometric mix of 1/3 oleoyl, 1/6 palmitoleoyl,
1/6 palmitoyl, 1/6 stearoyl, 1/6 myristoyl in line with the ratio used in
Harvey/Harvetta for non-essential fatty acids30. Boundaries for the
exchange reactions fluxes (i.e., rates ofmetabolite uptake or secretion)
between each organ-specific model and blood or bile were set as the
average bounds of the corresponding reactions in the Harvey and
Harvetta models. In some instances, the ranges of metabolite uptake
and secretion were further constrained to ensure that they were phy-
siologically relevant. In the brain-specificmodel, exchange reactions to
blood were mapped to the exchange reactions between blood and
cerebrospinal fluid defined in Harvey/Harvetta. Such reactions had
been defined, taking into consideration the selective permeability of
the blood-brain barrier30. Thus, only metabolites permeable to this
barrier can be exchanged between blood and the brain-specificmodel.
Next, metabolites in blood or bile were made boundary conditions
(i.e., assumed constant), allowing each organ subnetwork to function
independently. Finally, given thatmostHUMAN1 reactions lack a name
attribute, unnamed reactions in the resulting network were named
using their corresponding name in Recon3D. In a number of instances,
ambiguously named reactions were manually renamed.

To validate the resulting organ-specific models, we performed
flux variability analysis (FVA)106 to test the capacity of reactions in the
networks to carry a significant amount of flux (>10−6 mol/day), and 93%
were shown to be capable of carrying a significant flux. Furthermore,
models were also evaluated against a set of essential metabolic tasks
(i.e., tasks all organs are expected to perform to be viable) and organ-
specific metabolic tasks obtained from the HUMAN1 repository26

(Supplementary Data 5). Each organ-specific model was shown to be
capable of successfully performing all essential tasks as well as its
organ-specific tasks. The resulting organ-specific GSMMs are available
on GitHub and permanently archived by Zenodo107.

Additionally, a set of Recon3D-based organ-specific models were
also built. Suchmodels were obtained by applying the steps described
above without performing the liftover to HUMAN1.

Computing organ-specific reference flux maps
The GIM3E algorithm was applied to compute the reference flux
map for each organ. The GIM3E algorithm applies a flux minimisa-
tion weighted by transcript abundances allowing to find solutions
that are enzymatically efficient, consistent with gene expression

data and fulfil a set of metabolic objectives38 (Supplementary Fig. 1).
First, a set of metabolic objectives was defined for each organ
representing major metabolic functions that each organ fulfils in
the conditions under study (Supplementary Data 6). These were
added in each organ subnetwork as lower bounds for flux values
through reactions associated with those metabolic objectives.
Lower bounds were set relative to the maximum flux feasible
through such reactions identified with FVA106.

Next, organ-specific transcript abundances were obtained as
transcripts per million from the GTEx Portal14 (GTEx Analysis Release
V8; dbGaP Accession phs000424.v8.p2; accessed on 05/05/2021) and
the average abundanceof each transcript in eachorganwascomputed.
In the heart, adipose tissue, and brain, there were transcripts abun-
dances measured from multiple source sites. Hierarchical clustering
analysis indicated that source sites from each organ were clustered
together (Supplementary Fig. 6). Hence, the average of the source sites
in each organwas used for the heart, adipose tissue and brain. Average
transcript abundances were mapped to the organ-specific subnet-
works using the gene reaction annotations of HUMAN126. More in
detail, transcript abundances of isoenzymes and enzyme subunits
catalysing each reaction or transport process were added and, subse-
quently, log2 transformed. The resulting values were used as input to
apply the flux minimisation weighted by reaction expression38:

minimise
X
i

vi � max 0, P95 � �xGTExi

� �
+ 1

� �
ð1Þ

subject to:

s:v=0

lb≤v≤ub

where, v is a vector of steady-state flux values; �xGTEX is a vector of
average transcript abundances mapped to reactions of the organ-
specific network; P95 is the 95th percentile of the average transcript
abundance values mapped to reactions of the organ-specific network;
s is the stoichiometric matrix. Its product with v defines the metabolic
steady state constraint (i.e., input and output fluxes must be balanced
for eachmetabolite in the network); lb and ub are vectors defining the
lower and upper bounds of reactions, respectively. The organ-specific
metabolic objectives are defined as lower bounds greater than 0 (i.e.,
constraining such reactions to being active) for the relevant reactions.

