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Prethermalization in one-dimensional
quantum many-body systems with
confinement

Stefan Birnkammer 1,2 , Alvise Bastianello 1,2 & Michael Knap 1,2

Unconventional nonequilibrium phases with restricted correlation spreading
and slow entanglement growth have been proposed to emerge in systemswith
confined excitations, calling their thermalization dynamics into question.
Here, we show that in confined systems the thermalization dynamics after a
quantum quench instead exhibits multiple stages with well separated time
scales. As an example, we consider the confined Ising spin chain, in which
domain walls in the ordered phase form bound states reminiscent of mesons.
The system first relaxes towards a prethermal state, described by a Gibbs
ensemble with conserved meson number. The prethermal state arises from
rare events in which mesons are created in close vicinity, leading to an ava-
lanche of scattering events. Only at much later times a true thermal equili-
brium is achieved in which the meson number conservation is violated by a
mechanism akin to the Schwinger effect. The discussed prethermalization
dynamics is directly relevant to generic one-dimensional, many-body systems
with confined excitations.

Nonequilibrium states of quantum many-body systems play an
important role in various fields of physics, including cosmology and
condensed matter. Of particular interest is the time evolution of
interacting quantum many-body systems that are well isolated from
their environment1,2. This research has been fueled by the progress in
engineering coherent and interacting quantum many-body systems
which made it possible to experimentally study unconventional
relaxation dynamics. A recent interest is to explore phenomena from
high-energy physics with synthetic quantum systems in a controlled
way; for example lattice gauge theories have been realized3–9 and
phenomena akin to quark confinement have been explored3,6,10–12,
with great emphasis on the atypical nonequilibrium features of
confined systems. Confinement strongly affects the relaxation
dynamics of the system, leading to unconventional spreading of
correlations and slow entanglement growth13–15, with striking sig-
natures in the energy spectrum reminicent of quantum scars16,17. In
spite ofmany efforts, a proper characterization of the full many-body
dynamics and thermalization in confined systems remaines elusive
so far.

An archetypical model to study confinement phenomena in
condensed-matter settings is the Isingmodel with both transverse and
longitudinal magnetic fields18–23. In this model, domain walls—inter-
preted as quarks—are pairwise confined into mesons by a weak long-
itudinal field; see Fig. 1a. A key feature of themodel is the long lifetime
of mesons, ascribed to a strong suppression of the Schwinger
mechanism24–29, which creates new quarks from the energy stored in
the confining force and viceversa. Hence, except for some fine-tuned
regimes30–32, mesons are stable excitations. Due to the approximate
conservation of the meson number, various exotic dynamical phe-
nomena have been proposed, includingWannier-Stark localization33–35

and time crystals36. Even though the realization of these phenomena
does not require particular fine tuning, they arise in a regime in which
interactions between mesons are extremely unlikely. The few-meson
scattering has been recently considered30,31,37,38, but so far, apart from
special limits39, the full many-body dynamics of confined systems has
not been addressed. Irrespective of these exciting effects, the Ising
model with longitudinal and transverse fields is non-integrable19 and
features a Wigner-Dyson level statistics of the eigenenergies40. Hence,
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one would expect on general grounds41–43 that the system thermalizes
at late times and interactions between mesons can become relevant.
Given this wealth of unconventional nonequilibrium phenomena and
the discrepancy with the expected thermalization in non-integrable
models, it is important to understand the mechanisms of relaxation
and their timescales.

In this work, we investigate the relaxation dynamics of one-
dimensional systems in the presence of confinement, with focus on the
Ising chain as a primary example. Two scenarios could be envisioned
for the thermalization process. The first one is that the Schwinger
effect, leading to a violation of themeson-number conservation, could
be the only responsible mechanism for equilibration, causing an
extremely slow thermalization dynamics. A more exciting, second
scenario involves an intermediate thermalization of the mesons
themselves. Here, we show that indeed the second scenario is realized.
Generic states first relax to a Gibbs ensemble in which the meson
number is conserved up to extremely long times; Fig. 1b, c. We show
that relaxation to this state is activated through rare events in which
two mesons are produced in their vicinity, initiating an avalanche of
scattering events. This prethermal state can then be understood as a
dilute thermal gas of mesons with conserved meson density. Only at
exponentially long times, the Schwinger mechanism causes a full
thermalization of the system coupling sectors with a different number

of mesons.While we choose to focus on the Ising chain as the simplest
example where both analytical and numerical progress can be made
efficiently, our findings can be extended to generic confined many-
body systems as we emphasize in the discussion section.

