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Spatial-ID: a cell typing method for spatially
resolved transcriptomics via transfer learn-
ing and spatial embedding

Rongbo Shen 1,7, Lin Liu2,7, Zihan Wu 1,7, Ying Zhang2,7, Zhiyuan Yuan 1,3,
Junfu Guo 2, Fan Yang1, Chao Zhang2, Bichao Chen 2, Wanwan Feng1,4,
Chao Liu2, Jing Guo2, Guozhen Fan2, Yong Zhang2,5, Yuxiang Li2,5 ,
Xun Xu 2,6 & Jianhua Yao1

Spatially resolved transcriptomics provides the opportunity to investigate the
gene expression profiles and the spatial context of cells in naive state, but at
low transcript detection sensitivity or with limited gene throughput. Com-
prehensive annotating of cell types in spatially resolved transcriptomics to
understand biological processes at the single cell level remains challenging.
Here we propose Spatial-ID, a supervision-based cell typing method, that
combines the existing knowledge of reference single-cell RNA-seqdata and the
spatial information of spatially resolved transcriptomics data. We present a
series of benchmarking analyses on publicly available spatially resolved tran-
scriptomics datasets, that demonstrate the superiority of Spatial-ID compared
with state-of-the-art methods. Besides, we apply Spatial-ID on a self-collected
mouse brain hemisphere dataset measured by Stereo-seq, that shows the
scalability of Spatial-ID to three-dimensional large field tissues with subcellular
spatial resolution.

In the last decade, single-cell RNA-seq (scRNA-seq) technologies have
made significant progress toward the systematic characterization of
cell dynamics1,2. However, the dissociation step of scRNA-seq leads to
loss of spatial information, preventing the investigation of tissue
organization in its naive state3. To revealfine-scale spatial organization
and microenvironments within tissues, various spatially resolved
transcriptomics (SRT)4–6 technologies have been introduced to map
gene expression profiles to the spatial context. Early technologies
attempted to spatially map multiplexed gene expression by either
in situ hybridization (ISH)7,8 or spatially barcoded oligo-
deoxythymidine microarrays9,10. More advanced ones, e.g., seqFISH11,
seqFISH+12, MERFISH8, Slide-seq13,14, HDST15, and Stereo-seq16, have
been proposed to improve in terms of spatial resolution, gene

throughput, and transcript detection sensitivity, allowing for com-
prehensive mapping of transcripts over large tissue sections.

Cell type annotation is a fundamental task for cell and tissue
biology17 that can help characterize the biological process of tissues at
single-cell level. This task is conventionally performed by single-cell
transcriptome analysis on the data acquired by scRNA-seq technology.
Facing the exponential growth of high-dimensional and noisy data
associated with sequencing technologies18, it requires high perfor-
mance annotation methods that can effectively reduce dimensionality
and are robust to data noise19. Annotating cell identities is even more
challenging for SRT datasets20. For example, spot-based protocols
such as Visium9, Slide-seq13,14, HDST15, and Stereo-seq16 capture RNA
from areas spanning more (or less) than one cell, without
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consideration of cell boundaries. In addition, due to inherited experi-
mental design, the low transcript detection sensitivity of spot-based
protocol furthermakes themeasured transcriptomic profiles deviated
from the real transcript levels of single cells. Also, FISH-based proto-
cols face similar problem arising from potential inaccuracy of cell
segmentation.

To completely understand the cell type organization of biological
tissues,many cell atlas projects such asHumanCell Atlas (HCA)21, Allen
Brain Atlas (ABA)22, Brain Atlas of BICCN23, exploited hierarchical
clustering scheme on large-scale scRNA-seq datasets to establish cell
type taxonomy and define marker genes of each cell type by differ-
ential gene expression analysis. One of the main limitations of clus-
teringmethods is that the cell type taxonomyandmarker gene sets are
bound to a certain level of clustering resolution24. Moreover, the
computational characterization of the cell heterogeneity requires a
series of statistical per-cell gene signature assessments to remove low-
quality and doublet-driven clusters3,24. Besides, facing the explosive
data growth of new sequencing technologies, such de novo clustering
methods24 become more laborious, computationally intensive and
inefficient. It is more desirable to develop supervised cell typing
methods that transfer knowledge from annotated reference datasets
to newly generated datasets25.

To better characterize cell identities from reference datasets with
well-defined cell types, many correlation-based and supervision-based
cell typing methods have been introduced in scRNA-seq data analysis,
such as SingleR26, Scmap27, Cell-ID28, ScNym29, SciBet30, and
ScDeepSort31. Specifically, SingleR26 performed cell type annotation
for newly generated dataset that was correlated to reference datasets
of pure cell types and strengthened its inferences by reducing the
referencedatasets to only top cell types iteratively. Scmap27 provided a
cell typing strategy that projected newly generated dataset onto a
reference dataset by searching the most similar clusters or cells (i.e.,
nearest neighbors) in the reference dataset and then assigning a cell
type if its nearest neighbors have the same cell type. Cell-ID28 inde-
pendently extracted per-cell gene signatures for a newly generated
dataset and reference datasets through multiple correspondence
analysis, then used per-cell gene signatures to perform automatic cell
type and functional annotation for target single-cell transcriptomic
dataset by cell matching and label transferring from reference data-
sets. ScNym29 employed an adversarial neural network to transfer cell
identity annotations from a labeled reference dataset to a newly gen-
erated dataset despite biological and technical differences. SciBet30

used themean expression of cell type-specific genes selected by E-test
to train a multinomial-distribution model, then calculated the like-
lihood function of a test cell using the trained model and annotated
cell type for the test cell with maximum likelihood estimation.
ScDeepSort31 pretrained a weighted graph neural network (GNN)32 to
perform cell type annotation for newly generated datasets. However,
applying these correlation-based and supervision-based cell typing
methods to SRT datasets does not efficiently use the available spatial
information which may be beneficial to cell type annotation.

By considering the characteristicsof the SRT technologies, several
integrated analysis methods25,33 combined SRT data with scRNA-seq
data to bridge these trade-offs and provide a better understanding of
the spatial organization of tissues. The deconvolution-based
methods34–36 were a kind of primary integrated analysis methods,
such as SPOTlight34, RCTD35, and Cell2location36, that learned cell-type
gene signatures from reference datasets to disentangle discrete cel-
lular subpopulations from mixtures of mRNA transcripts from each
capture spot in SRT datasets. Although the emerging SRT technolo-
gies, such as MERFISH, Slide-seq and Stereo-seq, had achieved cell-
level or subcellular spatial resolution, some deconvolution-based
methods, e.g., Cell2location, can still support cell-type annotation at
cell-level spatial resolution. Specifically, Cell2location employed an
interpretable hierarchical Bayesian model to map the spatial

distribution of cell types by integrating scRNA-seq data and multi-cell
SRT data from a same tissue. The mapping-based methods37,38 were
another kind of primary integrated analysis methods that mapped
each scRNA-seq cell to a specific spot or cell of SRT data from a same
tissue. Specifically, Seurat v337 provided a comprehensive integration
strategy to map scRNA-seq data and SRT data, and projected cellular
states (e.g., cell type) from a reference dataset to newly generated
datasets. Tangram38 employed a deep learning framework based on
nonconvex optimization to align scRNA-seq data to various forms of
spatial data collected from the same tissue, thenmapped the cell types
defined by scRNA-seq on the spatial context. However, these inte-
grated analysis methods also did not efficiently use the available spa-
tial information. Besides, several spatial domains analysis methods,
such as SpaGCN39, SEDR40, STAGATE41, were proposed to spatial
domain clustering analysis that enable coherent gene expression in
spatial domains by integrating gene expression and spatial location
together. Inspired by the significant advancements of these spatial
embedding-based clusteringmethods in identifying anatomical spatial
domains, embedding spatial information should be beneficial to cell
type annotation of SRT datasets.

In this study, we propose a cell typingmethod (SPATIAL cell type
IDentification, Spatial-ID) that integrates transfer learning and spatial
embedding strategies for high-throughput cell-level SRT datasets
(Fig. 1). The transfer learning strategy employs scRNA-seq datasets
with well-defined cell-type gene signatures collected from similar
tissues to train deep neural network (DNN) models. Therefore, the
cell type taxonomy of newly generated SRT datasets can also be
aligned with existing cell atlas of scRNA-seq datasets that was con-
structed from similar tissues. To perform spatial embedding, we
propose a graph convolution network (GCN)32 that constructs a
spatial neighbor graph by considering each cell as a node and the
spatial location relationships between cells as edges. In the archi-
tecture of GCN, an autoencoder42 is used to encode gene expression
profiles and a variational graph autoencoder43 is used to embed
spatial information simultaneously. To handle the large number of
cells in the high-throughput SRT data, we employ sparse convolution
in GCN to accelerate the framework44. A self-supervised learning
strategy is performed in GCN by constructing pseudo-labels from the
probability distribution predicted by the DNN model of transfer
learning45.