Subsequently, FVA was used to identify the feasible flux ranges
within 99% of the optimal value of the GIM3E objective function38.
Finally, the resulting solution space was sampled using the Artificially
Centred hit-and-run (ACHR) algorithm39 implemented into
COBRApy108,109. ACHR was run with a thinning factor of 1000, and
1000sets of steady-statefluxdistributionswere computed. The average
of those flux samples was used as each organ’s reference flux map.

Following the same approach, reference fluxes were also com-
puted for the Recon3D organ-specific models using the gene reaction
annotations of Recon3D25.

Imputing individual-specific gene expression data
The elastic net models from PredictDB13 were used to impute organ-
specific gene expression levels from individual-level genotypes. These
are well-established models that have been extensively
validated13,110–112. The latest release of PredictDB models, which had
been trainedwith GTEx v8 data, were obtained fromhttps://predictdb.
org/. They were used with PLINK2113 to predict relative transcripts
abundances using genotype data from the INTERVAL35,36 and UKB37

cohorts. For adipose, brain and heart tissue, the average of the impu-
ted abundances in each source site was used.
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Mapping individual-specific gene expression data to reactions in
the model
Imputed individual-specific expression patterns frommetabolic genes
(i.e., genes coding for enzymes, enzyme subunits, or transmembrane
carriers) were mapped to organ-specific models using the gene reac-
tion annotations of HUMAN126. Imputed values were expressed as log2
fold changes relative to average gene expression in GTEx andmapped
to reactions in the organ-specific model considering the relative
transcript abundance of isoenzymes and enzyme subunits in GTEx:

FCR,n =

P
g2gR

GTExg � 2Sg,n

P
g2gR

GTExg
ð2Þ

where, Sg,n is the organ-specific score for gene g in individual n
computed using the elastic net models from PredictDB; GTExg is the
average organ-specific gene expression of gene g in GTEx; gR are the
genes associatedwith reaction R in the organ-specific network; FCR,n is
the imputed reaction activity fold change for reaction R in individual n.

Reaction activity fold changes were also computed for the
Recon3Dorgan-specificmodels using the gene reaction annotations of
Recon3D25.

The quadratic metabolic transformation algorithm
Building upon the principle of the metabolic transformation
algorithm101,102, we developed qMTA. qMTA seeks to identify the flux
map most consistent with a set of reaction activity fold changes
starting from a reference flux distribution (Supplementary Fig. 2). To
this end, it minimises the difference between the simulated flux values
and the target fluxes (i.e., the product of the flux value in the reference
flux distribution and the reaction activity fold change). Additionally, it
also minimises the deviation from the reference flux distribution in
reactions not mapped to any gene expression fold changes. Further-
more, the two terms of the optimisation function are scaled by the
reference flux distribution to prevent biases towards reactions with
high flux values.

minimisew
X

i2Ru

vrefi � vqMTA
i,n

� �2

max ∣vrefi ∣,m
� � +

X
i2Re

vrefi �FCi,n � vqMTA
i,n

� �2

max vrefi ðFCi,n � 1Þ� �2
,m

� �

ð3Þ
Subject to:

s: vqMTA
n =0

lb< vqMTA
n <ub

where, w is the weight given to minimising variation in reactions not
mapped to imputed gene expression; Ru are reactions not mapped to
imputed gene expression;vref is the flux vector of the reference flux
distribution; vqMTA

i,n is the simulated flux value for reaction i in indivi-
dual n; m is the minimum value allowed for the scaling factor;Re are
reactions mapped to imputed gene expression.

Personalised flux maps computed with qMTA were subsequently
log2 transformed and standardised to zero-mean and unit variance.

Additionally, twohyperparameters in qMTA (w andm)were tuned
using the regression analysis with blood metabolic features in the
INTERVAL cohort. For each simulated organ, a grid search
(w→ [100,10,1,0.1,0.01],m→ [10−6, 10−7, 10−8, 10−9, 10−10, 10−11, 10−12]) was
performed to identify the parameters that resulted in flux maps with
the strongest association with both Nightingale Health andMetabolon
HD4 metabolic features. This was measured as the summation of the
amount of variance explained (R2) for each blood feature-flux value

pair when testing associations between metabolic fluxes and blood
metabolic features. The resulting parameters were subsequently used
in the analysis of the samples from UKB. The process was repeated to
identify the best set of hyperparameters for the Recon3D-based
models.

