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A method to build extended sequence con-
text models of point mutations and indels

Jörn Bethune1,2,4, April Kleppe 1,2,4 & Søren Besenbacher 1,2,3

Themutation rate of a specific position in the human genome depends on the
sequence context surrounding it. Modeling the mutation rate by estimating a
rate for each possible k-mer, however, only works for small values of k since
the data becomes too sparse for larger values of k. Here we propose a new
method that solves this problem by grouping similar k-mers. We refer to the
method as k-mer pattern partition and have implemented it in a software
package called kmerPaPa. We use a large set of human de novo mutations to
show that this newmethod leads to improvedpredictionofmutation rates and
makes it possible to create models using wider sequence contexts than pre-
vious studies. As the first method of its kind, it does not only predict rates for
point mutations but also insertions and deletions. We have additionally cre-
ated a software package called Genovo that, given a k-mer pattern partition
model, predicts the expected number of synonymous, missense, and other
functional mutation types for each gene. Using this software, we show that the
created mutation rate models increase the statistical power to detect genes
containing disease-causing variants and to identify genes under strong selec-
tive constraint.

The germline mutation process is the source of all genetic variation,
including all adaptive and deleterious variants. Understanding and
modeling this process can be used to calibrate variant calling1, infer
demographic history2, infer patterns of genome evolution3, identify
sequences of clinical relevance for humandiseases4, and infer selective
constraints of genes5. The main factor determining the mutation rate
of a given site in the human genome is the sequence context sur-
rounding the position. For example, spontaneous deamination of
methylated cytosines results in ten times higher C-to-T rates at CpG
sites6–9. Other factors that affect the mutation rate—such as GC con-
tent, CpG islands, epigeneticmodifications—are associatedwith varied
mutation rates depending on nucleotide context10 and thus cannot be
studied without taking sequence context into account.

Since nucleotide context is themain determinant of the mutation
rate it is relevant to make models that estimate the mutation rate of a
position using that feature. Previous studies estimated such rates by
assigning an independent rate to each k-mer10,11 or using a logistic

regression model with a dummy variable for each nucleotide at each
k-mer position12 and allowing interactions between at most four posi-
tions. Both these strategies have been used to build models that pre-
dict mutation rates using 7-mer contexts but become infeasible for
longer contexts. Furthermore, theseprevious studies focused onpoint
mutations, and little effort has been given to estimating the position-
specific rate of germline indels. Neither Carlson et al.10 nor Aggarwala
and Voight12 consider indels. Samocha et al. calculate the rate of fra-
meshift indels per gene but do not model the indel mutation prob-
abilities at each site11. Instead, they estimate the rate of frameshift
indels in a given gene by assuming that the rate of such variants is
proportional to the rate of nonsense mutations. While some correla-
tion exists between the number of polymorphic nonsense mutations
and the number of polymorphic frameshift indels (r = 0.493, see
methods) there is no observable correlation between the number ofde
novo nonsense mutations and de novo frameshift indels (r = −0.003,
see methods). This lack of correlation among de novo variants
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indicates that the correlation between nonsense mutations and fra-
meshift indels in segregating variants is primarily due to selection and
not mutation. This makes the effectiveness of the strategy of calcu-
lating the rate of frameshift indels based on the rate of nonsense
mutations doubtful. Since frameshift indels account for 44% of the LoF
mutations in human genes5, making models that can predict the rates
of such mutations should be considered an important task. In this
work, we present a new method that can predict the mutation rate of
both point mutations and indels based on nucleotide context.

Results
To overcome the problem that many k-mers will have few or zero
observations if we use long k-mers to predict the mutation rates, we
propose amethod that we call k-mer Pattern Partition (kmerPaPa). The
main idea is that we partition the set of all k-mers by a set of IUPAC
patterns so that each k-mer is matched by one and only one of the
IUPAC patterns in the set. This partition should be done so that a
pattern matches k-mers with similar mutation probabilities. Figure 1
shows how the 16 possible 3-mers containing C→G mutations can be
partitioned using 10 patterns. An exact algorithm to calculate the
pattern partition that optimizes the loss function is presented in the
methods section. The loss function contains two regularizing hyper-
parameters c (complexity penalty), and α (pseudo count), which are
fitted using twofold cross-validation.