Results
Model and protocol
The Ising chain with both transverse and longitudinal fields is descri-
bed by the Hamiltonian

Ĥ = �
X
j

σ̂z
j + 1σ̂

z
j +h?σ̂

x
j +hkσ̂

z
j

h i
: ð1Þ

In the pure transverse-field regime (h∥=0) the model is equivalent
to noninteracting fermions and exhibits spontaneous Z2�symmetry
breaking for ∣h⊥∣≤ 1 in the thermodynamic limit. For h⊥→0, the two
degenerate ground states ∣GS±

�
are simple product states of maximally

positive/negative magnetization, which are renormalized for finite
transverse field, such that GS±

�
∣σ̂z

j ∣GS±

�
= ± �σ, with �σ = ð1� h2

?Þ
1=844.

In this phase, the fermionic modes are interpreted as (dressed) domain
walls (or kinks) relating the two vacua and are thus of topological nature.
A small longitudinal field h∥>0 lifts the ground state degeneracy,
leading to a low-energy “true vacuum" and ahigh-energy “false vacuum,"
and induces a pairwise linear potential / 2hk�σ between kinks; Fig. 1a.

We consider the following quantum quench13: The system is
initialized for h∥ =0 in one of the two degenerate ground states (spe-
cifically, we select hσ̂zi>0) and then brought out of equilibrium by
suddenly changing both the transverse and the longitudinal field
components. Building on the knowledge of quenches in the transverse
field only45, one can argue that fermions are locally produced in
pairs with opposite momenta13, each of them having a dispersion

ϵðkÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos k � h?Þ2 + sin2k

q
. However, pairs of fermions are then

confined due to the finite longitudinal field h∥≠0. For weak quenches,
very few excitations are produced and, due to translational invariance,
mesons aremostly initialized at rest and arewell isolated. Their stability
is guaranteed by the strong suppression of fermion number-changing
processes. In the case of small transverse field (∣h⊥∣ < 1/3) two fermions
cannot energetically couple to the four-fermion sector without using
the energy stored in the false-vacuum string. Hence, this process
resembles the false-vacuum decay, whose lifetime has been shown to

scale exponentially with h�1
k

24. Even in the less restricted regime where
the scattering of two fermions into four is energetically allowed
(1/3 < ∣h⊥∣< 1), the cross section is induced by the weak longitudinal
term, leading to a meson lifetime that scales algebraically in the long-

itudinal field h�3
k

46. To confirm this expectation, we perform tensor
network simulations47–49 based on the TenPy library49 of the quantum
quench and compute the meson density ρ; Fig. 1c. We checked con-
vergence of our data with bond dimension on the shown timescales
(data are shown for χ = 256). In the limit of smallh∥ themesonnumber is
conserved on the numerically accessible timescales (see Methods).

Excitation spectrum and thermodynamics
Assuming that the meson number is conserved, we now study the
thermodynamics of a gas of mesons, which is expected to describe the
prethermal state. In the dilute regime, themean-free path ismuch larger
than the typical meson length. In a first approximation, we therefore
neglect the effects that the size of the meson has on the thermo-
dynamics. A convenient starting point is the semiclassical limit of a
singlemeson, inwhichone treats the two fermions as point-like particles
with coordinates (x1,2, k1,2) governed by the classical Hamiltonian

H= ϵðk1Þ+ ϵðk2Þ+2hk�σ∣x1 � x2∣ : ð2Þ

Fig. 1 | Dynamics in the confined Ising chain. a Pairs of domain walls, interpreted
asmesons, are confined by the longitudinal field. b For weak quantum quenches of
the transverse and longitudinal fields the Ising chain exhibits a multi-stage relaxa-
tion dynamics. Insets: typical domain wall trajectories in the different dynamical
phases. At short times, t < tPreTh∝ ρ−2h∥ (with ρ the density of mesons) a metastable
state arises in which mesons are at rest and well separated. For intermediate times
tPreTh < t < tTh, rare events initiate avalanches of scattering processes, leading to
prethermal Gibbs ensemble with conserved density of mesons ρ. At late times
t > tTh / exp½ð:::Þh�1

k �, the Schwinger mechanism breaks the meson-number con-
servation leading to full thermalization. c The meson density ρ, computed with
tensor network simulations, relaxes to the analytical prediction (dashed gray lines)
of ref. 15 (see also supplementary information (Supplementary information for
details on the confining dynamics; characterization of the prethermal state; initi-
alization of moving mesons by staggered field pulses; further information on
details of numerical simulations.)).
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The semiclassical approximation holds when interactions cannot
resolve the discreteness of the underlying lattice, i.e., for h∥≪ 1. Hence,
the position of the particle x1,2 is a continuous variable. In the reduced
two-body problem, the total momentum k = k1 + k2 of a meson is
conserved, thus the dynamics of the relative coordinates (q = (k1 − k2)/
2, x = x1 − x2) is governed by Hrelðq, xÞ= ϵðk=2 +qÞ+ ϵðk=2� qÞ+
2�σhk∣x∣. Then, the thermal probability of having a meson with a given

energy and momentum is PðE, kÞ= e�βðE�μÞ R dqdx
ð2πÞ2 δðHrelðq, xÞ � EÞ,

where the inverse temperature β and chemical potential μ must be
fixed by matching the initial average energy and meson density,
respectively. The integral over the relative coordinates is most
conveniently tackled by transforming to action-angle variables
(J,ϕ)50, where J � HHrelðq,xÞ= EðJ,kÞqdx labels the phase-space orbits of

the classical motion and ϕ is a periodic variable ϕ∈ [0, 1], leading to

PðE, kÞ= e�βðE�μÞ R dJ
ð2πÞ2 δðEðJ, kÞ � EÞ. Leaving the classical limit, the

energy levels become quantized according to the Bohr-Sommerfeld
rule J = 2π(n − 1/2), where n is a natural number20.