Metabolomics
The Nightingale NMR platform quantifies 230 and 249 analytes in
INTERVAL and UKB, respectively, including lipoprotein subfractions
and ratios, lipids and low molecular weight metabolites (e.g., amino
acids)51. In INTERVAL, blood samples were profiled with the Night-
ingale platform at the baseline of the blood donation assay
(N = 37,720). In UKB, metabolite concentrations were determined in
117,981 participants at baseline assessment and 5141 participants at
repeat assessment, among which there were 1427 participants with
measurements at both time points. For participants with measure-
ments at both baseline and repeat assessment, the measurement at
baseline assessment was used114. Values were adjusted for technical
covariates using the ukbnmr R package114 and subsequently regressed
for age, sex, BMI, and the first 5 PCs of genetic ancestry. Composite
biomarkers and ratios were recomputed after adjustment, including
98 and 76 additional biomarker ratios in INTERVAL and UKB, respec-
tively, not provided by the Nightingale platform. Metabolic features
not present in both INTERVAL and UKB were excluded from down-
stream analyses. Likewise, 68 features with markedly distinct variance
between INTERVAL and UKB (|log2(sdINTERVAL/sdUKB)| > log2(2.5)) were
also excluded. Finally, acetate was excluded due to a large number of
NA (>75%) in INTERVAL. Subsequently, measures were standardised to
zero-mean and unit variance.

The Metabolon HD4 assay measures ~1000 metabolites (~700
named, ~300 unknown), including lipids, xenobiotics, amino acids and
energy-related metabolites. A subset of INTERVAL participants
(N=8,115) had their blood profiled with this assay, predominantly using
baseline blood samples. Nineteen features were excluded due to a
large number of NA (>75%). Values were regressed against technical
covariates age, sex, BMI, and the first 5 PCs of genetic ancestry. Sub-
sequently, measures were standardised to zero mean and unit-
variance.

Testing associations between metabolic fluxes and blood
metabolic features
Due to the linear nature ofmanymetabolic pathways, some flux values
were highly intercorrelated (Fig. S3). To remove reaction flux pairs
with a strong correlation, for each pair of reaction flux values with
ρ > 0.9, the feature with the largest mean absolute correlation to other
flux values was removed115. Likewise, both the Nightingale and Meta-
bolonplatforms had somemetabolic featureswith strong correlations,
and those features with ρ >0.75 were removed using the same
approach used for reaction fluxes. Overall, 4300 scaled flux values and
57 Nightingale Health and 718 Metabolon HD4 blood metabolic fea-
tures were selected to perform FWAS.

Then, the association of each metabolic feature to each perso-
nalised flux value was evaluated using linear regression (Supplemen-
tary Fig. 2).

Met =aMet,i �vqMTA
i + ε ð4Þ

where,Met are themeasured levels of a bloodmetabolic feature; aMet,i

is the effect size of flux i on Met; ε is the residual.
Statistical significance was evaluated with a t-test (two-tailed) on

effect sizes. The resulting P values were adjusted for multiple testing
against all evaluated blood metabolic features—reaction flux pairs
using the Benjamini and Yosef Hochberg (i.e., FDR) method.

To evaluate the association between metabolic fluxes computed
with Recon3D-based models and blood metabolic features, the set of
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4300 uncorrelated flux values in HUMAN1 was mapped to equivalent
reactions in the Recon3D-based models. This set of flux values was
then used to perform FWAS to the same set of 57 Nightingale Health
and 718 Metabolon HD4 blood metabolic features as the HUMAN1
analysis.

Classes of blood metabolic features
Nightingale/Metabolon platforms provide sets of Groups/Sub-path-
ways to stratify metabolic features. We harmonised both annotations
systems to define a set of curated groups that could be applied to both
Nightingale and Metabolon features. For instance, the Metabolon
features annotated to “Glycerolipid Metabolism” and “Phospholipid
metabolism”, and the Nightingale features annotated to “Phospholi-
pids” were all assigned to the curated group “Glycerides and phos-
pholipids”. Some Metabolon features were not annotated (i.e.,
unknown) and could not be assigned to any curated group. Unknown
features were included in the FWAS but omitted from the enrichment
analysis. Fisher’s exact test (one-sided) was used to identifymetabolite
classes enriched in featureswith significant association topersonalised
flux values relative to the set of all uncorrelated blood metabolic fea-
tures. An FDR-adjusted significance threshold of P < 0.05 was applied
to control for all tested classes of blood metabolic features across all
organs.