Testing prediction of point mutation probabilities
To make models that only reflect the mutation rate and have as little
bias from selection and biased gene conversion as possible, we use
observed de novo mutations as training input to our model (see
methods). To test the model, we first separate the data into a test and
training set, using the even-numbered chromosomes for training and
the odd-numbered as test data (see Supplementary Fig. 1 for an over-
view of the data used in different analyses). We then fit independent
pattern partition models to each of the six mutation types (A→C, A→G,
A→T, C→A, C→G, C→T) for different values of k. We compared the
performance of kmerPaPa to a model that assigns a rate to each k-mer
(called “all k-mers” in Fig. 2). As with kmerPaPa we also include a
pseudo count in the “all k-mers” model and fit its value using 2-fold
cross-validation. Figure 2a shows the test out-of-sample performance

of these models for different values of k. For kmerPaPa, the joint
Nagelkerke r2 across the 6 mutation types keeps increasing as k
increases. Whereas the alternative “all k-mers” model begins over-
fitting at 5-mers and performs poorly for larger values of k. The results
reveal that nucleotides situated more than three base pairs away can
affect a position’smutation rate as the 9-merpartitionoutperforms the
7-mer partition in four of the six differentmutation types, even though
the 9-mer models tend to include fewer patterns (see Supplemen-
tary Fig. 2).

Testing prediction of indel mutation probabilities
Besides point mutations, it is essential to consider insertions and
deletions. We assign mutation probabilities to indels by looking at the
k-mers around thebreakpoints - one for insertions and two fordeletion
(start and end). However, unlike pointmutations, it is often impossible
to precisely determine the position of an indel. Usually, more than one
possible mutation event could have changed the reference sequence
to the alternative sequence. If, for instance, “CAG” is changed to
“CAAG,” it is impossible to know whether the DNA break and base
insertion happened between C and A or between A and G. We handle
this uncertainty by enumerating all the possible positions and ran-
domly selecting one of them for each observed event (Fig. 3). We
evaluate the performance of the predicted indel rates using the same
test/train split as we used for point mutations (Fig. 2b). Both for all-k-
mers and kmerPaPa the out-of-sample performance increases with
increased k. But the kmerPaPa model outperforms the all-k-mers
model for all values of k.

After validating that the extended k-mer models built by kmer-
PaPa give good results on an independent test set, we trained new
kmerPaPa models on the whole data set. The following sections use
these models to investigate the sequence contexts that increase
mutation rates, find genes harboring disease-causing variants, and
quantify the intolerance to mutations of human genes.

Identification of patterns with unusually high or low
mutation rates
An advantage of a k-mer pattern partition compared to a regression
model is the direct interpretability of the output. By ordering the
output patterns based on their mutation rate, we can directly observe

Mutated 
positions:

Callable 
regions:

Count k-mers at 
mutated sites

Count k-mers at 
un-mutated sites

Find the k-mer pattern partition that minimizes:

rate estimate includes pseudocount:  

Fig. 1 | Overview of k-mer pattern partitioning (kmerPaPa) model. Input data
consists of a list of observed mutations (here C→G mutations) and a bed file with
regions sufficiently covered by WGS data to detect mutations. From this, we cal-
culate a table with the number of times each possible k-mer is observed with the

central base mutated and unmutated. The k-mers are then grouped using a set of
IUPAC patterns so that each k-mer is matched by one and only one pattern. Out of
the exponentially many possible pattern partitions the one that minimizes the loss
function is chosen.
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patterns with extreme mutation rates. Figure 4 shows the relative
mutation rate of each of the patterns for each of the mutation types
(blue points) and the rate of each 3-mer (red points). For most muta-
tion types the range of the predicted mutation types using k-mer
patterns is an order of magnitude larger than those predicted by
3-mers. Many of the patterns with high point mutation probabilities
match the patterns previously reported by Carlson et al.10 and Aggar-
wala and Voight12. For instance, the top pattern for A→G mutations
“YYCAATG” match the CCAAT motif reported by Carlson et al.10 and
the YCAATB pattern reported by Aggarwala and Voight12.

Previous studies have reported that polymerase slippage at short
tandem repeats is responsible for 75% of indels13. It is thus not a sur-
prise that many of the indel patterns we observe contain repeated
sequences. For insertions, weobserve the highestmutation rate for (T)
n and (A)nmononucleotide repeats followed by (G)n and (C)n repeats.
For the deletions, the top patterns correspond to (AG)n and (CT)n di-
nucleotide repeats. After these, we observe a high deletion rate of the
middle two (underlined) bases in the palindromic sequence:
CACATGTG. This sequence has not previously been described as a
mutation hotspot and the reason behind its high deletion rate is
unknown. One possible explanation is that the palindromic sequence
can form a hairpin structure. DNA hairpins are known to cause

transient polymerase stalling, which leads to indel formation, whereas
other alternative DNA structures (e.g., G4) cause persistent poly-
merase stalling and result in point mutations14.