Away from the dilute regime mesons should be treated as
extended objects and their thermodynamics needs to be suitably
modified. To this end, we considermesons as hard-rods offixed length
ℓ(J, k), the latter being the meson length averaged over one oscillation
period. Within this assumption, P(E, k) gets modified as

PðE, kÞ
1� ρM

= e�βðE�μÞ
Z

dJ

ð2πÞ2
δðEðJ, kÞ � EÞe�ρ‘ðJ,kÞð1�ρMÞ�1 ð3Þ

with ρ themeson density andM the averagemeson length, which are
self-consistently determined by P(E, k); see also supplementary
information (Supplementary information for details on the confin-
ing dynamics; characterization of the prethermal state; initialization
of moving mesons by staggered field pulses; further information
on details of numerical simulations.). The meson coverage ρM
is connected to the magnetization of the Ising chain
as ρM = 1=2� �σ�1hSzi.

While we chose to present the thermodynamics from the semi-
classical perspective for the sake of clarity, quantum effects can be
important when the fermion bandwidth becomes comparable with the
longitudinal field and the Born-Sommerfeld quantization is a poor
approximation. In this regime, the classical Hamiltonian (2) can be
directly promoted to a quantum object and explicitly diagonalized15,
thus replacing the J − integration in Eq. (3) with a discrete sum (Sup-
plementary information for details on the confining dynamics; char-
acterization of theprethermal state; initializationofmovingmesonsby
staggered field pulses; further information on details of numerical
simulations.).

Prethermalization of quantum mesons
In order to show that meson-meson scattering leads to a prethermal
Gibbs Ensemble, we numerically calculate the time evolution in the
subspace with a fixed number of mesons using exact diagonalization
(see Methods). We consider a chain of length L with periodic
boundary conditions, and focus on the limit 0 < h⊥≪ 1 where fer-
mions can be identified with domain walls. In this regime, �σ ! 1 and
the confinement strength is determined by h∥/h⊥. We initialize the
state in the form of moving wave packets and probe relaxation by
tracking the meson momentum distribution; Fig. 2. Whereas for two
mesons, energy and momentum conservation inhibits thermaliza-
tion, see supplementary information (Supplementary information
for details on the confining dynamics; characterization of the pre-
thermal state; initialization of moving mesons by staggered field
pulses; further information on details of numerical simulations.), for
three mesons we observe the relaxation to the prethermal Gibbs
ensemble; Eq. (3). Two-body scattering processes between different

energy bands are responsible for the thermalization; Fig. 2b. For
wave packets which are initialized with energies below the second
band thermalization is largely suppressed, as two-body collisions
become elastic due to momentum-energy conservation and three-
body scattering events are unlikely; Fig. 2a. We provide additional
details on the thermalization in the supplementary information
(Supplementary information for details on the confining dynamics;
characterization of the prethermal state; initialization of moving
mesons by staggered field pulses; further information on details of
numerical simulations.).

Prethermalization through rare events
Equipped with the meson conservation, the thermodynamics of the
prethermal state, and the quantum thermalization of a fewmesons, we
now study the full quench protocol. In order to access large system
sizes and timescales, we use the TruncatedWigner Approximation51 on
the quantum dynamics projected in the fermion number conserving
sector (see Methods). In order to study the relaxation dynamics, a
precise knowledge of the excitation content of the initial state is cru-
cial. The quantum quench of both the longitudinal and the transverse
field excites dilute pairs of fermions with opposite momenta (k, − k) at
density n(k), which can be computed from the quench parameters13,15.
These pairs of fermions are then confined into mesons by the long-
itudinal field according to Eq. (2).

