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Simultaneous profiling of histone modifica-
tions and DNA methylation via nanopore
sequencing

XueYue1,7, ZhiyuanXie1,7,MoranLi1, KaiWang1,XiaojingLi1, XiaoqingZhang 2,3,4,
Jian Yan 5,6 & Yimeng Yin 1,2

The interplay between histone modifications and DNA methylation drives the
establishment and maintenance of the cellular epigenomic landscape, but it
remains challenging to investigate the complex relationship between these
epigenetic marks across the genome. Here we describe a nanopore-sequen-
cing-based-method, nanoHiMe-seq, for interrogating the genome-wide loca-
lization of histone modifications and DNA methylation from single DNA
molecules. nanoHiMe-seq leverages a nonspecific methyltransferase to exo-
genously label adenine bases proximal to antibody-targeted modified
nucleosomes in situ. The labelled adenines and the endogenous methylated
CpG sites are simultaneously detected on individual nanopore reads using a
hidden Markov model, which is implemented in the nanoHiMe software
package. We demonstrate the utility, robustness and sensitivity of nanoHiMe-
seq by jointly profiling DNA methylation and histone modifications at low
coverage depths, concurrently determining phased patterns of DNA methy-
lation and histone modifications, and probing the intrinsic connectivity
between these epigenetic marks across the genome.

Histone modifications and DNA methylation are fundamental epige-
netic marks that contribute to distinct gene expression programs and
biological functions1. Instead of acting independently of each other,
these different modifications are closely connected and the crosstalk
between them plays a crucial role in the establishment of chromatin
diversity, with complex modification patterns resulting in distinct
functional outcomes2. In the past decades, various approaches, such as
chromatin immunoprecipitation followed by high-throughput
sequencing (ChIP-seq), cleavage under targets and tagmentation
(CUT&Tag) and whole-genome bisulfite sequencing (WGBS), have
been developed to map epigenetic marks across the genome3–5.
Although they are powerful techniques, individual methods are only

capable of profiling either histone modifications or DNA methylation,
and the relationship between these two types of epigenetic marks
uncovered by such techniques is complicated bymany factors, such as
cell population heterogeneity and allele-specific chromatin marking.
Recently, several promising techniques have been developed to jointly
analyze chromatin features in the same DNA molecules in a single
assay. These techniques include sequential ChIP-bisulfite-sequencing
(ChIP-BS-seq), CUT&Tag coupled with tagmentation-based bisulfite
sequencing (CUT&Tag-BS), and nucleosome occupancy and
methylome-sequencing in single cells (scNOMe-seq)6–8. However,
these methods all rely on bisulfite conversion to distinguish methy-
lated from unmethylated cytosines, and hence, they have the
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disadvantages of DNA damages, complexity reduction and biases
introduced by the bisulfite treatment. The resulting libraries from
these techniques do not adequately cover the genome or the targeted
regions, especially the sites weakly bound by target proteins and the
sites with higher CpG and/or GpC frequencies9. The techniques that
use enzymatic reactions to distinguish methylated cytosines (5mCs),
such as enzymatic methyl-seq (EM-seq), overcome the limitations of
bisulfite treatment9. However, these techniques are hindered by the
difficulties in preparing hyperactive enzyme(s) and the methylation
measurements are often confounded by the incomplete conversion of
methylated or unmethylated cytosines. In addition, we are not aware
of any technique that combines ChIP-seq or CUT&Tag with enzymatic
methods to simultaneously explore DNA methylation and histone
modifications in a single assay.

Recently, OxfordNanopore Technologies (ONT) have beenwidely
used to detect different forms of DNA methylation, such as 5-mC at
CpG sites and N6-methyldeoxyadenosines (6mAs) in the sequence of
GATC. These forms ofmethylation can be detected in long sequencing

reads by carefully analyzing the electrical current signals measured by
nanopore-based sequencing devices10,11. Based on this advantage,
various techniques have recently been developed to explore the
chromatin features by exogenously introducing methyl groups to the
DNA bases of target regions. For instance, nanoNOMe was developed
to jointly evaluate CpG methylation and chromatin accessibility after
exogenously labeling GpC sites at open chromatin regions, and
DiMeLo-seqwas developed to jointly analyze CpGmethylation and the
binding of proteins of interest by leveraging deoxyadenosine methyl-
transferase tomark adenines proximal to target proteins12,13. However,
the utility of nanoNOMe to investigate chromatin features is limited by
factors such as the sporadic occurrence and linear clustering of GpC
dinucleotides and the endogenous cytosine methylation14. Due to its
lack of endogenous methylation and its much higher occurrence fre-
quency, at almost one in every two DNA base pairs, adenine is an ideal
candidate for marking regions of interest across the human genome14.
Unfortunately, only the ONT-provided computational tools Mega-
lodon andGuppy are currently available to identify 6mAs in all possible

Fig. 1 | Schematic and the performance of nanoHiMe-seq. a The steps in
nanoHiMe-seq. A primary antibody (light gray) binds to modified nucleosomes, a
secondary antibody (medium gray) binds to the primary antibody, and both anti-
bodies recruit the pA-Hia5 fusion protein (dark gray and red) to the targeted sites.
The tethered pA-Hia5 methylates the adenines (6mAs; red oval) nearby. After
sequencing, basecalling and alignment to the reference genome in base- and event-
space, the likelihood of a sequence having or lackingmodified base(s) is calculated
for individual reads using a hidden Markov model. The ratio of the likelihood is
used to identifymethylatedCpG sites (blue rectangle) and/or 6mA-containing sites.
bDifferences in the event distribution for a 6-merwith orwithoutmodified base(s).
Nanopore sequencing data used to plot the event distribution of AMGTAT was
from PCR amplicons without treatment (cyan), treated by M.SssI (blue), Hia5 (red)
or both M.SssI and Hia5 (yellow). M indicates 5mC and AMGTAT represents a
collection of k-mers derived fromAMGTAT, but with 6mA at the first position, fifth

position or both positions. c An overview of the differences between the reference
models and themeans of trained Gaussian using data from PCR amplicons without
treatment (cyan), treated with M.SssI (blue), Hia5 (red), or both M.SssI and Hia5
(yellow). For 6-mers withmore than one set of parameters, themeanwith themost
significant shift from the reference model was selected for the calculation.
d Benchmarking of nanoHiMe, nanopolish and Megalodon for mCpG detection. A
receiver operating characteristic (ROC) curve was used to assess the performance
of different computational tools at calling CpG methylation on nanopore reads
from PCR amplicons without treatment, treated byM.SssI, or bothM.SssI andHia5.
e Assessment of the performance of nanoHiMe andMegalodon at identifying 6mA-
containing sites of different lengths. The AUC was calculated based on the calls
from nanoHiMe orMegalodon for each group of sites, and plotted as a function of
the length of the sites. Source data are available in the Source Data file.
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contexts and 5mCs in CpG context from individual nanopore reads.
Moreover, the performance of these tools at jointly calling 6mA and
5mC from a single DNAmolecule hasn’t been systematically evaluated.

Here, we describe a method - nanoHiMe-seq to mark adenines
aroundmodifiednucleosomesof interest andprovide a computational
tool to identify the modified adenines and endogenous 5mCs in indi-
vidual nanopore sequencing reads. We systematically evaluate the
performance of our computational tool and ONT-provided tool, and
demonstrate the utility, robustness and sensitivity of nanoHiMe-seq by
jointly profiling CpG methylation and representative histone mod-
ifications of heterochromatin and euchromatin. Taking advantage of
the long reads generated by nanopore sequencing, we further use
nanoHiMe-seq to identify allele-specific epigenetic states across the
genome and to probe the intrinsic connectivity between epigenetic
marks alongmultikilobase segments of the genome.Weanticipate that
nanoHiMe-seq will be widely applied to investigate the functional
coordination of epigeneticmarks in various biological contexts and to
explore chromatin features in complex genomic regions.