Detection of genes where de novo mutations cause disease
Genes in which germline mutations cause disease can be found by
looking for genes with surprisingly many de novo mutations in afflic-
ted children. The k-mer pattern partitions we have created can be used
to calculate how many mutations of a specific functional category
(synonymous, missense, etc.) to expect in a given gene.

We have created a software tool—Genovo—to enumerate all the
possible variants of a specific functional category and look up their
mutation rates. Given a list of observed mutations, Genovo can then
calculate p-values by sampling from the Poisson-Binomial distribution
given by this list of rates (seemethods and Supplementary Fig. 3). This
functionality is similar to that provided by the tool denovolyzeR15, so
we compare our results to this tool.

As a first test, we compare the genic mutation rate predicted by
Genovo and denovolyzeR to the number of segregating variants in
eachgene. First, we look at the number of rare (MAF < 1%) synonymous
variants for each gene in the gnomAD database, where we observe a
better correlation with the synonymous rate per gene estimated by

Fig. 2 | kmerPaPa performance on test data compared to predicting a rate per
k-mer. All plots show predicted rates on training data (even-numbered chromo-
somes) on the x axis and observed rates on test data (odd-numbered chromo-
somes) on y axis. The first row (“all k-mers”) shows the rates for each k-mer.

The second row (“kmerPaPa”) shows the rate for each k-mer pattern. The sizes of
thepoints reflect the numberof times the k-mer/pattern is observed in the genome.
a The predictions for point mutations for four different values of k. b The predic-
tions for indels for four different values of k.
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Genovo (r = 0.977) than by denovolyzeR (r =0.958) (Fig. 5a). Most of
the variation in the number of synonymous variants per gene can be
explained purely by the genes’ length. But if we look at the rate per site
and divide both the observed number and the predicted rate by the
length of the coding sequence, we still observe high correlations
(r =0.699 for Genovo and r = 0.679 for denovolyzeR) (Fig. 5b). For
nonsynonymous variants, we expect smaller correlations since differ-
ences in selective pressure between genes greatly influence these. For
all classes, we observe better correlations with the rates predicted by
Genovo than those predicted by denovolyzeR.

Secondly, we want to compare the statistical power of Genovo
and denovolyzeR when it comes to identifying disease-causing
genes. To do this, we look at 4293 trios from the Deciphering
Developmental Disorders consortium16 and divide the set of trios
into an equally sized test and train data set. 350 genes contain at
least one loss-of-function(LoF) mutation in the test data set. 45 of
these show significant LoF enrichment after Bonferroni correction
according to Genovo, and 33 of these are significant in the test data
set. Running denovolyzeR yields 34 significant genes in the train set,
24 of which are significant in the test set. This means that Genovo
has a higher validation rate in the independent test data set (73.3%
compared to 70.6%) even though it identified a larger number of
significant genes in the training data set.

Quantifying genic tolerance to loss-of-function mutations
Besides finding genes where de novo mutations cause disease, we can
also use our mutation rate models and the Genovo software to esti-
mate the strength of negative selection acting on a given gene. To do
this, we look for genes containing fewer segregating functional var-
iants than expected because selection has purged deleterious variants
from thepopulation. The types of variantsmost likely to bedeleterious
are those that we expect to completely inactivate a gene, such as stop-
gain, essential splice, and frameshift variants. The observed number of
such loss-of-function (LoF) variants for a gene divided by the expected
number predicted by our mutation rate model—the LoF O/E ratio—
provides an estimate of evolutionary constraint. If a gene has an LoF
O/E ratio aroundone it indicates that it is evolvingneutrally and that no
substantial fitness cost is associated with losing the gene. In contrast,
haploinsufficient genes where two functional alleles are essential for
survival will have LoF O/E ratios at or close to zero.We have calculated
this ratio for each gene using the observedmutations from gnomADv2

and compared them to the ratios reported for each gene by gnomAD.
Looking at genes predicted to be haploinsufficient by ClinGen17 we
observe that 55.5 percent of the genes have a Genovo O/E ratio in the
first decile compared to47percent forO/E ratio calculatedbygnomAD
(see Fig. 6a). If we instead of the LoF O/E ratio use the upper bound of
the 90 confidence interval of the ratio (LOEUF) as suggested by
Karczewski et al.5 we see similar results (see Fig. 6b).We also compared
Genovo and gnomAD using two lists of essential genes used in the
gnomAD article5 and obtained similar results (see Supplementary
Fig. 4). If we look at the ability to classify whether a gene is hap-
loinsufficient we get significantly higher AUC values using Genovo (p
value: 2.42 e-153, See Fig. 6c).