For small quencheswithin the ferromagnetic phase, the density of
mesons is low. Typically, mesons are excited far apart and are thus
isolated and at rest. In this scenario, inter-meson scattering and ther-
malization seems impossible. However, considering only the typical
behavior is misleading, as the probability of creating two nearby

Fig. 2 | Prethermalization of quantum mesons. We create three mesons with
Gaussian wave packets tuned to target the lowest energy band at momenta
{ − k0, 0, k0} in a chain of length L = 100 with confinement field h∥/h⊥ =0.1 (see
Methods). Energy bands are computed through a numerical solution of the two-
fermions quantum Hamiltonian (Supplementary information for details on the
confining dynamics; characterization of the prethermal state; initialization of
moving mesons by staggered field pulses; further information on details of
numerical simulations.). The evolution of the momentum distribution P(k) of the
meson initialized at rest (empty circle in upper panels) is shown. a For k0 =π/4 the
energy of the initial wave packets is below the second band of the single meson
dispersion (upper panel), which causes meson scattering events to be elastic and
prohibits relaxation to a prethermal ensemble (red curve). b For k0 = 3π/4, the
initial wave packets are resonant with other bands, which can then be populated,
and lead to inelastic scattering. This quantum state relaxes to a prethermal con-
figuration at late times. Prethermal curves are computed according to the hard-
rods thermodynamics (3) using the exact quantum eigenfunctions rather than the
semiclassical prediction (Supplementary information for details on the confining
dynamics; characterizationof the prethermal state; initializationofmovingmesons
by staggered field pulses; further information on details of numerical simulations.).
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mesons is never strictly zero. To obtain a rough estimate, we consider
the maximum size dmax that a meson can have when fermions are
initially created at the same position, which is given by
dmax = 4h?=ðhk�σÞ, and compare it with the meson density ρ. On a
finite volume L, the probability P(L) that N = Lρ randomly distributed
particles are placed at distance larger than dmax is
PðLÞ= 1

LN
QN�1

j =0ðL� jdmaxÞ ’ e�Lρ2dmax=2. No matter how small the exci-
tation density ρ is, eventually in the thermodynamic limit the prob-
ability that all the excited mesons are far apart vanishes. Crucially, the
rare nearbymesons scatter and acquire a finite velocity. Thesemoving
mesons consequently trigger an avalanche, that hits the surrounding
mesons, and initiates prethermalization; see Fig. 3a for a typicalmeson
configuration. In Fig. 3b, left, we first ensure that the semiclassical
approximation is reliable for the chosen quench parameters, by
comparing with tensor network simulations on the reachable time-
scale (convergence with bond dimension is checked; data shown for
χ = 256). Then, we use the semiclassical approach to probe extremely
long times, observing prethermalization of both the meson coverage
ρM (inset) and the momentum distribution of mesons P(k) (right
panels). For the latter the initial∝ δ(k) peak decays due to the afore-
mentioned avalanche effect and relaxes to a smooth prethermal Gibbs
distribution.

The density dependence of the prethermalization timescale tPreTh
can be understood as follows. Initially, the configuration consists of
large regions of average size ∼ ðρ2dmaxÞ

�1
with mesons at rest sepa-

rated by growing thermalizing domains. Hence, we estimate pre-
thermalizing regions to cover the whole system on a typical time
t* ∼ ðρ2dmaxvÞ

�1
, where v is a typical velocity. Once all mesons are set in

motion, two-body inelastic scatterings drive the relaxation of the sys-
tem on a timescale t** ~ (ρv)−1. At low excitation density, t*≫ t**,
hence tPreTh ∼ ðρ2dmaxvÞ

�1
.

Building on this approximation, we can understand the relaxation
of local observables by assuming that prethermalizing regions con-
tribute with OPreTh, while regions with static mesons retain the initial
value O0 (after a short dephasing time). Hence, hOðtÞi follows the

average growth of thermalizing regions

hOðtÞi =OPreTh +ΔO
Z 1

0
dDPðDÞD� 2vt

D
θðD� 2vtÞ, ð4Þ

where we approximate each prethermalizing region to growth in a
lightcone fashionwith velocity v andΔO=O0 �OPreTh Above, θ(x) is the
Heaviside theta function θ(x>0) = 1 and zero otherwise, D is the dis-
tance between two rare events which is distributed with probability
distributionPðDÞ. By its very definition,O0 can be computed as the late-
time limit of the single meson approximation, since outside of the
scrambling region themesons are not interacting. Finally, the term D�2vt

D
is nothing else than the portion of frozen region that remained after the
thermalizing region propagated with velocity v inside of it. The last step
is now to estimate P. We have already computed the probability that,
within a system of size L, there are no rare events. In the computation,
we used the maximum extension of a meson dmax as an upper bound,
but a better estimate is obtained using the average size of the excited
mesons, which we call d. Hence, the probability that within an interval L
there are no rare events is PðLÞ= e�Lρ2d=2. The distributions P(L) and
PðDÞ are related by PðLÞ= R1L dDPðDÞ, leading to PðDÞ= ρ2d

2 e�Dρ2d=2.
With this approximation, Eq. (4) can be recast in a scaling form
hOðtÞi=OPreTh +ΔO Fðtvρ2dÞ with FðτÞ= R1τ ds e�sð1� τ=sÞ.