The main contribution of the Spatial-ID is the effective incor-
poration of existing knowledge of reference scRNA-seq datasets and
the spatial information of SRT datasets. A series of benchmarking
analysis on publicly available SRT datasets with different data char-
acteristics (see Supplementary Table 1) demonstrate the superiority of
Spatial-ID in cell type annotation compared with other state-of-the-art
methods (see Supplementary Table 2), i.e., Seurat v3, SingleR, Scmap,
Cell-ID, ScNym, SciBet, Tangram, and Cell2location. Furthermore,
Spatial-ID can effectively perform cell type annotation for 3D SRT
datasets. Moreover, the extended process of new cell type discovery
demonstrates that the predictions of Spatial-ID have a promising dis-
crimination to detect new cell types. A group of simulation experi-
ments with different gene dropout rates demonstrates more
robustness of Spatial-ID than other state-of-the-art methods. A series
of ablation analysis also proves the important of spatial information in
Spatial-ID. These results suggest that embedding spatial information
can substantially improve cell type annotation on SRT datasets.
Besides, the application of Spatial-ID on a Stereo-seq SRT dataset with
3D spatial dimension shows its advancement on the large field tissues
(~1cm2) with subcellular spatial resolution. The cell types identified by
Spatial-ID present high consistency with previous studies. Besides, by
mapping the identified cell types with identified spatial gene patterns,
the significant GO (gene ontology) terms of the spatial gene patterns
further reveal the functions and underlying biological processes of the
identified cell types.
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Results
The pipeline of Spatial-ID
The pipeline of our proposed Spatial-ID is shown in Fig. 1, including
3 stages. Stage 1 involves knowledge transfer from reference datasets.
Stage 2 involves feature embedding of gene expression profiles and
spatial information of SRT dataset, and employs self-supervised
strategy to train the classifier. Stage 3 uses the optimal model
derived from stage 2 to perform cell type annotation for SRT dataset.

Formally, the DNN in stage 1 is trained on the gene expression
profiles and ground truth labels of reference datasets (Fig. 1a). The
pretrained DNN is used to generate the probability distribution for
each cell of SRT dataset, then the probability distribution is used to
construct pseudo-label (Fig. 1b) through a temperature setting
strategy45 (see “Methods”). The GCN in stage 2 contains an auto-
encoder, a variational graph autoencoder and a classifier. Given a SRT
dataset, the gene expression profiles are transformed into a cell-gene
matrix (i.e., gene expression matrix I), and a spatial neighbor graph
(i.e., cell–cell adjacency matrix A) is constructed by considering each
cell as a node and the spatial location relationships between cells as
edges, where the relationship weight of each pair of cells is negatively
associated with Euclidean distance (Fig. 1d). The autoencoder (Fig. 1c)
takes the gene expression matrix and outputs the encoded gene
representations X . The adjacency matrix A and the encoded gene
representations X are fed into the variational graph autoencoder
(Fig. 1e), that performs spatial embedding for the gene representations
and outputs the final latent representations Z that provide compre-
hensive characters of gene expression profiles and spatial information.

Thereafter, the final latent representations Z are used to reconstruct
the gene expression matrix in the autoencoder and the adjacency
matrix in the variational graph autoencoder, respectively. Simulta-
neously, the self-supervised learning strategy employs the final latent
representations Z and the generated pseudo-labels L from stage 1 to
train the classifier. In stage 2, the training process optimizes the
parameters of the GCN model until convergence, and saves the opti-
mal model. Finally, the stage 3 (i.e., inference stage) reloads the opti-
malmodel from stage 2, and output the cell type predictions of a given
SRT dataset.

To verify the advancement of the proposed Spatial-ID, we apply
Spatial-ID on 5 representative SRT datasets with different character-
istics (see Supplementary Table 1), including two publicly available
mouse brain datasets (i.e., primary motor cortex46 and hypothalamic
preoptic region47) measured by MERFISH, a publicly available mouse
spermatogenesis48 dataset measured by Slide-seq, a publicly available
human non-small-cell lung cancer49 (NSCLC) dataset, and a self-
collected mouse brain hemisphere dataset measured by Stereo-seq.
The two FISH-based mouse brain datasets measured hundreds of
genes, in which themouse hypothalamic preoptic region dataset was a
3DSRTdataset that provided continuous sliceswith equal interval. The
spot-based mouse spermatogenesis dataset and the self-collected
mouse brain hemisphere dataset measured tens of thousands of
genes, where themouse brain hemisphere dataset provided 3D spatial
dimension, subcellular spatial resolution and large field view on entire
mouse brain hemisphere. The human NSCLC dataset measured 980
genes on formalin-fixed paraffin-embedded (FFPE) samples. We

Fig. 1 | Overviewof Spatial-ID. Stage 1 involves knowledge transfer from reference
datasets. Stage 2 involves feature embedding of gene expression and spatial
information, and employs self-supervised strategy to train a classifier (CLS) using
the generated pseudo-labels in stage 1. Stage 3 uses the optimal model derived
from Stage 2 to perform cell type annotation. a Reference scRNA-seq datasets are
employed to pretrain deep neural network (DNN)models. b Based on the cell type
probabilities distributions D produced by pretrained DNN, pseudo-labels L are
generated by adjusting the temperature parameter T . cAdeep autoencoder is used
to learn encoded gene representation X through reducing the dimension of the
gene expression matrix I. The gene expression matrix I 0 reconstructed by decoder

is used to optimize the autoencoder by minimizing with the input gene expression
matrix I. d A spatial neighbor graph is constructed to represent the spatial rela-
tionships between neighboring cells, where the relationship weight of each pair of
cells is negatively associated with Euclidean distance. Therefore, the spatial
neighbor graph is represented as an adjacency matrix A. e A variational graph
autoencoder (VGAE, a kind of GCN) is used to embed the encoded gene repre-
sentations X from autoencoder and the adjacency matrix A, and then generate the
spatial embedding S as output. The reconstructed adjacency matrix A0 is used to
optimize the VGAE by minimizing with the input adjacency matrix A.
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employ the mouse primary motor cortex dataset, the mouse hypo-
thalamic preoptic region, the mouse spermatogenesis dataset and the
human NSCLC dataset to perform benchmarking analysis between
Spatial-ID with other state-of-the-art methods (see Supplementary
Table 2). The self-collected mouse brain hemisphere dataset is
employed to demonstrate the advancement of Spatial-ID on spatial
transcriptomic analysis of the large field tissues. To perform Spatial-ID
and the control methods, we prepare 5 matched scRNA-seq datasets
for the aforementioned SRT datasets (see Supplementary Table 1).
Besides, to compare the robustness against gene dropout between
Spatial-ID and the control methods, a simulation experiment of dif-
ferent gene dropout rate is performed on the FISH-based mouse pri-
mary motor cortex dataset. In addition, a postprocess of new cell type
discovery is performed on the mouse primary motor cortex dataset
and the human NSCLC dataset to demonstrate the discrimination of
Spatial-ID.

Application to mouse primary motor cortex dataset measured
by MERFISH
We first perform a quantitative comparisonbetween Spatial-ID and the
control methods on the mouse primary motor cortex (MOP, see
Fig. 2a) dataset46 measured by MERFISH. The MOP dataset contains
12 samples, including total 280,186 cells and 254genes. The snRNA-seq
10x v3 B dataset50 (matched dataset of MOP dataset) is used as the
trainset of theDNNmodel in Spatial-ID and the referencedataset in the
control methods, which contains 159,738 cells and 31,053 genes. The
MOP dataset and the snRNA-seq 10x v3 B dataset are derived from
Brain Atlas of BICCN23, thus the cell type assignments of them adapt
the same MOP cell taxonomy that is a hierarchical organization with
reference to the common cell type nomenclature (CCN)51 found by
Allen Institute. The cells are divided into excitatory neuronal cells
(glutamatergic), inhibitory neuronal cells (GABAergic) and non-
neuronal cell classes at the first level, then cells in each class are fur-
ther divided into more subclasses based on their marker genes or
spatial organization in cortex (Fig. 2b, d and Supplementary Fig. 1a).
For example, the inhibitory neurons are further divided into five sub-
classes by marker genes: parvalbumin (Pvalb), somatostatin (Sst),
vasoactive intestinal polypeptide (Vip), synuclein gamma (Sncg) and
lysosomal-associated membrane protein family member 5 (Lamp5)
(Supplementary Fig. 1c). The excitatory neurons are further divided
into several layers with distinct projection properties (defined by
knownmarker genes): intra-telencephalic neurons (L2/3 IT, L4/5 IT, L5
IT, L6 IT) (Supplementary Fig. 1b), extra-telencephalic projecting
neurons (L5 ET), near-projecting neurons (L5/6 NP), corticothalamic
projection neurons (L6 CT) and layer 6b neurons (L6b) (Fig. 2h). It
should be noted that the number of cell types, the number of mea-
sured genes, relative abundance of cells in various cell types and the
gene dropout rate differ in the snRNA-seq 10x v3 B dataset and the
MOP dataset. For example, smooth muscle cells (SMC) and Sncg cells
are depleted in the snRNA-seq 10x v3 B dataset, while Sncg cells are
depleted in theMOP ST dataset. Besides, L6 IT Car3 and L4/5 IT are not
provided in the snRNA-seq 10x v3 B dataset, thus these cell types are
not considered in direct comparisons.