Discussion
The k-mer pattern partition method introduced in this manuscript
makes it possible to build robust models of the germline mutation
process using k-mers. We have demonstrated the method by
building models for each of the six-point mutation types as well as
short insertions and deletions using de novo mutations as input.
The results show that the out-of-sample error decreases as k
increases proving that even nucleotides four bp away from a given
position are informative about their mutation probability. An
advantage of the pattern partition models is their interpretability,
with overrepresented patterns readily available and not requiring
any further analysis of the created models. The k-mer pattern par-
tition approach is general and could, in principle, also be used to
solve other problems where the input is small position-specific k-
mers. The main shortcoming of the method in its current form is
that the presented dynamic programming algorithm is exponential
in running time which makes it infeasible to use for k-mers longer
than nine bases. A possible improvement to alleviate this problem
would be to consider heuristic algorithms that could quickly find a
good (but not necessarily optimal) solution and thus enable ana-
lyses with larger k’s. We do consider one such heuristic algorithm in
the article (Supplementary Fig. 2), but it should be possible to come
up with better heuristics that can balance accuracy with
computational cost.

The predictive models created using kmerPaPa are not only
robust, they have the added benefit that they are easily inter-
pretable. The method can be seen as a dimensionality reduction
method that reduces the high dimensional k-mer space to a lower
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Fig. 3 | Counting k-mers for indels. The exact positions of indels are often inde-
terminable based on the sequence data. To handle this we enumerate all possible
events creating the alternative sequence and select one of them at random. We do
this independently for each indelmutation. Unlike point mutations, we count both

the observed k-mer and its reverse complement. aDeletion example. For deletions
where we consider both the k-mer around the start breakpoint and the end
breakpoint. The reverse complement of a deletion start k-mer is a deletion end
k-mer and vice versa. b Insertion example.
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dimension space where each dimension is represented by an IUPAC
pattern. This set of patterns with associatedmutation rates makes it
very easy to see the general differences between the high mutation
rate k-mers and low mutation rate k-mers. Other methods have
previously been used to create models of point mutation rates
based on sequence context, but it is novel that we in this study also
create robust models of indel mutation rates based on sequence
context. To do that, we had to overcome the problem that the exact
position of an indel often is indeterminable. We do this by enu-
merating all the possible positions and randomly choosing one of
them for each indel. Future studies that train indel kmerPaPa
models using larger input data sets and further examine the
resulting patterns can hopefully increase our understanding of the
indel mutation process.

Besides the k-mer pattern method implemented in the kmer-
PaPa software, we also present a tool called Genovo that can cal-
culate the expected number of mutations with a specific functional
consequence in a gene. Furthermore, Genovo can also calculate
p-values for whether a gene contains significantly more observed
mutations of a particular functional category than expected. This
functionality can be used to find genes with causative de novo
mutations in disorders such as autism and developmental

disorders. We have compared Genovo to denovolyzeR, which con-
tains similar functionality. Trying to predict the number of synon-
ymous mutations in each gene reported in gnomAD we see that we
do slightly better than denovolyzeR. Our ability to predict the
number of frameshift mutations in a gene is, however, much better
than denovolyzeR. This reflects that we train independent mutation
rate models for insertions and deletions whereas denovolyzeR cal-
culates the expected number of indel variants by assuming a cor-
relation with the number of point mutations. Unlike denovolyzeR,
which is based on a specific reference genome (hg19) and gene
annotation, Genovo is more general and can calculate expectations
and p-values for any reference genome and gene annotation. This
allows users to use the newest reference genome and gene anno-
tation at any time and makes it possible to use kmerPaPa and Gen-
ovo to analyze the enrichment or depletion of functionalmutational
categories in other species.