The full numerical results agree with this picture; Fig. 4a. Since
dmax / h�1

k , smaller longitudinal fields leads to a shorter pre-
thermalization timescale for the samemesondensity ρ. Even in the less
favorable case where h⊥ is kept constant and only h∥ is quenched (i.e.,
only the small longitudinal field is ultimately responsible of creating
fermionic excitations), we find ρ2 / h�2

k (Supplementary information
for details on the confining dynamics; characterization of the pre-
thermal state; initialization of moving mesons by staggered field pul-
ses; further information on details of numerical simulations.). Hence,
there is in any case a separation of scales between the prethermaliza-
tion time tPreTh / h�1

k and the violationofmeson-number conservation
tTh ∼ exp½ð:::Þh�1

k �, consistently ensuring the existence of the pre-
thermal regime for a large class of quenches.

In Fig. 4b we study the semiclassical prethermal regime for dif-
ferent confining strengths, but the same average density and energy.
For hf

k =0:015 (top) the average meson length is shorter than for

Fig. 3 | Prethermalization through rare events. a Typical semiclassical trajec-
tories obtained with the Truncated Wigner Approximation. Most fermions belong
to mesons at rest (blue lines), but rare events in which mesons are in close vicinity
lead to an avalanche effect putting mesons in motion (red lines) and activating
dynamics in the entire meson ensemble. b For comparably small values of h∥
semiclassical results for the average meson coverage ρM agree well with exact
quantum evolution obtained from tensor network techniques. (Inset) The semi-
classical analysis reveals relaxation towards a prethermal plateau (red), which is
distinct from the thermal state in the absence of meson conservation (green
dashed). Side panels: Relaxation of the semiclassical ensemble is also reflected in
the decay of the the momentum distribution P(k) at k ≈0. Thermal (μ =0) and
prethermal (μ fixed by number of mesons) predictions are computed with Eq. (3),
directly in the classical limit.

Fig. 4 | Approaching the prethermal state and thermodynamics. aThe late-time
relaxation of the average meson length M to the prethermal plateau is well-
described by the prediction hOðtÞi=OPreTh +ΔOFðtvdρ2Þ. The quantity vd is
obtained from a fit to the data. b The normalized one-meson phase-space occu-
pation relaxes to a prethermal ensemble (prethermal: red continuous line; thermal:
green dashed line; numerics: blue shaded area). Finite-density corrections are
captured by the hard-rods approximation and cause an additional peak in the
energy distribution P(E) (bottom). The relative difference in the meson densities
between the thermal and prethermal ensemble Δρ = (ρPreTh − ρTh)/ρTh are Δρ =0.16
and Δρ=Oð10�3Þ for hf

k =0:015 (top) and hf
k =0:001 (bottom), respectively. Ther-

mal and prethermal observables are computed with Eq. (3), real-time evolution is
obtained within the Truncated Wigner Approximation.
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hf
k =0:001 (bottom). We observe that the larger size of the mesons

influences the phase-space distribution as follows: (i) it introduces a
momentum-dependent cutoff in the energy, which is ultimately
caused by the fact that the average meson length is bounded by the
mean-free path, and (ii) the probability distribution is squeezed to the
boundaries of the allowed phase space. A consequence of this is
the emergence of a peak in the energy distribution corresponding to
the Brillouin zone boundaries (compare bottom and top distibution
functions). This effect is captured by our hard-rods approximation. For
this choice of parameters, we observe the thermal number of mesons
is lower than the prethermal one, hence thermalization is achieved by
fusing small mesons into larger ones, i.e., by the reverse process of the
Schwinger effect; Fig. 1b. In order to conserve the total mean energy,
the thermal distribution has more high-energy mesons excited than
the prethermal case. The difference between the prethermal and
thermal state is reduced at higher meson densities, where the hard-
rods correction penalizes large mesons.

By virtue of the simple underlying kinetic mechanism, the validity
of our study is expected beyond the classical realm to hold in the
quantum case as well, with an additional refinement. As previously
mentioned, thermalization is activated by two-body scattering
between different energy bands. Hence, the estimate of tPreTh should
be corrected considering that only a fraction of ρ is contributing to the
inelastic scattering.

Discussion
Confined spin chains exhibit an intriguing multi-stage thermalization
dynamics. We show that not the Schwinger mechanism is responsible
for activating transport, but rather rare events inwhich twomesons are
generated in their vicinity lead to a prethermal regime, that can be
understood as a thermal gas of mesons. The different mechanism
ensures the separation of timescales and the existence of a prethermal
regime. The prethermalization time can be greatly reduced by con-
sidering quench protocols that create mesons with non-zero velocity.
This, for example, can be realized with spatially modulated pulses of
the transverse field52 (Supplementary information for details on the
confining dynamics; characterization of the prethermal state; initi-
alization of moving mesons by staggered field pulses; further infor-
mation on details of numerical simulations.).