Compared with the control methods, Spatial-ID could effectively
identify the cell types (Fig. 2c) and achievebetter performance (Fig. 2f).
On all 12 MOP samples, Spatial-ID achieves the highest mean accuracy
92.75% (Fig. 2f), and the differences with the control methods are very
significant (Wilcoxon test p-value≪0.001 for all other methods).
Besides, Spatial-ID achieves mean weighted F1 score 0.9209 (Supple-
mentary Fig. 2a), where weighted F1 score of each sample is calculated
by weighted averaging the F1 score of each cell type, to mitigate the
effects of cell type imbalance. If we abandon the spatial information,
the DNN can achieves mean accuracy 91.96% on all the 12 samples
(Supplementary Fig. 7d). Obviously, this ablation analysis demon-
strates that it is beneficial to use spatial information in Spatial-ID. In

addition, Cell-ID achieves mean accuracy 17.08% and mean weighted
F1 score 0.1521 that is far below other methods and is therefore not
shown in Fig. 2f and Supplementary Fig. 2a. From this, each cell inMOP
dataset have both a predicted cell type from the snRNA-seq 10x v3 B
dataset and a ground truth label provided by MOP dataset. Cells in
MOP dataset are grouped based on their ground truth labels, and then
the fractionof predicted cell type for eachgroup is determined (Fig. 2g
and Supplementary Fig. 2d). Except the smooth muscle cells (SMC)
and Sncg cells, Spatial-ID achieves excellent recall rates on other cell
types. The depleted SMCand Sncg cell types in the snRNA-seq 10x v3B
dataset lead to weaker identification ability of Spatial-ID on these cell
types, because there are no sufficient samples in training. Moreover,
the integration of spatial information enables Spatial-ID to reveal that
neuronal cells have specific spatial organization pattern (Fig. 2e). For
the excitatory neurons, we can observe a laminar appearance for the
overall cellular organization along the direction of the cortical depth,
especially the IT neurons (Supplementary Fig. 1b). Obviously, the L2/3
IT, L5 IT, L6 IT neurons, identified by Spatial-ID, appear as discretely
laminar cell populations, and L5 ET, L5/6 NP, L6 CT, and L6b neurons
also appear as discrete cell populations (Fig. 2h). However, IT neurons
and other types of excitatory neurons partially overlap in space, and
more overlapping with inhibitory neurons and non-neurons lead to a
high level of local cellular heterogeneity. To describe the spatial
intermixing of different cell populations, we count the neighborhood
cells of each cell to calculate the neighborhood complexity47 and the
neighborhood purity47, and then estimate the neighborhood com-
plexity distribution and neighborhood purity distribution for each
identified cell type. Compared with the ground truth, the neighbor-
hood purity distribution of Spatial-ID presents very similar character-
istic (Jensen–Shannon distance: 0.013), and the neighborhood
complexity distribution of Spatial-ID presents a slight shift to the lower
complexity (Jensen–Shannon distance: 0.052) (Fig. 2i). Comparedwith
the control methods (Supplementary Figs. 2b, 2c, 3 and 4), Spatial-ID
also achieves high consistent of neighborhood complexity and
neighborhood purity with ground truth.

Different SRT technologies usually have different rates of gene
capture, especially the spot-based SRT technologies. To verify the
robustness of Spatial-ID against different gene dropout rates, we
conduct simulation experiments on MOP dataset by randomly dis-
carding part of values in gene expression profiles (see “Methods”).
Under the same configuration, Spatial-ID could achieve better per-
formance of cell type annotation than the control methods (Fig. 2j).
Especially in the low dropout rates (e.g., less than 0.6), the perfor-
mance degradation of Spatial-ID is less than that of the top control
methods (Fig. 2j and Supplementary Fig. 5a). Specifically, on all 12MOP
samples, Spatial-ID achieves the highest mean accuracy 85.76% at the
dropout rate of 0.5 (Fig. 2j), and the differences with the control
methods are very significant (Wilcoxon test p-value≪0.001 for all
other methods). While Spatial-ID achieves the highest mean weighted
F1 score 0.8466 at the dropout rate of 0.5 (Supplementary Fig. 5b).
These results suggest that the spatial information is not only beneficial
to help cell type identification, but also improve the robustness of
Spatial-IDagainst the variationof genedropout (Fig. 2j, Supplementary
Fig. 5c, d). Thus, Spatial-ID shows a promising perspective to transfer
knowledge from available reference datasets (e.g., scRNA-seq datasets
or other SRTdatasets), even if their genedropout rates differ from that
of newly generated datasets.

L4/5 ITandL6 ITCar3neurons are not annotated in the snRNA-seq
10x v3 B dataset, thus Spatial-ID predicts the L6 IT Car3 neurons as L6
IT neurons, and L4/5 IT neurons as L2/3 IT and L5 IT neurons (Fig. 2c, e).
The ground truth ofMOP dataset shows that L4/5 IT neurons populate
in the continuous region between L2/3 IT and L5 IT neurons (Fig. 2d),
and L6 IT Car3 neurons populate near the L6 IT neurons at L6 layer
(Fig. 2d). These results suggest that the gene expression profiles of L4/
5 IT neurons present gradual transition between the L2/3 IT and L5 IT
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neurons, and the characteristics of L6 IT Car3 neurons are similar to
the L6 IT neurons (Fig. 2c). We conduct a postprocess for Spatial-ID to
further distinguish these new cell types that are presented in the MOP
dataset but unseen in the snRNA-seq 10x v3 B dataset. Based on the
predictions of Spatial-ID, a pipeline of new cell type discovery (Fig. 2k)
is performed to determinewhether there are new cell types in theMOP
dataset, including thresholding, clustering, mapping, and filtering

(see “Methods”). The unassigned cells are determined by a threshold
(i.e., 0.9) at the thresholding step. The clustering step is performed to
group the unassigned cells into different clusters (i.e., 9 clusters).
According to the clusters, the mapping step aligns the clusters of
unassigned cells to predicted cell type in the same feature space, as
shown in Supplementary Fig. 2g. Compared with the predictions of
Spatial-ID (Supplementary Fig. 2f), each cluster contains several cell

Article https://doi.org/10.1038/s41467-022-35288-0

Nature Communications |         (2022) 13:7640 5



types predicted by Spatial-ID. For example, the cluster 2 contains the
L2/3 IT and L5 IT cell types predicted by Spatial-ID, the cluster 5 con-
tains the L6 IT cell type predicted by Spatial-ID. The filtering step
analyzes the distance from the center of each cluster to the center of
the predicted cell types. If the distance is less than the radius of one
predicted cell type in feature space, the cluster is still identified as this
predicted cell type rather than a new cell type. If the distance is larger
than the radius of all predicted cell types in feature space, the cluster is
identified as a new cell type. For example, the distance of cluster 2 to
L2/3 IT cell types predicted by Spatial-ID in the feature space is larger
than the radius of predicted L2/3 IT cell types, aswell as L5 IT cell types
predicted by Spatial-ID (Supplementary Figs. 2f, g). Therefore, the
cluster 2 is identified as a new cell type that is labeled as L4/5 IT in
ground truth (Supplementary Fig. 2e). Similarly, the cluster 5 is iden-
tified as a new cell type, that is labeled as L6 IT car3 in ground truth
(Supplementary Fig. 2e). Applying the above filtering rule to the other
clusters in turn, we can find that these clusters are closer to their main
cell type predicted by Spatial-ID, therefore these clusters are not
identified as new cell types. Finally, the discovered L4/5 IT and L6 IT
Car3 neurons achieves F1 score of 0.405 and 0.904, respec-
tively (Fig. 2k).

Application to mouse hypothalamic preoptic region dataset
measured by MERFISH
Toquantitatively compareperformance on 3DSRTdataset, we employ
the mouse hypothalamic preoptic region (1.8mm× 1.8mm×0.6mm,
Fig. 3a) dataset47 measured by MERFISH to perform benchmarking
analysis. This dataset measures a panel of 155 genes. We select 3 sam-
ples with naive behavior, including total 213,192 cells collected from 2
female mice and 1 male mouse (Fig. 3b). Each sample (Bregma 0.26 to
−0.29) contains 12 slices with 50 µm interval. The reference scRNA-seq
dataset (GSE113576)47 is also collected from the hypothalamic preoptic
region (~2.5mm×2.5mm× 1.1mm) across 3 replicates of an adult
female mouse and a male mouse, including 31,299 cells and 27,998
genes. The delineation of major cell classes includes inhibitory neu-
rons, excitatory neurons, microglia, astrocytes, immature oligoden-
drocytes,mature oligodendrocytes, ependymal cells, endothelial cells,
macrophages, and mural cells.

Spatial-ID achieves the highest mean accuracy 87.74% (Fig. 3c, e)
that significantly outperforms the control methods (Wilcoxon test p-
value≪0.001 for all other methods) on all 3 samples with naive
behavior. The DNN can achieves mean accuracy 85.00% on all the
3 samples (Supplementary Fig. 7d). Obviously, spatial location infor-
mation is also beneficial for Spatial-ID on the 3D SRT dataset. In the 3D
views (Fig. 3d), We can also observe highly consistent cell type dis-
tribution of Spatial-ID with the ground truth, that shows obvious
superiority than the control methods. Besides, Spatial-ID achieves the
highestmeanweighted F1 score 0.8773 (Supplementary Fig. 7a). These
results suggest that Spatial-ID can be effectively applied on 3D SRT
dataset. The cell types identified by Spatial-ID (Fig. 3f) show better

correspondence to ground truth than those identified by the control
methods. Specifically, in the 2D views (Supplementary Fig. 6a, b), the
annotation results of Spatial-ID also show better cell type distribution
than the control methods. In addition, we introduce a set of experi-
ments to compare the effect of spatial information (i.e., number of
neighbor cells) on this dataset (Supplementary Fig. 7e). We can
observe that the number of neighbor cells slightly affects the perfor-
mance of accuracy, and the larger number of neighbor cells may lead
to reduced differences between local cells.