In conclusion, we have created a new robust method for pre-
dicting mutation probabilities based on sequence context for both
pointmutations and indels. Furthermore, we have developed a flexible
software tool that makes it easy to use the created mutation rate
models to find genes where de novo mutations cause disease or to
measure the evolutionary constraint on genes.
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Methods
Definition of k-mer pattern partition
A k-mer pattern partition is a set of IUPAC-encoded nucleotide pat-
terns that partitions a set of k-mers so that each k-mer is matched by
one and only one of the IUPAC patterns in the set. To find a pattern
partition that groups k-mers with similar mutation rates as well
as possible while not overfitting the data, we select the partition
P = {p1, …, pn} that optimizes the following loss function:

lossðfp1, . . . ,pngÞ=
Xn

i= 1

ð�2ðMi logðriÞ+Ui logð1� riÞÞ+ cÞ ð1Þ

WhereMi and Ui are the number of mutated and unmutated positions
that match the i’th pattern (pi), and c is a regularizing complexity
penalty. And ri is the rate estimate for sites that match the i’th pattern
regularized to be closer to the mean mutation rate, μ, using a pseudo
count, α:

ri =
Mi +α

Mi +Ui +α=μ

� �
ð2Þ

Mi, Ui, and μ can easily be calculated from the k-mer counts. If mi

and ui denote the number of times k-mer ki has been observed
mutated and unmutated, respectively, then we can calculate the
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Fig. 5 | Correlation between the predicted genic rate for a mutation type and
the number of segregating variants of that type. a Pearson correlation coeffi-
cient between the observed number of mutations per gene and the expected

number usingGenovo anddenovolyzeR.bPearson correlation coefficient between
the observed number of mutations per coding position and the expected number
per coding position for each gene using Genovo and denovolyzeR.

Fig. 6 | Inferring constraint of haploinsufficient genes. a Comparison of
observed/expected ratio for loss of function variants (LoF O/E ratio) inferred by
Genovo and gnomAD (blue and orange, respectively). The x axis depicts LoF O/E
ratios sorted intodeciles, whereas the y axis depicts thepercentageof genes in each
decile. Depicted numbers are shown in Supplementary Table 2. b Comparison of
categorizationby LOEUF scores inferredbyGenovo - and LOEUF score by gnomAD.

The x axis depicts LOEUF scores sorted into deciles, whereas the y axis depicts the
percentage of genes in each decile. Depicted numbers are shown in Supplementary
Table 3. c Receiver Operating Characteristic (ROC) curve comparing the ability to
predict whether a gene is annotated as haploinsufficient using LOEUF scores from
gnomAD and Genovo.
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pattern counts by summing over the k-mers that match the
pattern:

Mi =
X

kjmatchespi

mj ð3Þ

Ui =
X

kjmatchespi

uj ð4Þ

And μ is just the average rate:

μ=
P

imiP
iðmi +uiÞ

ð5Þ

The loss function consists of the negative log-likelihood of the
binomially distributed counts for each k-mer plus the regularization
parameter c. This makes the loss function a generalization of several
widely usedmodel selectioncriteria. Ifwe for instanceuse c = 2 the loss
function would be the Akaike information criterion (AIC).

The two regularizing hyperparameters c, and α are fitted using
cross-validation.

Calculating the optimal pattern partition
Starting with the most general pattern, we can create any possible
pattern partition by:
1. Picking a position in the pattern.
2. Splitting the IUPAC code at that position into two subcodes that

form a partition (we call such a split a two-partition).
3. Possibly repeating these steps on each of the two sub-patterns.

Table 1 shows all the possible two-partitions for each IUPAC code.
Since all pattern partitions can be created using the strategy

above, we can find the minimal loss for the pattern, p, using the fol-
lowing recursion formula:

f ðpÞ=min lossðfpgÞ, min
i= 1...k

min
x,y2TwoPartitionðp½i�Þ

ðf ðp½: i�+ x +p½i+ 1 :�Þ+ ðf ðp½: i�+ y+p½i+ 1 :�ÞÞÞ
� �� �

ð6Þ

Using this formula, we compute the optimal partitions bottom-up
using dynamic programming so that the optimal partition for a given
pattern is never calculated more than once. This algorithm’s running
time and memory usage are proportional to the number of possible
patterns - and thus exponential in k. Our python implementation,
speeded up using numba18 for just-in-time compilation, can calculate
the optimal 9-mer pattern partition for C→Tmutations in ~4 h (given α
and c). The size of the IUPAC alphabet is 15 (the four standard
nucleotides plus the 11 characters shown in Table 1). This means that if

we wanted to calculate the optimal 11mer, we would need to multiply
the 4 h running time with 152 = 225, so that is not feasible using this
algorithm.