Reaction systems
Subsystem annotations for reactions were obtained from the HUMAN1
model26. As some subsystems contained a low number of reactions,
functionally related subsystems were merged into larger reaction
systems. For instance, the purine metabolism, pyrimidine metabolism
and nucleotide metabolism subsystems were aggregated into a reac-
tion system termed nucleotide metabolism. Additionally, transport
processes (i.e., annotated in the transport or exchange reactions sub-
systems) were assigned a system based on the specific metabolites
being transported in eachprocess. Briefly, wefirst assigned a system to
each metabolite based on the most frequent reaction system annota-
tion in the reactions in which it participates. For instance, alanine was
assigned to the system “amino acid metabolism” since it was the sys-
tem annotated most in reactions in which alanine participated. Next,
each transport process/exchange reaction in HUMAN1 was assigned
the system most numerous in the metabolites being transported. For
the purpose of this assignment, metabolites that are often cofactors in
transport processes (e.g., Na+, K+, H+, and ATP/ADP) were set to give
less weight than other metabolites. For instance, the alanine-sodium
symporter (alanine[e] + Na+[e] → alanine[c] + Na+[c]) was assigned to
the system “amino acid metabolism” as alanine (system: amino acid
metabolism) was givenmore weight than Na+ (system:Miscellaneous).
Reaction systems are solely used as annotations and have no influence
on network stoichiometry or genetically personalised flux values.

Fisher’s exact test (one-sided) was used to identify reaction sys-
tems enriched in reactions with significant association with blood
metabolic features relative to the set of all evaluated reactions in each
organ. An FDR-adjusted significance threshold of P <0.05 was applied
to control for all tested systems across all organs.

Testing associations between metabolic fluxes and coronary
artery disease
Using PheWASCatalogue (version 1.2), we used theWHO International
Classification of Diseases (ICD) diagnosis codes in versions 9 (ICD-9)
and 10 (ICD-10) of Phecode 411.4 for CAD case definition in UKB. In
detail, we searched for the presence of any of the constituent ICD-9/10
codes in linked health records (including in-patient Hospital Episode
Statistics data, and primary and secondary cause of death information
from the death registry) and converted the earliest coded date to the
age of phenotype onset. Individuals without any codes for CAD were

recorded as controls and censored according to the maximum follow-
up of the health linkage data (January 31, 2020) or the date of death.

We recorded 34,121 events of CAD and 428,669 controls in UKB,
which were used to evaluate the association of genetically persona-
lised fluxes to CAD risk. Association was tested using an age-as-time-
scale Cox proportional hazards regression. The Cox models were
stratified by sex and adjusted by genotyping array, 10 genetic PCs, BMI
and smoking status and fitted using the CoxPHFitter function from the
lifelines package for python116. The significance of the flux to CAD risk
associations was evaluatedwith a two-tailedWald test for the flux HRs.
The resulting P values were adjusted for multiple testing against all
tested fluxes using the Benjamini and Yosef Hochberg (i.e., FDR)
method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data from the INTERVAL35,36 and UK Biobank37 cohorts is under
restricted access as it contains potentially identifying and sensitive
patient information. It can be accessed by making a reasoned request
to the INTERVAL coordination centre (https://www.intervalstudy.org.
uk) and UKB (https://www.ukbiobank.ac.uk/), respectively. Response
times from the data access committees are typically under onemonth.
The summary statistics for the FWAS to blood metabolic features and
CAD are provided in SupplementaryData 2, Supplementary Data 3 and
Supplementary Data 4. The organ-specific genome-scale metabolic
models generated in this work are available on the cobrafunctions
GitHub repository, which is permanently archived by Zenodo107.
HUMAN126 (version 1.11.0) can be obtained from the Human-GEM
GitHub repository. The Harvey and Harvetta models (1_03c) are avail-
able in the Supporting Information of reference 30. The elastic net
PredictDB models (GTEx v8) models13 are available at https://
predictdb.org. The GTEx14 gene expression data (GTEx Analysis
Release V8; dbGaP Accession phs000424.v8.p2) can be obtained from
https://gtexportal.org.

Code availability
The code used to generate personalised organ-specific fluxmaps from
imputed gene expression data is available on GitHub and permanently
archived by Zenodo107. qMTA requires the proprietary solver
CPLEX(2.6 or newer), which is freely available to academic users.
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