Application to mouse spermatogenesis dataset measured by
Slide-seq
Next, we perform a benchmarking analysis on the mouse spermato-
genesis dataset48 (Fig. 4a) measured by Slide-seq. The mouse sper-
matogenesis dataset is acquired from three leptin-deficient diabetic
(ob/ob) mice and three wild-type (WT) mice, including 207,335 cells in
total and 24,105 genes in common. All cells are divided into 9 testicular
cell types52: elongating/elongated spermatid (ES), round sperma-
tid(RS), spermatocyte (SPC), spermatogonium (SPG), Endothelial,
Sertoli, Leydig, Myoid and Macrophages (Fig. 4a). Testicular cell types
are organized in a spatially segregated fashion at the level of semi-
niferous tubules. The reference scRNA-seq dataset (GSE112393)53

includes 34,633 cells and 37,241 genes from an adult mouse testis. In
order toperformSpatial-ID and the controlmethods, a shared gene set
(24,105 genes) of the reference dataset is selected to align with the
mouse spermatogenesis dataset.

The annotation result of Spatial-ID is shown in Fig. 4b. Based on
the quantitative comparison, Spatial-ID also demonstrates superior
accuracy of cell type identification on the mouse spermatogenesis
dataset (Fig. 4c). Specifically, Spatial-ID achieves mean accuracy
60.45% on all the 6 samples (Fig. 4c) and achieves mean weighted
F1 score 0.55 (Supplementary Fig. 7b). The ablation analysis shows that
the DNN achieves mean accuracy 58.27% on all the 6 samples (Sup-
plementary Fig. 7d). This again illustrates the importance of spatial
information. Notably, Cell2location presents excellent performance
and achieves the best accuracy 62.88% on mouse spermatogenesis
dataset. The Slide-seq technology provides an approximate cell-level
spatial resolution, where each spot contains several cells (i.e., 1 to 10).
Technically, this dataset is more suitable for deconvolution-based
methods. Besides, the ground truth of this dataset is derived from a
non-negative matrix factorization regression (NMF) method (see
Supplementary Table 1), that may introduce method bias for ground
truth labels. This may allow regression-based methods, such as Cell2-
location, to achieve better results. Nevertheless, Spatial-ID achieves
comparable accuracy with Cell2location. These results suggest that
Spatial-ID can also effectively handle the spot-based Slide-seq dataset
with tens of thousands of genes, even if the area of a spot spans more
than one cell. As analysis in related study48, diabetic induces testicular
injuries through disrupting the spatial structures of seminiferous
tubules and changing the expression pattern of many genes at

Fig. 2 | Application to mouse primary motor cortex dataset measured by
MERFISH. a The MOP region annotations in the Allen CCF v3 (http://atlas.brain-
map.org/). b The ground truth cell types using UMAP embedding. c The Spatial-ID
prediction using UMAP embedding. d Spatial organization of the ground truth cell
types in a coronal slice (slice153). Bar scale 400μm. e Spatial organization of the
Spatial-ID prediction in d. Bar scale 400μm. f The comparison of cell type anno-
tation accuracy; n = 12 independent samples; center line, median; box limits, upper
and lower quartiles; whiskers, 1.5× interquartile range. Notably, the mean accuracy
of Cell-ID is 17.08%, that is far below those shown and is therefore not shown. g The
confusion matrix of Spatial-ID prediction. The vertical axis and the horizonal axis
list the ground truth cell types and the prediction of Spatial-ID, respectively. h The
ground truth of L5 ET, L5/6 NP, L6 CT, and L6b neurons, and the prediction of
Spatial-ID and the control methods. Bar scale 400μm. i The neighborhood com-
plexity of a given cell is defined as the number of different cell types presented

within a neighborhoodof 100μm in radius. Theneighborhood purity of a given cell
is defined as the fraction of the most abundant cell type to all cells in the neigh-
borhood of 100 μm in radius. j Simulations of different gene dropout rates. From
left to right, the comparison of cell type annotation accuracy at different gene
dropout rates, spatial organization of the Spatial-ID prediction at the dropout rate
of 0.5, the comparison of cell type annotation accuracy at the dropout rate of 0.5
(n = 12 independent samples; Center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× interquartile range), the confusion matrix of Spatial-ID
prediction at the dropout rate of 0.5. Bar scale 400μm. k New cell type discovery.
From left to right, ground truth of L4/5 IT and L6 IT Car3 neurons, a pipeline of new
cell type discovery, unassigned cells after thresholding, clusters derived from
clustering for unassigned cells, and the finally found new cell types (i.e., L4/5 IT and
L6 IT Car3). Bar scale 400um.
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molecular level. We can observe relatively regular spatial structure of
seminiferous tubules in wild-typemouse (Fig. 4d), and irregular spatial
structure of seminiferous tubules in diabetic mouse (Fig. 4e).

Moreover, we compare the runtime of Spatial-ID and the control
methods on this SRTdataset (Fig. 4f). The running efficiencyof Spatial-

ID, ScNym and SciBet is much higher than other methods. The same
results can be obtained for other SRT datasets (see Supplementary
Table 3). Notably, although Tangramand Cell2location all employ GPU
acceleration, they present lower running efficiency than Spatial-ID. To
further analyze the running efficiency of Spatial-ID on different

Spatial-ID Seurat v3 SingleR

Scmap ScNym SciBet Cell-ID

a b c

e
f

Ground Truthd

Scmap ScNym SciBet Cell-ID Cell2location

Tangram

Cell2location

Spatial-ID Seurat v3 SingleR Tangram

Fig. 3 | Application to mouse hypothalamic preoptic region dataset measured
by MERFISH. a The mouse hypothalamic preoptic region annotations in the Allen
CCF v3 (http://atlas.brain-map.org/). b Visualization of the ground truth cell types
using UMAP embedding. c Visualization of the Spatial-ID predictions using UMAP
embedding. d 3D spatial organization of the ground truth cell types of a sample with
naive behavior, and the predictions of Spatial-ID and the control methods. Scale unit

(µm). eThe comparison of cell type annotation accuracy; n= 3 independent samples;
Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× inter-
quartile range. f The confusion matrixes show the fraction of cells from any ground
truth cell type predicted by Spatial-ID and control methods. The vertical axis lists the
ground truth cell types, and the horizonal axis lists the predicted cell types. Mature
OD: Mature oligodendrocyte; Immature OD: Immature oligodendrocyte.
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Fig. 4 | Application to mouse spermatogenesis dataset measured by Slide-seq.
a Visualization of the ground truth cell types using UMAP embedding. ES elon-
gating spermatid, RS round spermatid, SPC spermatocyte, SPG spermatogonium.
b Visualization of the Spatial-ID predictions using UMAP embedding. c The com-
parison of cell type annotation accuracy; n = 6 independent samples; Center line,
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.
d Spatial organization of the ground truth cell types of a wild-type sample, and the
predictions of Spatial-ID and the control methods. Bar scale 400 µm. e Spatial

organization of the ground truth cell types of an ob/ob sample, and the predictions
of Spatial-ID and the control methods. Bar scale 400 µm. f The average time cost
per sample of Spatial-ID and control methods in this mouse spermatogenesis
dataset. The comprehensive results for all SRTdatasets in this study canbe found in
Supplementary Table 3. g The running efficiency analysis. The left one shows the
scheme of field view sampling. The right one shows that the runtime of Spatial-ID
increases linearly as the number of cells increases. The regression plots of runtimes
are presented as mean values with 95% confidence intervals.
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number of cells, we crop 10percent to 100percent radiusfield viewsof
4 samples (other 2 samples have non-circular field views) of this SRT
dataset (Fig. 4g), respectively. Then, we statistically analyze the run-
ning efficiency of Spatial-ID on these cropped field views. As the
number of cells increases, the runtime of Spatial-ID increases line-
arly (Fig. 4g).

Application to human NSCLC dataset
We also perform a benchmarking analysis on a human non-small-cell
lung cancer (NSCLC)49 SRT dataset. We select the individual dataset
Lung 9-1, including 20 samples and total 83,621 cells. These samples
are generated from a Formalin-Fixed Paraffin-Embedded (FFPE) sam-
ple of a 60+ years old patient by high-plex spatial molecular imaging
(0.18 µm per pixel) - CosMx SMI platform (www.nanostring.com). A
panel of 980 genes are measured, and the field size of each sample is
about 0.7mm×0.9mm. The reference scRNA-seq dataset (scRNA-seq
NSCLC)54 includes 49,532 cells and 22,180 genes. The shared cell types
contain mDC, Treg, fibroblast, T CD8, plasmablast, mast, T CD4, neu-
trophil, NK, macrophage, epithelial, pDC, endothelial, B-cell, and
tumors.