We used the Ising chain (1) as a prototypical model to demon-
strate the rich relaxation dynamics. However, similar dynamics is
expected in other confined many-body systems as well; for example
latticegauge theories53–55. Incidentally,wenotice that the Ising chain (1)
can be interpreted as a Z2�gauge theory in the zero charge sector,
wherematter degrees of freedomhavebeen integratedout by virtueof
the Gauss law33. A prominent example of a different lattice gauge
theory is the U(1) quantum link model

HQLM = � ω
XL�1

j = 1

ðϕy
j S

+
j,j + 1ϕj + 1 + h:c:Þ

+
m
2

XL
j = 1

ð�1Þjϕy
j ϕj � 2hk

XL�1

j = 1

Szj,j + 1,

ð5Þ

where staggeredKogut-Susskind fermionicmatterϕj
56 interacts via the

gauge degrees of freedom encoded in the spin variables Sαj,j + 1. In this
model, (anti-)quarks correspond to defects in the staggered matter
degrees of freedom and quark-antiquark pairs experience a linear
confinement potential∝ h∥. In a recent work57, it has been understood
that the Hamiltonian (5) maps to the Fendley-Sengupta-Sachdev
Hamiltonian58 describing one-dimensional Rydberg atom arrays59

whichmay experimentally probe our findings.Within this implementa-
tion, the vacuum of the gauge theory is mapped into a chain where
atoms are excited in their Rydberg state on even sites, then quark-
antiquark pairs are excited by placing defects in this configuration.

Realizing aquantumquench akin to the one studied here, will thus lead
to the same multi-stage thermalization dynamics. Further details can
be found in supplementary information (Supplementary information
for details on the confining dynamics; characterization of the
prethermal state; initialization of moving mesons by staggered field
pulses; further information on details of numerical simulations.).

Other experimentally relevant models with confinement can be
realized in spin ladders60–62 or long-range systems11,25. Particularly
intriguing features can be expected for long-rangemodels: in contrast
to the short-range Ising chain (1) and the quantum link model (5) dis-
cussed above, long-range couplings induce slowly decaying (power-
law) interactions between mesons which cannot be neglected. The
long-range interactions can be envisaged to affect the approximation
of dilute mesons, rendering prethermalization faster on the one hand,
but making the approximation of the prethermal regime as a thermal
gas of noninteractingmesons unreliable on the other hand. Itwould be
interesting to extend our prethermal description to capture meson-
meson interactions.

Another intriguing directionwould be to address scenarios where
the violation of the meson-number conservation is not negligible and
must be properly considered. Can one observe and describe the drift
to the thermal regime in such cases? A kinetic theory would require a
quantitative understanding of meson creation-annihilation processes
beyond the estimates discussed in this work.

Methods
Tensor network simulations
We used tensor network simulations to demonstrate the conservation
of the meson number during the quantum evolution. Whereas time
evolution can be carried out using the standardmethodof infinite Time-
Evolving Block Decimation (iTEBD)48,49, measurements of the meson
number aremore subtle. We outline how themesonic number operator
can be embedded efficiently in tensor network formalism.

The construction relies on the exact solution of the transverse
Ising model, which we summarize in supplementary information
(Supplementary information for details on the confining dynamics;
characterization of the prethermal state; initialization of moving
mesons by staggered field pulses; further information on details of
numerical simulations.). Let fγk , γykg be the fermionic creation and
annihilation operators that diagonalize the transverse-field Ising
model in the absenceof a longitudinalfieldh∥ =0, themesonic number
operator is obtained as half of the mode number operator

2Nmes =
Z π

�π

dk
2π

γykγk =
Z π

�π

dk
2π

cos2θk � sin2θk
� �

αy
kαk +

+ δð0Þsin2θk + i sinθk cosθk α�kαk � αy
kα

y
�k

� �
,

ð6Þ

where the α̂k = cosθk γ̂k + i sinθk γ̂
y
�k are the Jordan-Wigner fermions in

the Fourier basis ĉj =
R π
�π

dkffiffiffiffiffi
2π

p eikjα̂k , which are eventually related to the

original spin variables as ðσ̂x
j + iσ̂

y
j Þ=2 = exp iπ

P
i< j ĉ

y
i ĉi

� �
ĉyj . The Bogo-

liubov angle is tuned in such a way θk = � 1
2i log

h?�eik

ðcos k�h?Þ2 + sin2k

� �
.

The divergent factor δ(0) arises from equal-momentum commu-
tation relation and itmust be regularized δ(0) = L, with the system size
L. Moving to the coordinate space, the meson number can be thus
written as

Nmes =
1
2

X
j

X
‘

f 1ð‘Þcyj + ‘cj +
1
2
f 2ð‘Þ cj + ‘cj + c

y
j c

y
j + ‘

� �� �(

+
Z π

�π

dk
2π

sin2θk

	
:

ð7Þ
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In Eq. (7) we introduced the functions f1(ℓ), f2(ℓ) encoding the non-
locality of the Jordan-Wigner mapping

f 1ð‘Þ=
Z π

�π

dk
2π

eik‘ cos 2θk , f 2ð‘Þ=
Z π

�π

dk
2π

eik‘ i sin 2θk : ð8Þ

Finally, we can also invert the Jordan-Wigner mapping to obtain

the expression in the spin basis cyj + ‘cj = σ
�
j + ‘

Qj + ‘�1

i= j
σz
i

 !
σ +
j

and cj + ‘cj = σ
+
j + ‘

Qj + ‘�1

i = j
σz
i

 !
σ +
j .