Results
Overview of nanoHiMe-seq
Nanopore sequencing has the advantage of distinguishing various
DNA modifications through careful analysis of electric current events.
Based on this advantage, we developed a nanopore-sequencing-based
Histone-modification and Methylome joint-profiling method, named
nanoHiMe-seq. In nanoHiMe-seq, the nuclei were permeabilized and
the modified nucleosomes of interest in the nuclei were first bound
in situwith a specific primary antibody. The primary antibodywas then
bound by a secondary antibody, and both antibodies subsequently
tethered a protein A−N6-adenine methyltransferase (Hia5) fusion
protein (pA-Hia5) to the modified nucleosomes. After the unbound
components werewashed away, pA-Hia5 was activated by the addition
of S-adenosylmethionine (SAM) and the adenines proximal to the
target sites weremethylated (Fig. 1a, top). GenomicDNAwas extracted
from the nuclei and subjected to nanopore sequencing (Fig. 1a, mid-
dle). After basecalling and the alignment of sequencing reads to the
reference genome, the electric current events from each read were re-
analyzedwith a hiddenMarkovmodel (HMM),whichwas implemented
in the nanoHiMe software package, to determine whether a site con-
tained 6mAs and to call CpG(s) at the site as methylated or unmethy-
lated (Fig. 1a, bottom).

nanoHiMe-seq performance
To ensure that nanoHiMe-seq was feasible, we first produced the pA-
Hia5 fusion protein and tested its enzymatic activity (Supplementary
Fig. 1a, b). We found the treatment of DNA templates with increasing
amounts of pA-Hia5 resulted in monotonic increases in adenine
methylation (Supplementary Fig. 1b). Moreover, themethyltransferase
activity was not hindered by the presence of the methyl group in CpG
dinucleotides adjacent to adenine bases (Supplementary Fig. 1c). Thus,
pA-Hia5 is a promising candidate for probing modified nucleosomes
surrounded by methylated or unmethylated DNA of all possible
sequences.

To determine whether a site on a nanopore read contained
6mA(s), and to call CpG(s) on the read asmethylated or unmethylated
with an HMM, we needed to learn the parameters of emission dis-
tribution for individual k-mers with 5-mC at CpG sites and 6mA in all
possible contexts (see Methods). Therefore, we generated four data-
sets from PCR-amplified genomic DNA of Escherichia coli K12 MG1655
(Supplementary Data 2) that was either untreated (PCR+ M.SssI- Hia5-)
or treated with methyltransferase enzye M.SssI (PCR+ M.SssI+ Hia5-),
Hia5 (PCR+ M.SssI- Hia5+) or both (PCR+ M.SssI+ Hia5+), resulting in
samples free of methylation, with near-complete CpG methylation
(96.2%) and/or partial adenine methylation, respectively. It is worth
noting that we learned the parameters from DNA templates with

partial adenine methylation, which enabled us to obtain the para-
meters of k-mers with 6mAs in all possible contexts. However, partial
adeninemethylationmade it impossible to precisely assign the learned
parameters to k-mers that were derived from a four-letter k-mer, but
contained 6mA(s) at different positions, such as TZCACG, TACZCG
and TZCZCG, where Z denotes 6mA. To overcome this limitation, we
grouped such k-mers as a new k-mer, �k, and assigned the parameters
from these k-mers to �k (Supplementary Fig. 2). As a result, nanoHiMe
gained the ability to accurately identify the sites with fully methylated
adenines, a mixture of methylation patterns, or no methylation as a
6mA-containing site or a non-6mA site, but lost the ability to predict
adenine methylation at base resolution.

To assess the performance of our training step, we first compared
our learned parameters from a DNA sample lacking methylation or
treated with M.SssI to the corresponding parameters of individual k-
mers from nanopolsih, a widely used computational tool that applies
an HMM to call 5mC in CpG and GpC contexts15. It was found that the
parameters learned from nanoHiMe were highly consistent with those
provided by nanopolish (Supplementary Fig. 3a). Additionally, we
trained the parameters of emission distribution for individual k-mers
using signalAlign16 in DNA samples treated with M.SssI, Hia5, or both,
which were previously used by nanoHiMe for parameters learning. We
found that the parameters learned using nanoHiMe also correlated
well with those learned from signalAlign for each DNA sample (Sup-
plementary Fig. 3b). When analyzing the obtained parameters, we
found the shifts in the electrical signals for a considerable number of k-
mers after treatment with M.SssI, Hia5, or both (Fig. 1b, c). The shifts
were prone to bemore significant when adeninemethylation occurred
in adjacent bases and in the middle of the k-mers (Supplementary
Fig. 3c–e). This differs from CpG methylation, in which the most sig-
nificant shifts were observed when the methylation occurred at the
fifth position of a 6-mer10,13.

We then applied our trained models to calculate the likelihood
that the underlying nucleotides sequence was a methylated or an
unmethylated version of a genome substring when a sequence of
current events was observed. Similar to previous studies10,13, we used
the log likelihood ratio (LLR) tomake amethylation call for each site on
individual nanopore reads. To evaluate the accuracy of the methyla-
tion calls, we randomly sampled 100,000 singleton sites, i.e., regions
that contained only a single CpG, from each of unmethylated and
methylated E. coli DNA samples. We considered the sites from PCR+

M.SssI- Hia5- and PCR+ M.SssI- Hia5+ datasets as unmethylated, and
those from PCR+ M.SssI+ Hia5- and PCR+ M.SssI+ Hia5+ datasets as
methylated.We then calculated the number of these sampled sites that
were correctly identified asmethylated or unmethylatedwhen the LLR
was greater or smaller than a specific threshold and plotted receiver
operating characteristic (ROC) curves across a range of LLR thresholds
(Fig. 1d). To compare the performance of different computational
tools, we also calculated the number of sampled sites that were cor-
rectly classified as methylated or unmethylated by Megalodon and
nanopolish, and plotted ROC curves for a range of probability
thresholds (Megalodon) or LLR thresholds (nanopolish). To quantita-
tively compare the performance of nanoHiMe, nanopolish and Mega-
lodon, we calculated the area under their ROC curves (AUCs) and
found that Megalodon performed slightly better than nanopolish and
nanoHiMe in predicting CpGmethylation of the sampled sites that did
not contain 6mA(s) (Fig. 1d; Megalodon AUC: 0.953, nanopolish AUC:
0.951 and nanoHiMe AUC: 0.934). However, when calling CpG
methylation of the sites that also contained 6mA(s), nanoHiMe and
nanopolish performed markedly better than Megalodon, with nano-
HiMe exhibiting the best performance (Fig. 1d; nanoHiMe AUC: 0.922,
nanopolish AUC: 0.919 and Megalodon AUC: 0.603).