Besides the optimal algorithm described above, we have also
implemented a greedy heuristic algorithmwhere we only consider the
most promising split of a given pattern into two and do not recursively
test the other possible splits. This heuristic is much faster and con-
sumes much less memory, which makes it possible to also test larger
k-mers. Results shown in Supplementary Fig. 2 show that the improved
speed comes with a cost of decreased performance. For point muta-
tions, the models trained using the greedy algorithm were slightly
worse, but for indel mutations, the models were much worse than
those generated using the optimal algorithm. Only for the A→T
mutation type there was a benefit of being able to use a higher k as the
11mer model did better than the 9-mer model for this mutation type.
For the rest of themutation types the results achievedwith the optimal
algorithm were clearly better than those achieved using the greedy
algorithm. We thus decided to use the optimal algorithm to generate
all models reported in this article.

Estimating hyperparameters
To find the optimal α and cwe do cross-validation over a grid, and this
means that we need to calculate the optimal pattern for each fold and
each α and c combination. This grid search is, however, easy to par-
allelize since each parameter combination can be run separately on
different machines. To create the cross-validation folds the kmerpapa
software uses a hypergeometric distribution to sample subsets of the
k-mer count tables. For the models presented in this article, we used
repeated 2-fold cross-validation where we created 5 independent
cross-validation data sets for each parameter combination and selec-
ted the parameter combination that had the lowest average out-of-
sample negative log-likelihood. Supplementary Fig. 5 compares the
negative log-likelihood for different combinations of α, c, and k. The
results show that the optimal c increases with k, which can explain why
we for several of the mutation types end up with fewer parameters in
the 9-mer model than the 7-mer model.

De novo mutations and covered regions
To train kmerPaPamodels, we use de novomutations from 6 different
WGS studies of parent-offspring trios19–24. Together these studies
include 379330 autosomal point mutations from 7206 trios. Four of
the six studies also report indelmutations (39,877 autosomal variants).
Studies mapped to hg19 were first lifted to hg38.

Detection of de novo mutations requires strict filters, and usually
there will be a substantial fraction of the genome where de novo
mutations cannot be called due to insufficient coverage or low com-
plexity sequence. We do not know the exact genomic regions where a
mutation could have been called in each of the six studies. To deal with
this, we have chosen a conservative set of regions—the strict callable
mask from the 1000 genomes project25—and assume that mutations
couldhavebeen called in this subset of the genome inall of the studies.
Because we want to infer a genome-wide mutation model, we further
exclude the C→G enriched regions described by26 since they are known
to have mutation patterns that differ substantially from the average.
After removing theC→Genriched regions from the 1000 g callable, the
callable regions contain 1754 million autosomal sites and after dis-
carding all mutations that fall outside these regions, we are left with
249,437 autosomal SNVs and 22331 autosomal indels.

We use the program kmer_counter (https://github.com/
BesenbacherLab/kmer_counter) to calculate the k-mer counts used
as input kmerPaPa. As explained in the results section, we first test the
kmerPaPa method by using the even-numbered chromosomes as
training data and the odd-numbered chromosomes as test data.
Afterwards, we train models usingmutations on all chromosomes (see
Supplementary Fig. 1). Besides training indel models using all

Table 1 | The definition of all IUPAC characters and the list of
all possible two-partitions for each IUPAC character

IUPAC code Set Two-partitions

S {C,G} (C,G)

W {A,T} (A,T)

R {A,G} (A,G)

Y {C,T} (C,T)

K {G,T} (G,T)

M {A,C} (A,C)

B {C,G,T} (C,G), (G,Y), (T,S)

D {A,G,T} (A,K), (G,W), (T,R)

H {A,C,T} (A,Y), (C,W), (T,M)

V {A,C,G} (A,S), (C,R), (G,M)

N {A,C,G,T} (A,B), (C,D), (G,H), (T,V), (R,Y), (S,W), (K,M)
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insertions and all deletions as presented in Fig. 4 we also train separate
models for indels that are a multiple of 3 and indels that are not a
multiple of 3. These models are used as input for the Genovo software
to allow it to calculate separate probabilities for frameshift and in-
frame indels.