Since Nmes contains in general long-ranged terms an efficient
representation in terms of anMPO strongly depends on the functional
form of f1(ℓ), f2(ℓ). For small values of the transverse field h⊥ we find
that both f1(ℓ) and f2(ℓ) can be approximated by an exponential decay
for l >0. This enables us to make use of the efficient representation of
MPOswith coefficients exponentially decayingwith distance discussed
e.g., in ref. 48.

With this method, we can analyze quantum quenches in the Ising
chain and follow the evolution of the number of mesons, checking
whether it is approximately well-conserved or corrections are impor-
tant. In Fig. 1c of the main text, we focus on parameter regimes where
themeson number is oscillating around a constant value, in very good
agreement with the analytic prediction of ref. 15. Oscillations have a
technical origin and are due to the fact that, strictly speaking, it is not
the number of fermions that is conserved, but rather the fermion
number after a perturbatively small basis rotation33. Hence, in the
original basis the fermion number couples to non-conserved quan-
tities as well, which cause the small superimposed oscillations. To
complement the analysis of Fig. 1c, in Fig. 5 we analyze quantum
quenches wheremeson conservation is not a good approximation any
longer. This can be achieved, for example, by tuning the post quench
transversefield closer to the critical point, thus reducing the fermionic
mass and enhancing the Schwinger mechanism. It is worth emphasiz-
ing that an efficient representation of Nmes in terms of a MPO is no
longer possible as f1(ℓ), f2(ℓ) show deviations from an exponential
decay for values of h⊥→ 1. The meson number can, nonetheless, be
computed by evaluating the terms contained in Eq. (7) individually and
truncating the sum at large enough ‘max. With this, we indeed observe
that the difference between the numerical data and the analytic pre-
diction grows with time as the post quench transverse field is tuned

sufficiently close to 1, in agreement with the observations of ref. 26.
We, moreover, want to emphasize that results are converged with
bond dimension χ, as illustrated in Fig. 5. Smaller bond dimensions can
lead to deviations of the time traces. Ensuring convergence of tensor
network results for different choices of χ is hence crucial to estimate
the actual relevance of meson-number-changing processes.

We notice the meson number decreases. Hence, rather than the
usual Schwinger effect where a large meson decays in two (or more)
smaller entities, what dominates the dynamics is the opposite process,
namely inelastic scattering of two mesons that fuse and become a
larger (i.e., more energetic) particle.

Exact diagonalization within the few fermions sector
While tensor networks are numerically-exact methods, their applic-
ability is constrained to short times by the entanglement growth,
hence they cannot explore the prethermal regime. To overcome this
restriction, we neglect the Schwinger mechanism and promote the
number of mesons to an exact conservation law, thus projecting the
dynamics within a sector with a fixed number of fermions. Further-
more, we wish to focus on the regime of a small transverse field where
fermions are well approximated by domain walls. Hence, we consider
the restricted Hilbert space ∣j1, j2,:::j2n�1, j2ni= ∣"1:::"j1�1#j1

::::i gener-
atedby all the stateswithnmesons,withordered coordinates ji+1 − ji > 1
and having values on the interval [1, L]. While the full Hilbert space in
the spin basis grows as 2L, the restricted Hilbert space grows poly-
nomially ’ 1

ð2nÞ! L
2n and much larger system sizes can be reached. This

allowsus to approach the regimewheremesons arewell separated, i.e.,
where our thermodynamic assumptions are valid. The same regime is
naturally obtained after a quantum quench. By further taking into
account translational invariance, the exponent of the polynomial
growth in L can be lowered by one unit, allowing us to simulate the
dynamics of three mesons on L = 100 for very long times and even-
tually observing prethermalization (see Fig. 2). Further technical
details on this method and benchmarks are discussed in supplemen-
tary information (Supplementary information for details on the con-
fining dynamics; characterization of the prethermal state; initialization
of moving mesons by staggered field pulses; further information on
details of numerical simulations.).

Semiclassical simulations
For large scale simulations in the semiclassical regime, we relied on a
Truncated Wigner Approximation51 which consists of the following
steps (see also refs. 15, 38 for similar approximations)

(1) Approximate the true Hamiltonian with the projected dynamics
within the subspace with a fixed number of fermions (and its
multiparticle generalization). This assumption is reliable as long
as the Schwinger effect can be neglected.

(2) Approximate the quantum evolution with a classical one:
(a) Replace quantum expectation values with proper averages

over classical ensembles of particles.
(b) Replace the quantum evolution with properly chosen classi-

cal equations of motion, derived from the semiclassical
Hamiltonian (2) (and its multiparticle generalization).