We additionally compared the performance of nanoHiMe and
Megalodon in identifying6mA-containing sites.Wefirst sampled seven
groups of sites, with lengths ranging from 12 bp to 100bp, from each
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of E. coli DNA samples with or without 6mA. We next calculated the
area under the ROC curves, which were plotted using the calls from
nanoHiMe or Megalodon for each group of sites. We found that the
performance of both nanoHiMe andMegalodon was highly correlated
with the length of the sites assessed, with better performance in pre-
dicting adenine methylation for longer sites (Fig. 1e). When evaluating
sites that did not harbor methylated CpG(s) and were no shorter than
40bp, nanoHiMe performed slightly better than Megalodon (Fig. 1e,
nanoHiMe AUC 40bp: 0.98, 50bp: 0.988, 72 bp: 0.994, 100bp: 0.997;
Megalodon AUC 40bp: 0.979, 50 bp: 0.984, 72 bp: 0.99, 100bp:
0.992). When the evaluated sites also contained mCpG(s), nanoHiMe
substantially outperformedMegalodon (Fig. 1e, nanoHiMeAUC 40bp:
0.992, 50 bp: 0.995, 72 bp: 0.997, 100bp: 0.999; Megalodon AUC
40bp: 0.967, 50bp: 0.974, 72 bp: 0.98, 100bp: 0.982).We additionally
compared the performance of nanoHiMe at predicting methylations
by considering or not considering the co-influence of 6mA and 5mC,
and found that it performed slightly better at identifying 6mA- and
mCpG-containing sites from DNA with two types of methylations by
considering the co-influence (6mAat 50-bp sites AUC: 0.995 vs 0.9799;
mCG AUC: 0.9222 vs 0.9221).

nanoHiMe-seq precisely maps histone modifications in both
compacted and open chromatin
To test whether nanoHiMe-seq can be applied to profile histone
modifications in compacted chromatin and to compare the perfor-
mance of nanoHiMe and Magalodon in predicting 6mA-containing
sites in realistic data, we performed nanoHiMe-seq in HepG2 cells
using non-specific IgG and an antibody against H3K27me3 (Supple-
mentaryData 2), an abundant histonemodification that is catalyzed by
Polycomb Repressive Complex 2 (PRC2) and is associated with the
transcriptional repression17,18. To explore the 6mA-containing sites, we
binned 50 bp on each nanopore read as a window and determined

whether the windows contained 6mA(s). We then quantified the pro-
portion of the 50-bp windows that were called as 6mA-containing sites
across all reads mapping to the H3K27me3 peak regions. We defined
the proportion of 6mA-containing sites obtained from experiments
using the anti-H3K27me3 antibody as the discovery efficiency and the
proportion obtained from non-specific IgG experiments as noise. To
evaluate the performance of nanoHiMe and Megalodon, we plotted
the discovery efficiency as a function of the ratio of discovery effi-
ciency to noise (as a proxy for the signal-to-noise ratio) across a range
of LLR (nanoHiMe, −100–37) or probabilities (Megalodon, 0–0.9)
thresholds. We found that nanoHiMe was more robust than Mega-
lodon at identifying high-confidence 6mA-containing regions (Fig. 2a).
For instance, at a discovery efficiency of 0.05, the efficiency-to-noise
ratio of nanoHiMe was 10.85, which was >1.5 times higher than the
efficiency-to-noise of Megalodon (6.85; Fig. 2a, dashed line).

To assess the performance of nanoHiMe in profiling histone
modifications, we compared 6mA signals detected by nanoHiMe with
profiles generated by CUT&Tag and ChIP-seq for H3K27me3 and
H3K4me3 in HepG2 and/or GM12878 cells (Supplementray Figs. 4a, b
and 5a). The display of 6mA calls from nanopore reads mapped to the
human reference genome showed a clear pattern of chromatin
domains marked by H3K27me3 or H3K4me3, and this pattern resem-
bled the profiles determined by CUT&Tag and ChIP-seq in HepG2 or
GM12878 cells (Fig. 2b–d; Supplementary Fig. 4d). As expected,
increasing the LLR threshold from 2 to 32 resulted in significant noise
reduction and thus higher signal-to-noise ratio (Fig. 2b). When exam-
ining the 6mA signals from H3K27me3 and H3K4me3 nanoHiMe-seq
experiments in HepG2 cells, we observed distinct patterns, as revealed
by CUT&Tag and ChIP-seq (Fig. 2c). Moreover, the distinct patterns of
6mA signals were also observed when examining H3K27me3-marked
regions from the two cell lines (Fig. 2c, d). In contrast, H3k27me3
nanoHiMe-seq from GM12878 cells treated with the EZH2 inhibitor

Fig. 2 | nanoHiMe-seq for histone modification profiling. a Comparison of the
performance of nanoHiMe and Megalodon at identifying 6mA-containing sites
from nanoHiMe-seq data. b View of 6mA signals in H3K27me3 nanoHiMe-seq data
across a 500-kb segment of the human genome. The numbers of 6mA-containing
sites identified by nanoHiMe using different log likelihood ratio (LLR) cut-offs (2, 8,
and 32) were counted and plotted in 2500-bp windows. H3K27me3 CUT&Tag and
ChIP-seq signals in the region are also shown on the top of the panel. A magnified
view is shown for CUT&Tag and ChIP-seq peaks, and the predicted 6mA-containing
sites (purple), methylated CpG sites (red) and unmethylated CpG sites (blue) in
individual nanopore reads from H3K27me3 nonaoHiMe-seq. c, d View of 6mA

signals fromH3K27me3 andH3K4me3 nanoHiMe-seq inHepG2 andGM12878 cells.
Similar to (b), the numbers of 6mA-containing sites detected in each experiment
using an LLR cut-off of 32 were counted and plotted in 1250-bp windows.
H3K27me3 and H3K4me3 signals from CUT&Tag and ChIP-seq are also shown.
e Distribution of the distances between two adjacent 6mA-containing sites in
individual nanopore reads from either H3K27me3 nanoHiMe-seq (purple) or
nanoHiMe-seq using non-specific IgG (blue). The nanopore reads overlapping the
top 50% of H3K27me3 peaks were selected for the analysis. Source data are avail-
able in the Source Data file.
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EPZ643819, in which H3K27 methylation was severely depleted, pro-
duced very sparse 6mA signals, with a 6mA-containing site being
detected in approximately every 16,400bp (Fig. 2d, bottom; Supple-
mentary Fig. 4e, f).

As N6-adenine methyltransferases (6mA-MTases) show high
selectivity for accessible DNA, but not for the nucleosome-
wrapped DNA20, the targeted nucleosomes should be located in
the regions between two adjacent 6mA-containing sites on indi-
vidual nanopore reads. Hence, we investigated the length of these
regions and found the following two categories of segments that
were evident in H3K27me3 peak regions: (1) the regions with the
lengths representing one, two, or multiple nucleosomes and
(2) more numerous shorter regions with the lengths <100 bp,
paralleling the distribution of internucleosomal linker regions
(Fig. 2e). This observation highlights the high resolution of
nanoHiMe-seq for mapping target nucleosomes.