Computing pseudo r2 values
To measure how well the models do on the test data we calculate
Nagelkerke’s pseudo r2:

r2Nagelkerke =
1� e2ð‘0�‘M Þ=n

1� e2‘0=n
ð7Þ

Where lM is the log-likelihood of a model where sites matching the i’th
pattern is predicted to mutate with rate ri:

‘M =
Xn

i = 1

ðMi logðriÞ+Ui logð1� riÞÞ ð8Þ

IfMi andUi are the numbers ofmutated and unmutated sites in the test
data that match the i’th pattern. And l0 is the log-likelihood of a model
with no predictors.

The Nagelkerke’s pseudo r2 is equal to the Cox and Snell r2 value
divided by an adjustment that ensures that the maximum value is
always 1. Because the pseudo r2 values are a function of the number of
data points in the data set, these statistics cannot be directly compared
between type-specificmodels, where the number of data points varies.
Due to the intrinsic randomness of the mutation processes, it will
never be possible to predict exactly where mutations happen and get
an r2 value of 1.

Genovo
From a list of observedmutations the Genovo software can determine
the number of (1) synonymous, (2) missense, (3) nonsense, (4) start-
codon disruption, (5) stop-codon disruption, (6) canonical splice site
disruption (7) inframe indel, and (8) frameshift indel events in each
transcript. Furthermore, the software takes the genomic sequence of
every transcript and enumerates all possible pointmutations. For each
possible point mutation, it determines the type of point mutation and
its probability derived from our kmerPaPa models. The possible
mutations of each mutation type are tallied up to calculate the
expected number of point mutations of each mutation type. In addi-
tion, the possible mutations and their probabilities are used to calcu-
late a Poisson-binomial distribution of mutation events for every
transcript, because each possible mutation event has a different
probability to occur. We then sample from this distribution to calcu-
late the p-value for the number of observed mutations of each muta-
tion type and to calculate the confidence interval around the number
of expected mutations (see Supplementary Fig. 3).

Scaling mutation rates
The mutation rates output by k-merPaPa corresponds to the number
of mutations expected in the number of individuals that we have data
from. To turn these estimates into rates per generation wemultiply all
SNV rates with a factor so that the average mutation rate becomes
1.28 × 10−8 per base per generation26. And we scale indel rates to have
an average rate of 0.68 × 10−9 per base per generation27.

In Genovo these mutation rates should then be scaled to reflect
the number of generations that the observed mutations correspond
to. To avoid that somemutations get probabilities above one for data
sets with many samples we use the following formula to scale the rate
per base per generation, r, to get the probability that thismutation has

occurred in ngen observed generations:

rscaled = 1� ð1� rÞ2ngen ð9Þ

For the gnomAD analysis where we do not have de novo muta-
tions from a certain number of trios but segregating variants accu-
mulated over an unknown number of generations, we set ngen so that
the number of expected synonymous mutations fit the observed
number of synonymous mutations in the whole exome.

Correction for coverage
Coverage bias in exome sequencing data results in fewer sequenced
individuals for some transcripts compared to others in the gnomADv2
data. This means that the expected number of mutations predicted by
Genovo will be too high for genes that have low coverage. To correct
for this we fit a lowess curve using the statsmodels package28 in
python, to a scatter plot with synonymous observed/expected values
(y axis) vs. the number of called samples (x values) for each transcript
(see Supplementary Fig. 6). The number of called samples for a tran-
script was estimated as the average AN (from the gnomAD2 vcf file)
over all variants in the transcript. In the lowess-function, we used 0.05
as the fraction of the data usedwhen estimating each y value. Based on
this inference, we made a cutoff where we only kept transcripts that
have an average AN value above 50,000. For each transcript, we then
divided the expected variant count with the corresponding lowess
estimate for all variant classes to get a coverage corrected expectation.

Running Genovo
To produce the expected variant count for each transcript we ran
Genovo using hg19 and gencode v. 19 (same as used for gnomADv2)
using a scaling factor of 2.2 × 10−7. Then we applied the coverage cor-
rection as described above. For the comparison with denovolyzeR
(version0.2.0) shown in Fig. 5weused theVEP annotations provided in
“gnomad.exomes.r2.1.1.sites.vcf“ to get the observed number of var-
iants in each functional class.

Of the 4293 trios in the DDD data set 3664 contain at least one
exome mutation. When splitting the data into test and training data
sets we put half of the 3664 individuals with a mutation in each group.
When calculating p-values using Genovo we did it using 10 million
random samples from the null model. For both Genovo and denovo-
lyzeRwedoBonferroni correction of the training set p-values based on
the number of genes that have at least one observed LoF mutation in
the training data (350 genes). For each gene, weonly test the transcript
used by denovolyzeR when running Genovo.