Figure 5a shows the accuracy performance of Spatial-ID and the
controlmethods, where Spatial-ID achieves the highestmean accuracy
69.76% on all 20 samples. Besides, Spatial-ID achieves mean weighted
F1 score 0.6288 (Supplementary Fig. 7c). The ablation analysis shows
that the DNN achieves mean accuracy 68.09% on all 20 samples
(Supplementary Fig. 7d). The number of cells in some cell types of the
human NSCLC dataset are scarce (Fig. 5b), and the ground truth labels
of cells present indistinguishable communities in the feature space.We
can observe that tumor cells predominate in this dataset (Fig. 5b, c).
Affected by these factors, Spatial-ID misses some rare cell types, even
though spatial-ID achieves the highest accuracy 87.73%on the example
shown in Fig. 5d. To alleviate this problem, we employ the pipeline of
new cell type discovery for the predictions of Spatial-ID (Fig. 5e). The
thresholding step determines a set of unassigned cells by a threshold
0.7 (Fig. 5f). Then, these unassigned cells are grouped into 5 clusters at
the clustering step (Fig. 5g). Next, themapping step aligns the clusters
to predicted cell types in the feature space for these unassigned cells
(Fig. 5g, e). Finally, the filtering step analyzes the distance from the
center of each cluster to the center of the predicted cell types. The
cluster 0 and cluster 4 are identified as new cell types (Fig. 5h).
Obviously, there are labeled as neutrophil cells and endothelial cells in
ground truth. Although the postprocess of new cell type discovery can
retrieve 2 missed cell types, there are still other missed cell types that
are more scarce and indistinguishable. To further identify these cell
types, more genes may need to be measured.

Application to large field mouse brain hemisphere dataset
measured by Stereo-seq
Many currently available sequencing-based SRT technologies such as
Slide-seq, DBiT-seq55, and HDST do not have single-cell spatial resolu-
tion, where each spot contains 1 to 10 cells. With the continued
improvement of spatial resolution, newly emerging SRT technologies
such as Seq-Scope56 and Stereo-seq can produce high-throughput
subcellular SRT datawith a large number of cells in large field tissues in
subcellular spatial resolution. Here, we generate single-cell spatial
gene expression profiles of 3 adjacent coronal sections (10-μm thick,
without intervals) along the anterior–posterior axis (Bregma −3.56 to
−3.66) of right mouse brain hemisphere (Fig. 6a) using Stereo-seq.
After the standard data processing and quality control (see “Meth-
ods”), 140,816 cells are retained for these 3 sections. The single-cell
mouse brain atlas of cell types from the Linnarsson Lab57 is employed
as the reference dataset. After selecting the cell types of reference
dataset that located in brain sections of our samples, a subset of
113,488 cells belonging to 152 cell types with a total of 747 marker
genes is used as training set of the proposed Spatial-ID.

Basedon the predictions of Spatial-ID, the identified cell types of 3
coronal sections present a high consistency (Fig. 6b) that an average of
99% cells in each section are assigned to their common cell types
(Supplementary Fig. 8e). Besides, by color-coding our identified cell
types in low dimension feature space (i.e., UMAP), most identified cell
types congregate into distinguishable communities (Fig. 6b). For
example, DGGRC2, VLMC2, and MBDOP2 can be easily segregated
because they are driven by large differences of gene expression. Some
similar cell types populate in mixed communities, such as the cortical
pyramidal neuron (TEGLUs). According to the cell type taxonomy of
reference dataset, 65,174 cells (50.8%) are identified as excitatory
neurons, 20,267 cells (15.8%) are identified as inhibitory neurons, and
42,840 cells (33.4%) are identified as non-neuronal cell types (Fig. 6c).
Specifically, most of the identified excitatory neurons are tele-
ncephalon projecting neurons with glutamatergic neurotransmitter
(TEGLU) and populate in cerebral cortex and hippocampus, such as
TEGLU4, TEGLU7 and TEGLU8 in cerebral cortex (Fig. 6e, j), TEGLU24
(Supplementary Fig. 9a) and DGGRC2 (Fig. 6k) in hippocampus. The
other excitatory neurons with glutamatergic neurotransmitter
(MEGLU, HBGLU) populate in midbrain and hindbrain. The identified
inhibitory neurons mainly consist of TEINH19 and MEINH8 (Fig. 6i),
where the identifiedTEINH19neurons scatter across cortical layers and
hippocampus CA3 region and the identified MEINH8 populate in
midbrain. The identified non-neuronal cells exhibit a dispersed dis-
tribution throughout the mouse brain hemisphere, such as ACNT2
(non-telencephalon astrocyte cells) in midbrain, hindbrain, and fiber
tracts (Supplementary Fig. 9a), VLMC2 (vascular leptomeningeal cells)
at the interface of the brain structure (Supplementary Fig. 9a).

As the visualization of cell type annotation in Fig. 6b, most of
identified cells show a distinguishable spatial distribution. To further
reveal the anatomical functions of identified cell types throughout
distinct brain regions58–60, the entire rightmousebrain hemisphere can
be roughly split into several spatial anatomical functional regions
according to the Allen Brain Atlas61 (ABA; https://atlas.brain-map.org/),
including isocortex, hippocampal formation, olfactory area, midbrain,
hindbrain, interbrain, fiber tracts and vascular system. By quantifying
the cells among these 8 regions, we can observe that different func-
tional regions have different combinations of the identified cell types
(Fig. 6d). For example, in the isocortex region (Fig. 6e), the identified
cortical pyramidal neurons (TEGLU7, TEGLU8, TEGLU10, TEGLU4,
TEGLU3, TEGLU2, etc.) display a layered laminar appearance along the
direction of the cortical depth62–65. Moreover, we further illustrate a
continuous gradient of cells along the cortical depth from L2/3 to L6 in
the VISp and AUD regions (Fig. 6e). The cell type compositions of the
VISp and AUD regions have significant differences, where fewer
TEGLU3 and TEGLU8 populate in the AUD region than the VISp
region (Fig. 6e).

For the mainly identified cell types, we further analyze the gene
expression specificity of typical marker genes provided by the refer-
ence dataset57 (Fig. 6f). Most of these marker genes have the highest
expression in their corresponding cell types that have a relatively high
fraction, e.g., Lamp5 of TEGLU7, Spink8 of TEGLU24, Slc6a3 of
MBDOP2, Irx2 of HBGLU7, Carpt of MEGLU14, Opalin of MOL1, Mgp of
ABC (Fig. 6g), etc. Moreover, several marker genes, such as Sv2b of
TEGLU21, Lingo1 of TEGLU11 and Sst of TEINH19, present continuous
expressions across the identified neurons in cerebral cortex and hip-
pocampus (Fig. 6g). Interestingly, we observe the ACNT2 maker gene
Slc6a11 expressed higher in ACNT1, another subclass of non-
telencephalon astrocytes, than in ACNT2 (Fig. 6g). These observa-
tions may be derived from the continuous variation among neigh-
borhood subclasses or the combinatorial expression of marker genes.

We further investigate the spatially varying genes indicative of the
underling cell types, and their grouped spatial patterns66. Based on the
notion that genes expressed at similar levels by proximal cells must be
varying in an informative manner, Hotspot67 allows the identification
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of spatially informative genes and spatially dependent patterns of gene
expression in situ for SRT datasets. A total of 30 specific spatial gene
patterns66 are detected by Hotspot (Supplementary Fig. 9b) and 6 of
them are illustrated in Fig. 6h, i, j, and k. Notably, a spatial gene pattern
may consist of type-specific genes from an individual identified cell
type (Fig. 6h), but it may also be constituted by region-specific genes
from diverse identified cell types (Fig. 6i, j, k). Specifically, the spatial
gene pattern P26 is detected in the retrosplenial area of layer 2
(Fig. 6h), which includes Tshz2 (Supplementary Fig. 9d), one of the
marker genes of the cortical projection neurons TEGLU6 that are
identified in this region (Fig. 6h). The GO-based enrichment result
indicates that the spatial gene pattern P26 may involve in myelination
and axon ensheathment of central nervous system, possibly support-
ing a role for retrosplenial cortex in spatial coding,memory formation,
and information integration68,69 (Fig. 6l). In themidbrain, the obviously
spatial gene pattern P17 (Fig. 6h), contains geneUcn, Slc5a7, Chodl, etc
(Supplementary Fig. 9d), significantly enriches in the sub-region of

dorsal raphe nucleus (DRN)70. Accordingly, the identified MEGLU14
neurons (marked genes: Cartpt, Ucn, and Chodl) specifically populate
in this region (Fig. 6h). DRNhas been implicated in disorder of anxiety,
reward processing, as well as social isolation71,72. Here, we find that
theseDRN-specific genes are highly enriched at axon terminus, neuron
projection terminus and terminal bouton (Fig. 6l), which are specia-
lized to release neurotransmitters to transmit impulses between neu-
rons. Another spatial genepattern P10 is detected in the sub-regions of
ventral tegmental area and subtantia nigra (SNr, Fig. 6h), contains
genes Slc6a3, Slc18a2 and Th, etc (Supplementary Fig. 9d). This spatial
gene pattern corresponds to identified MBDOP2 neurons (marked
genes: Slc6a3 and Chrna6), which are dopaminergic neurons in mid-
brain that have been reported to be associated with the genetic risk of
neuropsychiatric disorders73, for example Parkinson’s disease. The
further GO-based enrichment result indicates that these enriched
genesmay involve in the regulationof neurotransmitter levels (Fig. 6l),
revealing the relationship between gene expression of MBDOP2