In contrast to H3K27me3, H3K4me3 marks active chromatin
sites and is a key epigenetic mark for transcription initiation.
Therefore, we investigated the distribution of 6mA signals from
H3K4me3 nanoHiMe-seq around the transcription starting site
(TSS). By averaging the signal across active TSSs, we observed an
enrichment of 6mA signals around TSSs, which resembled pro-
files generated by CUT&Tag and ChIP-seq. However, unlike ChIP-
seq signals, which peaked at the flanking regions of the active
TSSs, the signals from nanoHiMe-seq were highly enriched at
canonical nucleosome-free promoter regions overlapping the
TSSs21 (Supplementary Fig. 5a, b; Supplementary Data 2). These
differences are likely explained by the fact of that the DNA
fragments enriched by ChIP-seq were from H3K4me3-marked
nucleosomes, whereas the 6mA-containing sites from nanoHiMe-
seq were methylase-accessible linker sequences flanking mod-
ified nucleosomes (Supplementary Fig. 5c).

nanoHiMe-seq simultaneously measures DNA methylation
inside and outside of target regions
To assess the performance of nanoHiMe in calling CpG methyla-
tion on nanopore reads obtained from nanoHiMe-seq experi-
ments, we explored CpG methylation patterns across the genome
using our computational tool. Like nanopolish10, LLR cut-offs of
±1.5 were applied to call every CpG-containing site in each
nanopore read as methylated (LLR ≥ 1.5) or unmethylated (LLR
≤−1.5) using nanoHiMe (Supplementary Data 3). We calculated the
density of mCpG sites based on the calls across the genome and
observed the previously documented correlation between the
mCpG density and the distance from the TSSs. CpG sites tended
to be unmethylated near the TSSs, with the methylation level
increasing significantly towards the gene body (Fig. 3a). To
compare the performance of nanoHiMe with other tools, we also
made methylation calls for each CpG-containing site from
nanoHiMe-seq reads using Megalodon and nanopolish. For
Megalodon, we used different probability cut-offs (from 0.6 to
0.9) to make methylation calls, and subsequently calculated the
methylation percentages based on the calls for individual CpG
sites across the genome. By comparing with the methylation
levels determined by WGBS, we found that Megalodon gave the
highest consistency at a probability cut-off of 0.6 (Supplementary
Fig. 6a, Pearson’s r = 0.9), and that the methylation levels pre-
dicted by nanoHiMe correlated best with WGBS measurements
(Fig. 3b; Pearson’s r = 0.931). When comparing the methylation
percentages calculated by the three nanopore-based methods for
each CpG site, we found that the measurements from nanoHiMe
correlated better than those from Megalodon with the methyla-
tion levels predicted by nanopolish (Fig. 3b; correlation between
nanoHiMe and nanopolish: Pearson’s r = 0.953; correlation
between Megalodon and nanopolish: Pearson’s r = 0.885).
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level (yellow, 30% ≤ methylation ratio < 70%) or low methylation level (blue,
methylation ratio < 30%). The top of the panel shows H3K27me3 signals from
CUT&Tag and ChIP-seq. d Comparison of CpG methylation levels determined by
CUT&Tag-BS to thosemeasured byWGBS, nanoHiMe or Megalodon at H3K27me3-
marked regions. The x-axis is the methylation percentage of individual CpGs cal-
culated fromWGBS (left), or calculated based on the calls from nanoHiMe (middle)
or Megalodon (right). The y-axis denotes the methylation percentage measured by
CUT&Tag-BS. The CpG sites covered by ≥20 reads from both assays were selected
for the analysis. Source data are available in the Source Data file.
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To test the power of our computational tool to simultaneously
call two types of methylations from a single DNA molecule, we
compared H3K27me3 profiles and methylation levels of individual
CpGs at H3K27me3-marked regions, as determined by nanoHiMe-seq
and CUT&Tag-BS7. We first assessed the quality of our CUT&Tag-BS
experiments, and found that almost all peaks detected by CUT&Tag-
BS overlapped with those identified in CUT&Tag experiments and
that the peak signals also exhibited a high level of correlation (Fig. 3c;
Supplementary Fig. 6b, d). However, we noticed that some of the
weak peaks detected by CUT&Tag were not detected by CUT&Tag-
BS, probably due to the DNA damages introduced by the bisulfite
treatment in CUT&Tag-BS experiments (Supplementary Fig. 6b, c).
When comparing the patterns of 6mA signals from nanoHiMe-seq
with the profiles obtained from CUT&Tag-BS, we found that the
enrichment of 6mA signals was detected in both the regions of peaks
identified by CUT&Tag-BS and the regions of weak peaks identified
only by CUT&Tag (Fig. 3c; Supplementary Fig. 6e, f). We next com-
pared the methylation levels of CpG sites measured using the data
from CUT&Tag-BS, nanoHiMe-seq and WGBS. Unlike the previous
findings that CpG methylation levels at enhancers measured by
CUT&Tag-BS were not well aligned with those obtained from WGBS
in mouse embryonic stem cells7, we found that CpG methylation
levels measured by CUT&Tag-BS andWGBS were highly consistent at
H3K27me3-marked regions in HepG2 cells (Fig. 3d, left panel, Pear-
son’s r = 0.922). Moreover, we found that CpG methylation levels
measured by nanoHiMe were also well aligned with those measured
by CUT&Tag-BS (Fig. 3d, middle panel, Pearson’s r = 0.871). We fur-
ther calculated the methylation percentages for individual CpG sites
based on methylation calls from Megalodon on the individual reads.
We found that the measurements were not aligned as well as those
from nanoHiMe and CUT&Tag-BS (Fig. 3d, right panel, Pear-
son’s r = 0.77).

nanoHiMe-seq sensitively profiles chromatin features at low
coverage depths
Nanopore-based methods have been shown to precisely call DNA
methylation at low coverage depths22. To assess the minimum
sequencing depth required by nanoHiMe-seq to measure CpG
methylation and to profile histone modifications, we subsampled the
nanopore reads with coverage depths ranging from 5× to 50×. We
calculated the methylation percentages of CpG sites based on nano-
HiMe calls on the sampled reads and compared the measurements
obtained from different coverage depths to the methylation levels
determined by WGBS (average coverage >100). Overall, the methyla-
tion levels measured from each coverage depth showed a high corre-
lation with the measurements fromWGBS (Fig. 4a, b). The correlation
coefficient was as high as 0.82 at 10× coverage, corresponding to the
reads produced by only one or twoMinION flowcells from 100, 000 to
200, 000 cells, and almost reached a plateau (~0.92) at 30× coverage
(Fig. 4b). As expected, the methylation levels measured at 10× cover-
age also correlated well with thosemeasured at 50× coverage (Fig. 4c,
Pearson’s r =0.914). When analyzing the enrichment of 6mA signals
from the sampled reads, we observed that the patterns resembled the
profiles generated by CUT&Tag and ChIP-seq, even at a 5× coverage
depth (Fig. 4a). Moreover, the 6mA signals detected at 30× or 10×
coverage showed a high correlation with those from 50× coverage
depth (Fig. 4d). These results suggest that nanoHiMe-seq is a sensitive
method that can be used to concurrently measure histone modifica-
tions and DNA methylation at a low cost.

nanoHiMe-seq sufficiently phases histone modifications and
DNA methylation and probes their intrinsic connectivity
Nanopore sequencing reads span over several kilobases, which makes
them ideal for phasing 6mA-contaning sites and methylated and
unmethylated CpGs to their respective haplotypes, especially at the
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genomic loci with a low density of heterozygous single-nucleotide
variants (SNVs). To identify allele-specific epigenetic states across the
genome, we first used PEPPER-Margin-DeepVariant to find SNVs and
insertions and deletions (INDELs) from the reads aligned to the
reference23. These identified SNVs and INDELs were subsequently used
to phase and haplotag the individual nanopore reads (Supplementary
Data 4).We found that 72.2% of nanopore reads overlapping H3K4me3
peaks, 69.6% of reads overlapping H3K27me3 peaks and 74.1% of reads
overlapping CpG islands (CGIs) were assigned to their respective
alleles, whereas only 14.1% of H3K4me3 CUT&Tag reads, 16.6% of
H3K27me3 CUT&Tag reads and 5.7% of WGBS reads were phased
(Fig. 5a). We grouped these phased nanopores reads fromHepG2 cells
for individual regions, evaluated CpG methylation levels for every