Calculation of Genovo LOEUF score
When calculating the “loss-of-function observed/expected upper
bound fraction” (LOEUF score)5 from the output of the Genovo soft-
ware we do it by dividing the number observed LoF variants by the
lower boundof the 90% confidence interval of the expected number of
LoF variants. Like the other expected values this lower bound used in
the denominator had also been adjusted for coverage differences
between transcripts as described above in the section Correction for
coverage. As there were many transcripts with zero observed muta-
tions, we added a pseudo score of 0.5 to all values of observed and
expected LoF when we calculated the LoF O/E ratio.

gnomAD and Genovo comparison
We used the pre-calculated LoF O/E ratios and LOEUF scores provided
in the publicly available data provided by the gnomAD consortium
(gnomad.v2.1.1.lof_metrics.by_transcript.txt.bgz) to compare O/E
ratios and LOEUF scores between gnomAD andGenovo.Wemade sure
that we compared transcripts that we had data for in both gnomAD
and Genovo data sets. Thereafter, we split the transcripts into deciles
and inferred how many transcripts were found in each decile. We did
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this for each model—gnomAD or Genovo—and visually compared the
two for three different groups of genes that were: essentiality of genes
inferred by two lists (mouse gene knockout experiments and cellular
inactivation assays) and haploinsufficient genes. We used the same
curated gene lists that were used in used in the gnomAD paper5

downloaded from https://github.com/macarthur-lab/gene_lists; hap-
loinsufficient genes according toClinGenDosage SensitivityMap (asof
13 Sep 2018)17, genes deemed essential in mouse29–31, genes deemed
essential in human32, and genes deemed essential and non-essential in
human by CRISPR screening33.

We conducted the ROC AUC analysis by using the sklearn.me-
trics.roc_curve function from the scikit-learn module34 in python. For
each of the AUC scores yielded for each prediction score (gnomAD or
Genovo), we also conducted a DeLong test35 to infer whether the AUC
scores were significantly different. To conduct this test we used
python code adapted from https://github.com/Netflix/vmaf/.

Correlation between nonsense variants and frameshift variants
To calculate the correlations between the number of nonsense muta-
tions and frameshift indels that we mention in the introduction we
used two different data sets. For polymorphic variants we calculated
the correlation based on gnomADv3. For de novo variants we used the
de novo mutations reported in Halldorsson et al.19. In each case we
calculated the Pearson correlation between the number of nonsense
variants per coding site in each gene and the number of frameshift
indels per coding site in each gene.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All de novo mutation data sets used as training data are publicly
available. Two of them can be found as supplementary tables in the
articles reporting them19,20. Two are available using links to external
files provided in the articles21,24. The last two data sets22,23 can be
downloaded from denovo-db36,37. The gnomAD data can be down-
loaded from https://gnomad.broadinstitute.org. De novo mutations
from the Deciphering Developmental Disorders consortium16

were downloaded from supp table S1 in the article16. The strict mask
from the 1000 genomes project can be downloaded here:
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_
genomes_project/working/20160622_genome_mask_GRCh38/
StrictMask/20160622.allChr.mask.bed. The mutation rate models
and predicted gene constraints generated in this study are provided
as Supplementary Data. The kmerPaPa models trained on even-
numbered chromosomes are available as Supplementary Data 1. The
kmerPaPa models trained on all chromosomes are available as
Supplementary Data 2. These models formatted as input files to
Genovo can furthermore be found at https://github.com/
BesenbacherLab/Genovo_Input. The predicted number of variants
in each functional type for each gencode v19 transcript used for the
gnomAD comparison are in Supplementary Data 3.

Code availability
kmerPaPa can be installed from https://pypi.org/project/kmerpapa/
and the source code is available at https://github.com/
BesenbacherLab/kmerPaPa. Genovo can be installed from https://
crates.io/crates/genovo and the source code is available at https://
github.com/BesenbacherLab/genovo. kmer_counter can be installed
from https://pypi.org/project/kmer-counter/ and the source code is
available at https://github.com/BesenbacherLab/kmer_counter. The
adapted python code used to calculate the DeLong test comparing
ROC-AUCs is available at https://github.com/BesenbacherLab/
ROC-utils.
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