Fig. 5 | Application to human NSCLC dataset. a The comparison of cell type
annotation accuracy; n= 20 independent samples; Center line, median; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range. Notably, the mean
accuracy of SciBet is 0.98%, that is far below those shown and is therefore not shown.
b Visualization of the ground truth cell types using UMAP embedding. c Spatial
organization of the ground truth cell types of a sample. Field size is about

0.7mm×0.9mm. Bar scale 100 µm. d Spatial organization of the predictions of
Spatial-ID and the control methods. Bar scale 100 µm. e Visualization of the predic-
tions of Spatial-ID for this sample using UMAP embedding. f Visualization of the
unassigned cells of this sample usingUMAP embedding.gVisualization of the clusters
of the unassigned cells using UMAP embedding. h Spatial organization of the finally
found new cell types. nc1: new class type 1; nc2: new class type 2. Bar scale 100 µm.
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neurons and neuropsychiatric disorders again. Besides, serval identi-
fied spatial gene patterns do not indicate to specific cell types, such as
P23 (Fig. 6i), P3 (Fig. 6j), and P8 (Fig. 6k). Particularly, P23, which is
highly concentrated in the interpeduncular nucleus (IPN) of ventral
midbrain, consists of several GABAergic neuron-associated genes (e.g.,
Otp, Pax7, Gad1, Gad2, Slc32a), suggesting its representative role for
inhibitory neurons. As expected, we can observe that the identified

inhibitory neurons including TEINH19, MEINH2, MEINH8, and TEINH1
populate in this area (Fig. 6i). Previous studies found that IPN was the
critical brain area associated with the reinforcing effects of nicotine74.
TheGO-based enrichment result reveals these spatially enriched genes
are highly related with pituitary gland and diencephalon development
and receptor diffusion trapping (Fig. 6l). P3 is highly concentrated in
the isocortex (Fig. 6j), which indicates the identified cortical pyramidal
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neurons (TEGLUs shown in Fig. 6e), and significantly enriched in GO
terms of learning, memory and cognition (Fig. 6l). P8 is found to be
involved in positive chemotaxis, andmainly constituted by genes from
hippocampal neurons DGGRC2 and TEGLU23 (Fig. 6k).

Discussion
In this work, we propose Spatial-ID to perform cell type annotation for
SRT datasets molecularly. We first conduct a series of comparisons on
4 publicly available SRT datasets with different characteristics (see
Supplementary Table 1). By comparing the accuracy and weighted
F1 score calculated from predictions and ground truth, the proposed
Spatial-ID demonstrates superior performance than the state-of-the-
art methods (see Supplementary Table 2) on the benchmarking ana-
lysis. Compared with the results of DNN, this ablation analysis also
shows that the spatial informationplays an important role inSpatial-ID.
Furthermore, the better performance of Spatial-ID on the 3D FISH-
based SRT dataset (i.e., mouse hypothalamic preoptic region) further
confirms that Spatial-ID can be effectively applied to 3D SRT dataset.
Moreover, the comparisons on the randomly gene dropout simula-
tions of the FISH-based SRTdataset (i.e.,mouse primarymotor cortex)
additionally demonstrate the better robustness of Spatial-ID against
the variation of gene dropout. These results suggest that embedding
spatial information can not only improve the accuracy of cell type
identification substantially, but also improve the robustness against
the variation of sequencing technologies, such as different gene
dropout rates, different number of measured genes. Besides, the
extended process of new cell type discovery enhances the adaptability
of Spatial-ID in the situation of transfer learning from an incomplete
reference dataset or applications to the SRT datasets with scarce and
indistinguishable cell types. In addition, the running efficiency of
Spatial-ID on all SRT datasets (see Supplementary Table 3) is much
faster than that of correlation-based methods (i.e., Seurat v3, SingleR,
Scmap, and Cell-ID) and integrated methods (i.e., Tangram and
Cell2location with GPU acceleration).

As the application of Spatial-ID on the large field mouse brain
hemisphere dataset measured by Stereo-seq technology, we investi-
gate the spatial organization of identified cell types that show high
consistency with previous studies at spatial anatomical structure level,
such as Allen Brain Atlas. By analyzing the gene expression specificity
of typical marker genes reported in reference dataset, i.e., the single-
cell mouse brain atlas of cell types from the Linnarsson Lab57, most of
these pre-defined marker genes have the highest expression in their
corresponding cell types. Besides, bymapping the identified cell types
with identified spatial gene patterns, the significant GO terms of the
spatial gene patterns further reveal the functions and underlying bio-
logical processes of the identified cell types inmouse brain. Therefore,
Spatial-ID shows a promising perspective to build a large-field spatial
transcriptomic brain atlas.

In principle, the proposed Spatial-ID is a reference-based super-
vised cell typing method, therefore Spatial-ID is influenced by the
characteristics of the reference datasets such as cell number, cell het-
erogeneity, the gene set used as features. For example, the depleted

cell types in reference dataset lead to insufficient knowledge transfer of
Spatial-ID, that may present weaker identification ability on these cell
types. Besides, the Spatial-ID is influenced by the hyperparameters of
constructing graph network such as the number of nearest cells and
coefficient of inverse distanceweight (see Supplementary Table 4), that
also indicates the intensity of spatial information used. Using more
spatial information (neighbor cells) may lead to reduced differences
between local cells, especially the scarce cell types (Figs. 4d, e and 5d).
Therefore, we anticipate that the more spatial information used
enables the Spatial-ID to enhance the identification of locally enriched
cell types and inhibit the identification of rare cell type. In addition, the
Spatial-ID demonstrates well robustness against the variation of gene
dropout, but it is inevitably influenced by the high dimensionality and
biological noise associated with SRT sequencing technologies. Beside
optimizing the data preprocessing, integrating the SRT datasets with
scRNA-seq datasets, that have been determined with rich mRNA tran-
scripts, or other modalities, such as microscopy data and proteomics
data, is potential to mitigate the sequencing noise.

Methods
Ethics declarations
The Stereo-seq dataset in this study was collected from a 5-week-old
C57BL/6J laboratory male mouse. All experimental protocols for
generating Stereo-seq dataset presented in this study were com-
pliant with ethical regulations regarding animal research and
approved by the Animal Care and Use committee of the Guangzhou
Institutes of Biomedicine and Health, Chinese Academy of Sciences
and the Institutional Review Board of BGI, Shenzhen, China (Ethical
permit license number BGI-IRB A21001). All efforts were made to
utilize only the minimum number of animals necessary to produce
reliable scientific data.

Overview of datasets
All experimental protocols for generating Stereo-seq dataset pre-
sented in this study were compliant with ethical regulations regarding
animal research and approved by the Animal Care and Use committee
of the Guangzhou Institutes of Biomedicine and Health, Chinese
Academy of Sciences and the Institutional Review Board of BGI,
Shenzhen, China (Ethical permit license number: BGI-IRB A21001). Our
proposedSpatial-IDwasperformedondifferent SRTdatasets. For each
group of applications, we also collected reference scRNA-seq datasets.
All other SRT datasets and reference scRNA-seq datasets are publicly
available, as shown in Supplementary Table 1. Notably, the mouse
hypothalamic preoptic region dataset measured by MERFISH and the
self-collectedmouse brain hemispheremeasured by Stereo-seq are 3D
SRT datasets. In addition, the field size of the self-collected mouse
brain hemisphere is much larger than other public datasets.

All the ground truth labels we usedwere providedwith the data of
the original research papers (see Supplementary Table 1). In these
papers, these cell type labels were annotated by combining compu-
tational analysis (e.g., clustering analysis or matrix factorization based
analysis) and manual labeling of biologist and histologist. It is the

Fig. 6 | Application to largefieldmouse brain hemisphere datasetmeasured by
Stereo-seq. a The workflow of data acquisition, data processing, and cell type
annotation. bCell type annotation of Spatial-ID for the 3 adjacent sections (Bregma
−3.56 to −3.66mm), and UMAP visualization. c A Voronoi treemap shows the
composition of excitatory neurons, inhibitory neurons, and non-neuronal cells
among the 3 sections. Every tile denotes one cell type and its size represents cell
number. d A Voronoi diagram shows cell type organization among distinct brain
regions of the 3 sections. Every tile is colored by its populated ABA functional
region and its size represents cell number. e Spatial organization of the cortical
pyramidal neurons, i.e., TEGLU2, TEGLU3, TEGLU4, TEGLU6, TEGLU7, TEGLU8,
TEGLU10, TEGL11, and TEGLU17 in the Section 3. Cells in the VISp and AUD region
are individually presented in the middle panel. The right panel shows the kernel

density estimate plots for the corresponding cell types along the normalized cor-
tical depth. f The expression dot plots show the gene expression specificity of
typical marker genes for identified cell types. Dot size represents the proportion of
expressing cells and color indicates average expression level in each identified cell
type. g Spatial distributions of selected marker genes show the number of tran-
scripts captured by Stereo-seq. h The spatial gene patterns consist of type-specific
genes (Section 3, visualized with pattern scores). The right panel shows the cor-
responding identified cell types together with the ABA spatial anatomical func-
tional regions. i–k The spatial gene patterns consist of region-specific genes from
diverse identified cell types (Section 3). The corresponding identified cell types are
illustrated on the right. l Top three highly enriched GO terms for each spatial gene
pattern in (h–k).
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involvement of manual labeling that incorporated the established
knowledge and guided the computational analysis, making the given
label reliable. For example, the mouse primary motor cortex dataset
that involves clustering analysis and manually filtering low-quality or
doublet-driven clusters, shows more distinguishable characteristic in
the feature space. Such practice is the most widely accepted standard
in cell type annotation. The established knowledge includes known
marker genes of specific cell types and known tissue structures infer-
red by the spatial context.