haplotype, and identified 1236 CGIs exhibiting allele-specific CpG
methylation, of which only approximately 30% had been documented
in previous studies14 (Fig. 5b; Supplementary Fig. 8a; Supplementary
Data 5). More importantly, we found 800 H3K27me3-marked regions
and 476 H3K4me3-marked regions showing allele-specific enrichment
of 6mA signals (Fig. 5b; Supplementary Fig. 8b–e; Supplementary
Data 6, 7). Very few of these regions had been reported to show allele-
specific H3K27me3 or H3K4me3 in previous genome-wide studies due
to the technical limitations18,24. Moreover, in GM12878 cells, we found
1292 CGIs showing allele-specific CpGmethylation, one-third of which
were CGIs in X-chromosome, and 1,416 H3K27me3-marked regions
exhibiting allele-specific enrichment of 6mA signals (Supplementary
Fig. 7; Supplementary Data 5, 6).
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nanoHiMe-seq also enabled us to investigate the crosstalk
between histone modifications and DNA methylation at the single
molecule level along multikilobase segments of the genome. We
focused on H3K4me3- and H3K27me3-marked regions that exhibited
allele-specific enrichment of 6mA signals and their flanking regions
(±1 kb). We investigated CpG methylation on the grouped reads for
every haplotype in selected regions in HepG2 cells and found that, in
contrast tohighmethylation levels in theflanking regions,most ofCpG
sites overlapping the H3K4me3 peaks tended to be unmethylated and
hence did not exhibit allele-specific CpG methylation (Supplementary
Fig. 9a). In contrast, we observed that 74 H3K4me3-marked regions
showed allele-specific CpG methylation and the 6mA signals were
preferentially enriched on the opposite allele of the CpG methylation
sites (Fig. 5c; Supplementary Fig. 9a). When investigating the methy-
lation levels of their flanking regions, we found 45 regions within
500 bp and 32 regions within 1000 bp also exhibited allele-specific
CpGmethylation (Supplementary Fig. 9a). Additionally, we found that
95 H3K27me3-marked regions and the majority of their flanking
regions (59/95 within 500bp, 56/95 within 1 kb) exhibited allele-
specific CpG methylation in HepG2 cells (Supplementary Fig. 9b). In
GM12878 cells, 84 H3K27me3-marked regions and about one-third of
their flanking regions (30/84 within 500 bp, 36/84 within 1 kb) showed
allele-specific CpGmethylation. The 6mA signals were enriched on the
allele with the CpG methylation in some H3k27me3-marked regions,
but on the opposite allele in other peak regions (Fig. 5c; Supplemen-
tary Fig. 9b), which was consistent with the previous observations of
the complex and highly dynamic relationship between DNA methyla-
tion and H3K27 trimethylation25.

Discussion
Here, we describe the nanoHiMe-seq method for simultaneous profil-
ing of histone modifications and DNA methylation via nanopore
sequencing. Like CUT&Tag, the workflow of nanoHiMe-seq is quite
simple and the entire procedure from cell harvest to library prepara-
tion can be performed in 1 day. nanoHiMe-seq is an antibody-based
method, can take advantage of the large quantity of antibodies
developed for CUT&Tag and ChIP-seq, and be potentially applied to
any epitope on chromatin. More importantly, nanoHiMe-seq is a
robust and sensitive method that can be used to profile chromatin
features using sequencing reads produced by one or two MinION
flowcells. The ease, robustness, and low cost of nanoHiMe-seq make it
an appealing approach for studying the functional coordination of
epigenetics indiverse areasof biological research. In addition, the long
reads and no-amplification strategy also make nanoHiMe-seq suitable
for the investigation of chromatin features in complex genomic
regions and for phasing the features of interest on a genome-
wide scale.

In contrast to BIND&MODIFY, which uses methyltransferase Eco-
GII to mark adenines, nanoHiMe-seq used Hia5, a non-specific
methyltransferase with higher enzymatic efficiency, to label adenine
bases proximal to H3K27me3 or H3K4me3 nucleosomes26. We also
developed a computational tool to simultaneously identify 6mAs and
the endogenous mCpGs from individual nanopore reads using an
HMM. Systematic benchmarking of methylation prediction by nano-
HiMe and Megalodon, a tool provided by ONT, indicated that both
tools precisely identified mCpG- and 6mA-containing sites from DNA
with one type of modification. However, while nanoHiMe also showed
high performance in predicting methylations from DNA containing
both mCpG and 6mA, Megalodon couldn’t accurately identify
methylated CpG sites, and its accuracy for predicting 6mA-containing
sites was also significantly lower than the accuracy of nanoHiMe. The
robustness of nanoHiMe to call CpG and adenine methylation may
result from (1) the trained parameters of emission distribution for
individual k-mers fromDNAwithmCpG,6mA, bothmCpGand6mA, or
free of methylation, and (2) the consideration and realignment of

sequential current events to the reference substrings using the
trained parameters when evaluating a CpG(s)- and/or adenine(s)-
containing site.

CUT&Tag-BS is a recently developed method that has been used
to profile the genomic localization of histone modifications and the
methylation status of the underlying DNA in a single assay7. When
performing CUT&Tag-BS experiments, we noticed that extensive
efforts were required to optimize the bisulfite treatment conditions.
While harsh conditions destroy the limited amount of DNA fragments
obtained from CUT&Tag, mild conditions result in incomplete con-
version of unmethylated cytosines to uracils. When comparing
CUT&Tag-BS to CUT&Tag, we found that, although the peaks detected
by CUT&Tag-BS largely overlapped with those identified in CUT&Tag
experiments, some of the weak peaks identified by CUT&Tagwere not
detected by CUT&Tag-BS, probably due to the DNA degradation
resulting from bisulfite treatment, even under mild conditions. When
comparing nanoHiMe-seq with CUT&Tag-BS, we observed that the
6mA signals were enriched not only at the CUT&Tag-BS peak regions,
but also at the regions of weak peaks identified only by CUT&Tag, thus
highlighting the high sensitivity of nanoHiMe-seq. We also found that
themethylation levels of individual CpG sites measured by nanoHiMe-
seq and CUT&Tag-BS were highly correlated. It is worth noting that,
unlike CUT&Tag-BS, nanoHiMe-seq also measures methylation levels
of the CpGs around the regions marked by modified nucleosomes of
interest, enabling the investigation of the relationship between histone
modification and methylation of the CpGs inside and outside of the
peak regions. Moreover, the long reads obtained from nanoHiMe-seq
also allowed us to phase 6mA-contaning regions and methylated and
unmethylated CpGs to their respective haplotypes, especially at the
genomic loci with a low density of heterozygous SNVs and/or INDELs.

It has been shown that modulation of the current through the
nanopore allows the discrimination of many types of base
modifications11,13,16,27. Thus, nanoHiMe-seq may be scaled up to simul-
taneously profile multiple chromatin features and probe their intrinsic
connectivity by introducing various labels, such as 5-hmC, 5-fC and
4-mC, and GpC methylation. To explore these marks in single DNA
molecules, more-extensive training models for all of the combinations
of the introduced modifications are required. In our future work, we
will aim to generate a such unified calling model that allows for com-
prehensive epigenetic profiling in a single assay.