(c) Classical configurations are sampled from the classical sta-
tistical ensemble, then deterministically evolved with the
equations ofmotion. The expectation values of observables is
recovered by averaging over the initial conditions.

The Truncated Wigner Approximation is expected to work in the
semiclassical regime, i.e., in the case of weak confinement; see below.
However, as it is well known in the literature, one should be aware that
this is an uncontrolled approximation in the sense that quantum cor-
rections cannot be easily included in the approximation in a
systematic way.

Fig. 5 | Breakdown of meson-number conservation. We show results for a
quantum quench of the ground state with initial field configuration
(h⊥, h∥) = (0.4, 0.0) to values of the transverse field h⊥∈ {0.65, 0.75, 0.85, 0.95} and
additional confining longitudinal field h∥ =0.05. For all quenches we show results
obtained using iTEBD time evolution for a unit cell of L = 40 sites with bond
dimensions of χ∈ {256, 384, 512} (light to dark solid lines). We find that quenches
close to the critical value of the transverse field only for a short time show the
expected value of themeson number (gray dashed lines) before showing a decay in
the number of mesons. The timescale, on which such a decay takes place increases
and finally exceeds the numerically accessible times for quenches deep into the
ferromagnetic phase (h⊥≪ 1).
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To further quantify the method and keep the notation under
control, we now focus on the dynamics in the two-particle sector: the
generalization to themultiparticle case can be directly obtained. Let us
assume in full generality that the initial state is described by a density
matrix ρ̂2pt , we focus on the matrix elements in a coordinate repre-
sentation for the position of the two fermions ∣j1,j2

�
. The Wigner dis-

tributionW is defined through a partial Fourier transformof thematrix
elements in the coordinate basis

x1 + y1=2, x2 + y2=2
�

∣ρ̂2pt ∣x1 � y1=2, x2 � y2=2
�

=
R
dk1dk2 W ðx1, k1, x2, k2Þeiy1k1 + iy2k2 :

ð9Þ

Above, one should impose integer values of the coordinates, but
this restriction will not be important since classical physics emerges in
the regime where the matrix elements are smooth functions of the
coordinates, hence the discreteness of the lattice becomes irrelevant.
We now move on to consider the dynamics by computing the Hei-
senberg equation of motion i∂t ρ̂2pt = ½Ĥ2pt , ρ̂2pt �, where Ĥ2pt is the
quantum Hamiltonian projected in the two-fermions sector, namely
the quantized version of Eq. (2). When expressing the Heisenberg
equation of motion in terms of the Wigner distribution, one obtains
after some straightforward calculations (we omit the W − arguments
for the sake of notation)

∂tW + ½vðk1Þ∂x1
+ vðk2Þ∂x2 �W

� V 0ðx1 � x2Þ ∂k1
� ∂k2

� �
W ’ 0

ð10Þ

where v(k) = ∂kϵ(k) and V 0ðxÞ=∂xV ðxÞ with V ðxÞ=2hk�σ∣x∣. The above
equation is nothing else than the classical Liouville equation for the
phase-space distribution W(x1, k1, x2, k2) evolving with the classical
Hamiltonian H= ϵðk1Þ+ ϵðk2Þ+2hk�σ∣x1 � x2∣. In the derivation, one
assumes that both the matrix element and the potential V(x) are
sufficiently smooth in the coordinates. Contributions neglected in the
above equation are further orders in the derivative expansion. While
V(x) is not strictly speaking smooth, in the limit of weak longitudinal
field the cusp in V(x) gives negligible contributions. Notice that, if h∥ is
weak, smooth Wigner distributions will remain smooth during the
evolution, ensuring the consistency of the approximation.

We finally turn to the problem of determining the initial Wigner
distribution resulting from the quench protocol. To this end, we can
resort to the quasiparticle picture of quantum quenches in the Ising
chain63, where the initial state is regarded as an incoherent gas of pairs
of particles with opposite momentum (k, − k), the probabilty dis-
tribution n(k) of the pair can be computed from the exact solution of
the quench in the transverse field45 (see ref. 15 and supplementary
information (Supplementary information for details on the confining
dynamics; characterization of the prethermal state; initialization of
moving mesons by staggered field pulses; further information on
details of numerical simulations.) for details and corrections due to the
finite longitudinal field). The distribution n(k) fixes the probability
distribution of a single pair of fermions: since pairs are independently
created in a homogeneous fashion, we impose that pairs are dis-
tributed according to a Poisson distribution.

Data availability
Data analysis is available on Zenodo upon reasonable request (all data
are available upon reasonable request at https://doi.org/10.5281/
zenodo.7034368).

Code availability
Simulation codes are available on Zenodo upon reasonable request
(simulation codes are available upon reasonable request at https://doi.
org/10.5281/zenodo.7034368).
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