Data collection of large field mouse brain hemisphere
The large field mouse brain hemisphere dataset was measured by
Stereo-seq16 (Fig. 6a). Briefly, three adjacent coronal sections (10-μm
thick, without intervals) along the anterior–posterior axis (Bregma
−3.56 to −3.66) were cut from the brain of a 5-week-old C57BL/6J male
mouse (Fig. 6a). The Mouse was housed under standard laboratory
conditions (12 h light/12 h dark cycle, temperature of 21–27 °C, and
humidity of 55–60%) with ad libitum access to water andmouse chow.
First, these sectionswere adhered to theDNAnanoball (DNB, i.e., spot)
patterned Stereo-seq chip surface, and then were stained and scanned
into ssDNA images for cellular localization. Each DNB on Stereo-seq
chip contains a 25 bp randomly barcoded sequence as coordinate
identity (CID) for its unique spatial location, a 10 bp molecular iden-
tifier (MID), and apolyT for in situRNAcapture, having a size of 220 nm
in diameter and 500 nm center-to-center distance. Next, tissue per-
meabilization, in situ reverse transcription, amplification, library con-
struction, and sequencing were performed according to the protocol
of Stereo-seq technology. More specific process can be found in
the Supplementary information of Stereo-seq technique.

Data processing of large field mouse brain hemisphere
CID sequences were first parsed to the spatial coordinates of the DNB
patterned silicon chip, allowing 1 base mismatch to correct for
sequencing and PCR errors. Qualified reads (Q score ≥ 10) were then
aligned to the mouse reference genome Ensembl GRCm38 v86 via
STAR. Mapped reads with MAPQ ≥ 10 were annotated, and counted by
handleBam (available at https://github.com/BGIResearch/handleBam).
A resulting CID-containing expression profile matrix was thus gener-
ated for each section. To assign the captured RNAs to individual cells,
we transformed the CID-containing gene expression matrix to an
image by summing theMID counts at every pixel, and aligned with the
corresponding ssDNA image based on patterned track lines in both
images. Cell segmentation was performed on the registered ssDNA
images by a UNet-like deep convolutional neural network (Supple-
mentary Fig. 8a). To recall the genes from the cytoplasm surrounding
the nucleus, a Gaussianmixturemodel was employed to adjust the cell
boundaries. Thus, a single cell-based gene expression matrix was
generated for each section by aggregating the spots included in each
cell (Supplementary Fig. 8a). To facilitate the analysis of anatomical
function of mouse brain, these 3 sections were aligned to the three-
dimensional (3D) standard Allen Brain Atlas (Supplementary Fig. 8b)
by Wholebrain (https://github.com/tractatus/wholebrain).

QC and Gaussian smoothing for large field mouse brain
hemisphere
The 3 adjacent coronal sections captured 53,310 cells, 61,910 cells, and
61,857 cells, respectively. Pearson coefficient was used to evaluate the
consistency between them (Supplementary Fig. 8c). Low-quality cells
and genes were discarded according to the following quality control
(QC) criteria: (1) cells with total counts lower than 300 and higher than
98% quantile, (2) cells with percentage of mitochondrial genes larger
than 10%, (3) genes presented in less than 10 cells. Thus, 41,766 cells,
48,721 cells, 50,329 cells were remained for the 3 adjacent coronal
sections (~434 genes per cell), respectively. Next, a Gaussian smooth-
ing strategy was introduced to alleviate the noise and gene dropout

associated with the Stereo-seq technology (Supplementary Fig. 8d).
Specifically, the principal component analysis (PCA) was firstly applied
cell-wise to reduce the raw gene expression matrix into a low dimen-
sion feature space. Then a number of nearest neighboring cells of each
cell in the feature space were acquired, which were used to update the
gene expression of current cell by Gaussian smoothing.

Deep neural networks for transfer learning
The definition of transfer learning is that a machine learning model
gains problem-solving knowledge from the source domain and stores
the knowledge, then the model is applied to solve similar problems in
the target domain. The source domain refers to the referencedatasets,
while the target domain refers to the SRTdatasets. In the framework of
Spatial-ID, the stage 1 employs the transfer learning strategy to train
the deepneural network (DNN)model (Fig. 1a) on reference scRNA-seq
datasets that is used to generate the probability distribution D of each
cell in SRT data. It should be noted that the DNN model only take the
gene expression profiles as input, whereas the available spatial infor-
mation of SRT data is not used. The DNN provides nonlinear dimen-
sionality reduction for the input gene expression matrix, that consists
of 4 stacked fully connected layers, as well as a GELU layer (nonlinear
activation function) and a dropout layer followed by each fully con-
nected layer in sequence (see supplementary Table 4). Moreover, to
alleviate the class imbalance of cell types, the loss function of Focal
Loss is employed in DNN models training.

To perform transfer learning, the gene sets of reference scRNA-
seq dataset and SRT dataset should be matched. We first compare the
measured genes to find the common gene set. If the reference scRNA-
seq datasets or SRT datasets provide marker genes of cell types, we
further select the subset of marker genes from the common gene set.
This process can simplify the implementation of transfer learning.
Then, the raw counts of selected genes from reference scRNA-seq
dataset and SRT dataset are normalized to unit length vector for each
cell. If there is nomarker gene available (e.g.,mouse spermatogenesis),
we additionally perform a stage of log1p operation to raw counts of
genes before the normalization, that intends to inhibit the negative
effects of very highly expressed genes.

Spatial neighbor graph construction for spatial information
To perform spatial embedding, we construct a spatial neighbor graph
to represent the spatial relationships between neighboring cells
(Fig. 1b). The spatial neighbor graph consists of nodes and edges, where
a node represents a cell and an edge represents the relationship of a
pair of neighboring cells. To better characterize the relationships, we
calculate the Euclidean distance between current cell and neighboring
cells using the spatial coordinates. Because the behavior of an indivi-
dual cell is mediated by the ligand-receptor interactions with its
neighboring cells in local tissue microenvironment, so closer distance
indicates more closer relationship. For each selected neighbor, we
calculate theweight negatively associatedwith its Euclidean distance by

ω u,vð Þ= e�
dðu,vÞ2
2θ2 , ð1Þ

where dðu,vÞ denoted the Euclidean distance of the coordinates of a
pair of neighboring cells/spots in spatial space, θ denoted the decay
coefficient. Specifically, we select the topN nearest neighbors (e.g., 30
in this study) of each cell to create the adjacencymatrix, denoted byA,
in which a cell u with top Nu neighboring cells can be calculated by

A u,vi
� �

=ω u,vi
� �

if vi 2 Nuelse0: ð2Þ

Deep autoencoder for latent representation learning
A deep autoencoder42 is used to learn encoded gene representation
X through reducing the dimension of the gene expression matrix
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I (Fig. 1c). If the SRT datasets contains tens of thousands of genes, the
gene expression matrix I is generated by extracting hundreds of
principal components (e.g., 200) of principal component analysis
(PCA). The encoder part consists of 2 stacked fully connected layers, as
well as a batchnormal layer, a ELU layer (nonlinear activation function)
and a dropout layer followed by each fully connected layer in
sequence. The decoder part consists of one fully connected layer and
same followed layers as encoder. The deep autoencoder employs the
mean squared error (MSE) loss function to maximize the similarity
between the input gene expression matrix I and the output gene
expression matrix I 0 reconstructed by decoder.

Variational graph autoencoder for spatial embedding
AGCN32, i.e., variational graph autoencoder (VGAE)43, is used to embed
spatial neighbor graph (Fig. 1d). Because the spatial neighbor graph
contains large number of nodes for high-throughput cell-level SRT
data, we employ sparse graph convolution layers in VGAE to accelerate
the computation. The variationalmodification of the encoder-decoder
architecture can introduce regularization in the latent space, thus
improves the properties of spatial embeddings. The graph encoder
takes encoded gene representations X from autoencoder and the
adjacencymatrixA as input, then generates the spatial embedding S as
output. The graph encoder consists of 2 sparse graph convolution
layers, as well as a RELU layer (nonlinear activation function) and a
dropout layer followed by each graph convolution layer in sequence.
The first sparse graph convolution layer is used to generate a lower-
dimensional feature matrix. Next, the second sparse graph convolu-
tion layers generate a feature matrix μ and a feature matrix logσ2,
respectively. Then the spatial embedding S is calculated using para-
meterization trick S=μ+ σ*τ, where τ ∼Nð0,1Þ. The final latent repre-
sentations Z are combined from the encoded gene representation X
and the spatial embedding S by formula Z =X + S. Thereafter, the final
latent representations Z are used to reconstruct the gene expression
matrix I 0 in the autoencoder and the adjacency matrix A0 in the VGAE.
Specifically, the graph decoder adapts an inner product to reconstruct
adjacencymatrixA0 from the spatial embeddingZ . The loss functionof
the VGAE employs a cross-entropy loss to minimize the input adja-
cency matrix A and the reconstructed adjacency matrix A0, and a KL-
divergence to measure the similarity between q Zð ÞX ,AÞ and pðZ Þ,
where p Zð Þ∼Nð0,1Þ.