Methods
pA-Hia5 and pA-Tn5 protein production
We followed Yin et al.28 to clone, express and purify pA-Hia5 and pA-
Tn5 protein from E. coli cells. pA-Hia5 protein expression vectors
having a 3× Flag-pA-Tn5-Fl backbone (addgene, Plasmid #124601) were
adapted by replacing Tn5 coding region with Hia5 gene. 3× Flag-pA-
Hia5-Fl and 3× Flag-pA-Tn5-Fl plasmids were transformed into Rosetta
2(DE3)pLysSCompetentCells (Sigma, 71403-3), respectively, following
the manufacturer’s protocol. Each selected colonies were inoculated
into 50mL LB medium supplemented with 50μg/ml carbenicillin and
30μg/ml chloramphenicol, and grown overnight at 37 °C. Overnight
culture was added in 1:40 ratio into 2 L auto-inducing ZYP5052 med-
ium, and grown for 4 h at 37 °C to followed by protein expression for
8 h at 16 °C. Bacteria were pelleted at 3700 g at 4 °C for 15min and
resuspended in 200ml chilled EDTA-free HEGX buffer (20mMHEPES-
KOH at pH 7.2, 0.8MNaCl, 10% glycerol, 0.2% Triton X-100) containing
0.5mg/ml lysozyme (sigma, L1667) and 2mM PMSF. The resuspended
bacteria were frozen at −80 °C for at least 0.5 h, and protein purifica-
tion was performed according to Kaya-Okur et al.5 with minor mod-
ifications. Briefly, frozen bacterial lysate was thawed at room
temperature andDNAwas digestedwith 10μg/mlDeoxyribonuclease I
(sigma, D2821-50KU) and 3mM MgSO4 at room temperature for
30min. Chitin resin (NEB, S6651S) was prepared by washing 10ml
slurry with 100ml of EDTA-free HEGX Buffer, and then the soluble

Article https://doi.org/10.1038/s41467-022-35650-2

Nature Communications |         (2022) 13:7939 8



fraction of the lysate was added to the chitin resin slowly. The clarified
lysatewas incubatedwith the chitin resin on anend-over-end rotator at
4 °C for 6 h, after which the solution was removed by centrifugation at
1000 g at 4 °C for 5min. The chitin resin was washed three times with
chilled HEGX buffer, resuspended in 40mL HEGX including 100mM
DTT, and then rotated at 4 °C for about 48 h. 20 K MWCO dialysis
cassettes (Thermo Scientific, 66012) were pre-wet in 2× dialysis buffer
(100mM HEPES-KOH pH 7.2, 0.2M NaCl, 0.2mM EDTA, 2mM DTT,
0.2% Triton X-100, 20% Glycerol) for 5min and the elution was trans-
ferred to the cassettes and dialyzed twice in 200× volumes of 2× dia-
lysis buffer overnight at4 °C.Dialyzed samplewas transferred to a 30K
Amicon Ultra-15 tube (Millipore, UFC903024) and centrifuged at
3700 g to concentrate to a volume of <1ml. The concentrated protein
was stored at −80 °C until use.

In vitro methyltransferase activity assessment
DNA used in the assay was amplified by PCR from synthesized ssDNA
(GenScript Biotech, Supplementary Data 1), or from HepG2 genomic
DNA with primers for a 814-bp region, which located in promoter of
the hydroxymethylbilane synthase gene and contained four GATC
sequence. Approximately 1μg DNA was incubated with 0, 0.5, 1, 2, 5, 8
or 10μl pA-Hia5protein in 1×methyltransferase reactionbuffer (15mM
HEPES-KOH at pH 8.0, 15mM NaCl, 60mM KCl, 1mM EDTA pH 8.0,
0.5mMEGTA pH 8.0, 0.5mMSpermidine) supplementedwith 160 μM
S-adenosyl-methionine (NEB, B9003S) at 37 °C for 2 h. After cleanedup
using MinElute PCR purification kit (Qiagen, 28004), 100 ng DNA was
subjected to DpnI (ThermoFisher Scientific, FD1704) or MboI (Ther-
moFisher Scientific, FD0814) digestion followed the manufacturer’s
protocol. 50ng DNA from each reaction was combined with 2μl of 6×
Purple Gel Loading Dye (NEB, B7024) and ran on a 2% agarose gel
supplemented with 1× SYBR Safe DNA Gel Stain (thermo, S33102) at
120V for approximately 40min. The gel was imaged on ChemiDoc™
Touch Imaging System and the image was cropped using Image Lab
v5.2.1. To evaluate whether the methyltransferase activity of Hia5 was
affected by CpG methylation or not, 1μg amplicon from synthesized
ssDNA (Supplementary Data 1) was either incubated with 4 units CpG
Methyltransferase M.SssI (NEB, M0226L) in NEBuffer 2 (NEB, B7002)
containing 160 μM S-adenosyl-methionine or incubated with 15μl pA-
Hia5 protein in 1× methyltransferase reaction buffer supplemented
with 160 μM S-adenosyl-methionine at 37 °C for 2 h and then purified
using MinElute PCR purification kit, respectively. Approximately 1 μg
M.SssI-treated DNA was then mixed with 15μl pA-Hia5 protein in 1×
methyltransferase reaction buffer supplemented with 160 μM S-
adenosyl-methionine and the incubation was performed under 37 °C
for 2 h. The amplicon, M.SssI-treated DNA, Hia5-treated DNA, and
M.SssI&Hia5-treated DNA was subjected to DpnII (NEB, R0543S) or
PvuI-HF (NEB, R3150S) digestion according to the manufacturer’s
protocol. 50 ng DNA from each reaction was ran on a 4% agarose gel
and the gel was imaged as described above.

Cell culture
HepG2 cells were obtained from the American Type CultureCollection
(ATCC, HB-8065) and grown at 37 °C in a humidified incubator in 1×
EMEM medium (ATCC, 30-2003) supplemented with 10% FBS (Ther-
moFisher Scientific, 10100147c) and 1% Pen Strep (ThermoFisher Sci-
entific, 15140122). GM12878 cell line was kindly donated by Wensheng
Wei (School of Life Sciences, Peking University) and cultured in
RPMI 1640medium (Gibco 11875-093) supplementedwith 15%FBS and
1% Pen Strep. To deplete H3K27 methylation, GM12878 cells were
treated with high concentrations (2 or 5 µM) of the EPZ6438 EZH2
inhibitor (Cayman Chemical, 16174) for 7 days19.

Extraction of nucleosomal histones
We basically followed the high-salt extraction of histones protocol
described by Shechter et al.29. Briefly, 1 × 105 GM12878 cells were

resuspended in 1ml extraction buffer (10mM HEPES pH 7.9, 10mM
KCl, 1.5mM MgCl2, 0.34M sucrose, 10% glycerol, 1× complete, EDTA-
free protease inhibitor cocktail) with 0.2% IGEPAL CA-630 (sigma,
I8896) and incubated for 10min on ice with occasionally rotating. The
nuclei were collected by centrifugation at 6500 g at 4 °C for 5min and
washed once with 1ml extraction buffer. The nuclei were lysed in 1ml
no-salt buffer (3mM EDTA, pH8.0) for 30min at 4 °C and the chro-
matin pellet was collected by centrifugation at 6500 g at 4 °C for 5min.
The chromatin pellet was resuspended in 600μl high-salt solubiliza-
tion buffer (50mM Tris-Cl pH 8.0, 2.5M NaCl, 0.05% IGEPAL CA-630)
and incubated on a rotator at 4 °C for 30min. After centrifugation at
16,000 g at 4 °C for 10min, the supernatant was transferred into the
cassettes (3.5 K MWCO) and dialyzed in dialysis buffer (10mM Tris-Cl
pH 8.0, chilled to 4 °C) overnight at 4 °C. Finally, the histone solution
was collected and stored at−80 °C freezer. H3 andH3K27me3 proteins
were detected by western blotting.

CUT&Tag and CUT&Tag-BS
We basically followed the CUT&Tag protocol described by Kaya-Okur
et al.5. Briefly, nuclei of HepG2 and GM12878 cells were prepared by
suspending and incubating cells in chilled NE1 for 10min. Nuclei were
resuspended in PBS, lightly cross-linked using 0.1% fomaldehyde for
2min and then the cross-linking was stopped by 75mM glycine. Fixed
nuclei were collected by centrifugation at 1300 g for 4min at 4 °C,
resuspended inwash buffer to a concentration of 1million per 1ml and
then bound to ConA magnetic beads. ConA-bound nuclei were incu-
bated with non-specific IgG (abcam, ab46540) or antibody against
H3K4me3 (Active Motif, 39159) or H3K27me3 (Cell Signaling Tech-
nology, 9733 S) in wash buffer containing 2mM EDTA, 0.1% BSA (1:50
dilution) for 2 h at 25 °C and then incubated with secondary antibody
(antibodies online, ABIN101961) in wash buffer (1:100 dilution) for
30min 25 °C. The nuclei were washed once usingwash buffer and then
incubated with 0.4μl pA-Tn5 (Diagenode, C01070001) in 50μl wash
buffer containing 300mM NaCl for 1 h at 25 °C. After being washed
3 times using wash buffer containing 300mM NaCl, the nuclei were
brought up in 300μl wash buffer containing 300mMNaCl and 10mM
MgCl2, and then incubated at 37 °C for 1 h to allow the tagmentation
reaction to go to completion. DNAwas extracted and PCR reactionwas
performed according to the protocol provided by Kaya-Okur et al.5.
The PCR products were subjected to Illumina sequencing (2 × 150 bp,
adapters and amplification primers listed in Supplementary Data 1).

CUT&Tag-BS protocol was similar to CUT&Tag protocol, but had
two extra steps, oligonucleotide replacement and bisulfite treatment.
As described by Li et al.7 for oligonucleotide replacement and gap
repair, 11μl CUT&Tag DNA, 2μl 10μM Tn5mC-ReplO1 oligo (Supple-
mentary Data 1), 2μl 10× Ampligase buffer (Lucigen, A3202K) and
0.5μl dNTP mix (10mM each) were mixed and incubated in PCR
thermocycler as follows: 50 °C for 1min, 45 °C for 10min and ramp
down to 37 °C at a rate of −0.1 °C/s. 1μl T4 DNA polymerase (NEB,
M0203S) and 2.5μl Ampligase (Lucigen, A3202K) were added to the
reaction, which was incubated at 37 °C for 30min. The reaction was
stopped by the addition of 1μl 0.5M EDTA (pH 8.0) and the repaired
DNA was purified using MinElute PCR purification kit. The purified
DNAwasmixed with 130μl of the CT conversion reagent from EZDNA
Methylation-Gold Kit (Zymo Research, D5005). The solution was
incubated in a thermocycler as follows: 98 °C for 8min, 54 °C for
60min, hold at 4 °C. The bisulfite converted DNA was purified
according to the instructions from EZ DNA Methylation-Gold Kit and
eluted in 25 μl M-elution buffer. PCR reaction was performed accord-
ing to the protocol described by Kaya-Okur et al.5.

CUT&Tag and CUT&Tag-BS data processing
The quality of sequencing reads from CUT&Tag experiments was
viewed using FastQC v0.11.5 and the reads were aligned to human
reference genome HG19 using Bowtie2 (version 2.4.4)30 with
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parameters --end-to-end --very-sensitive --no-mixed --no-discordant
--phred33 -I 10 -X 700. All unmapped reads, non-uniquely mapped
reads and PCR duplicates were removed using Samtools v1.9, and
H3K4me3 and H3K27me3 peaks were called using MACS2 v2.2.7.131

with the parameters -broad -g hs -f BAMPE.
CUT&Tag BS-seq reads were aligned to human reference genome

HG19 using Bismark (version −0.22.3) with Bowtie2 (version2.4.4) as
the alignment software. PCR duplicates were removed using dedupli-
cate_bismark. Per-residue methylation data was collected using bis-
mark_methylation_extractor with parameters -comprehensive
--bedGraph --counts --cytosine_report. HOMER v4.1132 was used to call
peaks as follows: Mapped read data was prepared using the make-
TagDirectory function with parameters “-read1-keepAll -fragLength
200”, followed by peak calls using the findPeaks function with para-
meters “-size 1000 -minDist 2500 -L 0 -region”. We used bedtools
v2.25.0 to identify common peaks between CUT&Tag-BS and CUT&-
Tag, andbetweenbiological replicates fromCUT&Tag-BS orCUT&Tag.
The enrichments of H3K27me3 and H3K4me3 by CUT&Tag or CUT&-
Tag-BS across different segments of the human genome were viewed
using IGV v2.9.2, and heatmaps showing the enrichment signals of
H3K27me3 and H3K4me3 from CUT&Tag were generated using
deeptools v3.5.1.

Comparison between nanoHiMe-seq, CUT&Tag and ChIP-seq or
between nanoHiMe-seq and WGBS
The HepG2 ChIP-seq data used in this study was from Encyclopedia of
DNA Elements (ENCODE) with accession number ENCFF223BZS,
ENCFF632WJV and ENCFF712HMU for H3K4me3 peak information,
ENCFF942HPS, ENCFF833HZR, ENCFF447EJD, ENCFF663ZBD and
ENCFF053ZWM for alignment information of individual sequencing
reads from H3K4me3 ChIP-seq experiments; ENCFF546TJV and
ENCFF950VUB for H3K27me3 peak information; ENCFF591ZGI,
ENCFF502ALT, ENCFF730WFM and ENCFF560BZE for alignment
information of individual sequencing reads from H3K27me3 ChIP-seq
experiments. As almost all of the top 50% peaks from ChIP-seq over-
lapped with those identified by CUT&Tag and vice versa, so these
peaks represented the high-confidence H3K27me3- or H3K4me3-
marked regions and were selected for the comparison analysis. The
correlation between nanoHiMe-seq, CUT&Tag and ChIP-seq or
between the replicates of CUT&Tag and ChIP-seq was calculated using
either the read counts or 6mA-containing sites in the selected peak
regions.

Whole-genome Bisulfite Sequencing (WGBS) data was from
ENCODE with accession numbers ENCFF847OWL, ENCFF390OZB,
ENCFF064GJQ and ENCFF369YQW. The correlation between
nanoHiMe-seq and WGBS was calculated for the CpG sites with cov-
erage depth ≥20 by both WGBS and nanoHiMe-seq data. The active
promoters used in Supplementary Fig. 5 were selected based on
HepG2 RNA-seq data from ENCODE under accession numbers
ENCSR000CPC, ENCSR000CPE and ENCSR000CPF.

nanoHiMe-seq using antibody against H3K4me3, H3K27me3
or IgG
HepG2 cells were harvested by trypsinization upon reaching
approximately 60% confluency in 100mm dishes (Corning, 430167)
and GM12878 cells were harvested by centrifugation for 4min at
600 g at room temperature. Cells were washed once in PBS and then
resuspended in ½ volume (relative to cell culture medium) chilled
NE1 buffer (20mM HEPES-KOH at pH 7.9, 0.5mM spermidine, 0.1%
Triton X-100, 20% glycerol) containing 1× Complete, EDTA-free Pro-
tease Inhibitor Cocktail (Roche 5056489001). Cells were lysed for
10min on ice and then the nuclei were pelleted by centrifugation at
1300 g for 4min at 4 °C. The nuclei were resuspended in wash buffer
(20mM HEPES pH 7.5, 150mM NaCl, 0.5mM Spermidine, 1× Com-
plete, EDTA-free Protease Inhibitor Cocktail) to a concentration of