Self-supervised learning using pseudo-labels
We additionally perform a self-supervised learning strategy to train a
classifier using the final latent representations Z and pseudo-labels L.
Essentially, the self-supervised learning employs the pseudo-labels
that are generated using the gene expression features of the SRT
dataset itself. Formally, the pseudo-labels L= fl1, . . . ,li, . . . ,lng are
derived from the output Y = fy1, . . . ,yi, . . . ,yngof last fully connected
layer of the DNN model by a modified softmax layer

li =
eðyi=TÞ

P
je

ðyj=TÞ
, ð3Þ

where T is the temperature parameter45 that is used to adjust the
smoothness of distribution by the temperature setting strategy
(Fig. 1b), and L=D , if T = 1. Obviously, a higher value for T produces
softer distribution of pseudo-labels L over all classes. The softer
distribution of pseudo-labels L could transfers more information from
the reference scRNA-seq datasets.

Simulation of different gene dropout rates
Many spot-based ST technologies usually have lower mRNA capture
efficiency due to the limited number of probes. Therefore, the gene
dropout rates of spot-based SRT datasets are usually higher than
the state-of-the-art scRNA-seq technologies and FISH-based SRT

technologies. To verify the adaptability of Spatial-ID in different gene
dropout rates, we conduct simulation experiments on FISH-based
mouse primary motor cortex SRT dataset (Fig. 2j). The simulated SRT
datasets are generated by a random-gene-discard strategy, that ran-
domly resets part of values to 0 in the gene expression matrix. Then,
we compare cell type annotation of Spatial-ID and control methods on
these simulated SRT datasets.

New cell type discovery
The discovery of new cell populations has biologically important
implication for omics analysis. Technically, the new cell type discovery
problem can be characterized as an anomaly detection task. For
example, the reference datasets do not contain the new cell types to be
found in SRTdatasets or have serious class imbalance problemderived
from scarce cells of the new cell types, thus these new cell types are
identified into incorrect cell types (e.g., L4/5 IT and L6 IT car3 inmouse
primarymotor cortex dataset). For another situation, the SRT datasets
have indistinguishable feature distributions (e.g., the indistinguishable
cell types in human NSCLC dataset).

Essentially, the new cell type discovery task is performed on the
cell typeprobability distributionoutputtedby cell typingmethods. It is
a postprocess of cell typing methods that attempts to identify new
categories from low-confidence cells. As shown in Fig. 2k, the process
of new cell type discovery contains thresholding, clustering, mapping,
and filtering sub-steps. For each cell, the maximum score cs 2 ½0,1� of
predicted probability vector C= c1,. . . ,ci, . . . ,cn�1

� �
,
Pn�1

1 ci = 1 is first
examined by a threshold at the thresholding step. If the maximum
score cs of the cell is less than the threshold (e.g., 0.9 in Fig. 2k), the cell
is tagged as an unassigned cell. The lower threshold retrieves fewer
unassigned cells, that makes the subsequent new class discovery
process impossible to find new cell type patterns. On the other hand,
the higher threshold retrieves more unassigned cells, that leads more
clusters to filter in the subsequent analysis. The threshold is empiri-
cally set in the range of 0.5 to 0.9. We set a threshold of 0.9 for
demonstration in Fig. 2k and a threshold of 0.7 for demonstration in
Fig. 5e–h. The clustering step is performed to group the unassigned
cells into different clusters, that could ensure that the new cell types
populate in a relatively isolated area in the feature space. Empirically,
the number of clusters approximately equals to the half of total cell
types.Next, themapping step aligns the clusters topredicted cell types
in the feature space for these unassigned cells (Supplementary Fig. 2g
and Fig. 5e–g). Each cluster may contain multiple cell types predicted
by Spatial-ID. For example, the cluster 2 in Supplementary Fig. 2g
contains the L2/3 IT andL5 IT cell types predictedby Spatial-ID, and the
gene expression profile of this cluster presents gradual transition
between the L2/3 IT and L5 IT cell types. The filtering step analyzes the
distance from the center of each cluster to the center of the predicted
types one-by-one. If the distance is less than the radius of one pre-
dicted type in feature space, the cluster is still identified as this pre-
dicted type rather than a new cell type. If the distance is larger than the
radius of all predicted types in the feature space, the cluster is iden-
tified as a new cell type.

Identifying spatial gene patterns for large field mouse brain
hemisphere
Hotspot67 is used to identify spatial gene patterns (Supplementary
Fig. 9b). First, data binning is performed to reduce computational
difficulty by dividing the x-y coordinates into grids covering an area of
50*50 DNB (bin50) and the transcripts of the same gene aggregated
within each bin. Next, highly variable genes are found by toolkit
scanpy75. Hotspot uses the number of 300 neighbors to create the
spatial KNN graph, and then uses spatially-varying genes (FDR <= 0.05)
to identify spatial gene patterns. In addition, clusterProfiler76 is used to
perform GO enrichment analysis of the identified spatial gene pat-
terns (Fig. 6j).
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Computational resources and runtime
All analyses presented in the paper are run in a workstationwith 40Gb
RAMmemory, 10 cores of 2.5 GHz Intel Xeon Platinum8255CCPU, and
a Nvidia Tesla T4 GPU with 8Gb memory. And the following python
(v3.8) packages support for Spatial-ID are required: numpy==1.21.3,
pandas==1.2.4, scipy==1.5.4, matplotlib==3.3.4, seaborn==0.11.1, scikit-
lean==0.24.2, torch==1.8.1, torch_geometric==1.7.2, scanpy==1.8.1. The
runtime of different cell typingmethods in this workstation are shown
in Supplementary Table 3.

Statistics and reproducibility
A summary of all involved datasets is given in Supplementary Table 1.
The four publicly available SRT datasets (i.e., mouse brain primary
motor cortex, mouse brain hypothalamic preoptic region, mouse
spermatogenesis, and humannon-small-cell lung cancer) contained 12,
3, 6, 20 samples, respectively. The self-collected mouse brain hemi-
sphere dataset contained one sample with 3 slices. No sample was
excluded in this study. All boxplots in this study, draw by matplotlib
and seabron python package, employed the same settings to show the
median (center lines), the inter-quantile range (IQR, the 25th and 75th
percentiles for the lower and the upper hinges, respectively) and the
whiskers (extend up to 1.5 IQRs from the lower and upper hinges,
respectively). The points that fell outside the whiskers were “outliers”
and were displayed independently. Wilcoxon rank-sum test was cal-
culated by scipy python packge to statistically analyze differences
between methods. The regression plots, draw by matplotlib and
seabron python package, were presented as mean values with 95%
confidence intervals.

The visualizations of ground truths in Figs. 2b, d, h, k, 3b, d, 4a, d,
e, 5b, c and Supplementary Figs. 1a–c, 2e, 5d, 6a, b were generated
from the annotations provided by publicly available datasets, which
can be reproduced infinitely. The results of Spatial-ID and control
methods in Figs. 2c, e, h, j, k, 3c, d, 4b, d, e, 5d–h, 6b, and Supple-
mentary Figs. 1a–c, 2f, g, 5d, 6a, b, 8a were similar with at least 3
independent experiments replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A summary of all involved datasets is given in Supplementary Table 1.
Thepublic datasets are freely available as follow.Mousebrain - primary
motor cortex (MOP): “https://doi.org/10.35077/g.21 [https://doi.
brainimagelibrary.org/doi/10.35077/g.21]”. Mouse brain - hypotha-
lamicpreoptic region: “https://doi.org/10.5061/dryad.8t8s248 [https://
datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248]”. “Mouse
spermatogenesis [https://www.dropbox.com/s/ygzpj0d0oh67br0/
Testis_Slideseq_Data.zip?dl=0]”. Human NSCLC: “SMI-FFPE
Dataset–Lung9-Rep1 Data [https://nanostring.com/resources/smi-
ffpe-dataset-lung9-rep1-data/]”. The snRNA-seq 10x v3 B of BICCN
MOP dataset (RRID: SCR_015820) can be accessed via the NeMO
archive (RRID: SCR_002001) at “accession [https://assets.
nemoarchive.org/dat-ch1nqb7]”. scRNA-seq of preoptic region of
mouse hypothalamic: “GSE113576”. scRNA-seq of mouse testis:
“GSE112393”. “scRNA-seq NSCLC [https://gbiomed.kuleuven.be/
english/research/50000622/laboratories/54213024/scRNAseq-
NSCLC]”. Mouse brain atlas of cell types from the Linnarsson Lab:
“SRP135960 [http://mousebrain.org/adolescent]”. The raw Stereo-seq
sequencing data used in this study have been deposited in China
National Gene Bank (CNGB) Sequence Archive (accession code:
“CNP0002966”), that are available from the corresponding author
upon reasonable request. The raw and processed Stereo-seq sequen-
cing data have been deposited in Zenodo (https://doi.org/10.5281/
zenodo.7340795)77 that are publicly accessible. All other relevant data

supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding
author upon reasonable request. Source data are provided with
this paper.

Code availability
An open-source Python implementation of Spatial-ID and reproduc-
tion code are available at https://github.com/
TencentAILabHealthcare/spatialID and Zenodo78 (https://doi.org/10.
5281/zenodo.7315186).
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