approximately 1 million per ml. Magnetic beads coated by Con-
canavalin A (Bangs Laboratories, BP531) were prepared as described
by Kaya-Okur et al.5 and 4.5μl of activated beads were added for
100,000 nuclei and incubated at room temperature for 10min. The
supernatant was removed after placing the EP-tubes containing
magnetic beads and nuclei on the magnet stand for 1min and the
nuclei were resuspended in 50μl wash buffer containing 2mMEDTA,
0.1% BSA and 1 μl antibody (1:50 dilution) against H3K4me3 (Active
Motif, 39159), H3K27me3 (Cell Signaling Technology, 9733 S) or non-
specific IgG (abcam, ab46540). The nuclei were incubated with pri-
mary antibody for 2 h at 25 °C on ThermoMixer C with mixing fre-
quency at 1600 rpm. The primary antibody was removed by pulling
off the liquid from the tubes after placing them on magnet stand for
1min. The nuclei were resuspended in 50 μl wash buffer supple-
mented with 0.5μl Guinea Pig anti-Rabbit secondary antibody (anti-
bodies online, ABIN101961, 1:100 dilution) and incubated for 30min
at 25 °C on ThermoMixer C. After removing secondary antibody, the
nuclei were washed once using 500μl wash buffer and then resus-
pended in 50μl wash buffer containing 300mM NaCl and 3 μl pA-
Hia5. After incubation with pA-Hia5 protein for 1 h, the nuclei were
washed 3 times using wash buffer with 300mM NaCl and then
resuspended in 1 × methyltransferase reaction buffer supplemented
with 160μMS-adenosyl-methionine. The reactions were incubated at
37 °C for 2 h and then for an additional 2 h at 55 °C after adding 0.5μl
of 10% SDS, 1.7 μl 0.5M EDTA and 1 μl 20mg/ml proteinase K
(ThermoFisher Scientific, 25530049) to each sample. All samples
were mixed with 0.5μl RNase A (ThermoFisher Scientific, EN0531)
and incubated for 30min at 37 °C. After pooling all samples together,
the DNA was purified using Nanobind CBB Big DNA Kit (Circulomics,
SKU NB-900-001-01) according to the manufacturer’s protocol.

Data generation for training model
Genomic DNA from HepG2 cells and from E. coli K12 MG1655 (ATCC,
47076) was extracted using Nanobind CBB Big DNA Kit (Circulomics,
SKU NB-900-001-01). Purified genomic DNA was sheared to a frag-
ment of ~10 kb using Covaris g-TUBE (Covaris, 520079), and the
fragmented DNA was end-repaired and dA-tailed by combining ~1 μg
DNA with NEBNext FFPE DNA Repair Mix (NEB, M6630S) and Ultra II
End-prep/dA-Tailing enzyme mix (NEB, E7546S). Samples were
mixed, placed on a thermo cycler using the end repair program
(5min at 20 °C, 5min at 65 °C, then hold at 4 °C) and then cleaned up
using 1× v/v AMPure XP beads (Beckman Coulter, A63881). PCR
adapters were ligated to the fragmented DNA using NEB Blunt/TA
Ligase followed by 14 cycles of PCR amplification according to
Nanopore Protocol of PCR Sequencing Kit (ONT, SQK-PSK004). The
experimental procedure from Lee et al. was followed in order to
obtain DNA samples with near-complete CpG methylation using M.
SssI enzyme (NEB, M0226L)13. In contrast to near-complete CpG
methylation, we intentionally obtained DNA samples with partially
methylated adenines using home-made pA-Hia5 protein, as well as
DNA samples with near-complete CpG methylation and partial ade-
nine methylation using pA-Hia5 or/and M. SssI enzyme: First, ~1 μg
amplicons were either incubated with 10 μl pA-Hia5 in 1× methyl-
transferase reaction buffer supplemented with 160 μM S-adenosyl-
methionine, or incubated with 8 units M. SssI in NEBuffer 2 supple-
mented with 160 μM S-adenosyl-methionine for 2 h at 37 °C. Second,
after being cleaned up using MinElute PCR purification, ~1 μg ampli-
cons with methylated adenine were re-incubated with 10 μl pA-Hia5
and that with methylated CpG were re-incubated with 8 units M. SssI
for an additional 2 h at 37 °C. Last, ~1 μg amplicons with 2 cycles of M.
SssI treatment were incubated with 10 μl pA-Hia5 for an additional 2
cycles as described above. The untreated amplicons, amplicons with
2 cycles of adenine methylation, 2 cycles of CpG methylation, or 2
cycles of CpG methylation + 2 cycles of adenine methylation were
subjected to nanopore sequencing.
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Nanopore sequencing
The nanopore sequencing library from purified genomic DNA was
prepared according to the protocol in the genomic DNA by ligation kit
(ONT, SQK-LSK109). First, approximately 3μg genomic DNA was
sheared using g-TUBE by centrifugation at 3400g (eppendorf cen-
trifuge 5424 R) for 1min and then an additional 1min after inverting
the tube to achieve a fragment length of ~10 kb. The fragmented DNA
was repaired and dA-tailed as described above. Sequencing adaptors
bound by motor proteins were ligated to the repaired and dA-tailed
DNA using Quick T4 DNA Ligase (NEB, E6056S), and then the DNA
together with bound protein were pulled downby 0.4× v/v AMPure XP
beads and cleaned up 2 times using Long Fragment Buffer (LFB) from
sequencing kit. ~400 ng adaptor-ligated DNA was loaded onto each
FLO-MIN106D flow cell (ONT, 11001832), which was run on MinION
Mk1b sequencer for 72 h. Data were collected by MinKNOW v4.1.22.

Nanopore sequencing data preprocessing
Basecalling was performed using Guppy v4.4.2 with the “high accu-
racy” model. Individual reads were aligned to hg19 human reference
genome by Minimap2 v2.17 with default settings33. The breadth and
depth of nanoHiMe-seq coverge for H3K27me3 and H3K4me3 were
presented in Supplementary Fig. 4c and Supplementary Data 2. The
alignment of the electric current events to k-mers of a known substring
from the referencegenomewasobtainedusing nanopolish v0.13.2. For
training and testing data, the event alignment was further optimized
using Viterbi algorithm (see Model training for details).

Training of model parameters using SignalAlign v0.3.0
SignalAlign model training was performed using script “trainModel-
s.py” with the following settings: probability_threshold: 0.8, number_-
of_kmer_assignments: 10, training_bases: 10000, transitions: false,
normal_emissions: true, hdp_emissions: true, expectation_maximiza-
tion: false, em_iterations: 2. 10,000 ONT sequencing reads from each
of PCR+ M.SssI+ Hia5-, PCR+ M.SssI- Hia5+ and PCR+ M.SssI+ Hia5+ data-
sets were randomly selected as input data for training of model para-
meters. The output “hmm models” were used as the
“template_hmm_model” for next iteration. The iteration stoped when
the parameters of individual k-mers in “hmm models” became
constant.

Haplotype assignment and allele-specific analysis of DNA
methylation, H3K4me3 and H3K27me3
HG002 nanopore fast5 files (https://s3-us-west-2.amazonaws.com/
human-pangenomics/index.html?prefix=NHGRI_UCSC_panel/HG002/
nanopore/) were base-called using Guppy v4.4.2 with the “high accu-
racy” model. Individual reads were aligned to human reference gen-
ome HG19 by Minimap2 v2.17 with default settings and the mapped
reads were used to re-train PEPPER and DeepVariant models by fol-
lowing the instructions. We used PEPPER-Margin-DeepVariant (version
0.8.0) with the trained models to identify single-nucleotide poly-
morphisms (SNPs) and INDELs from the nanoHiMe-seq reads align-
ments to the hg19 reference. We used hap.py version v0.3.12 to assess
the variant calls against GIAB truth set (NIST v3.3.2/GRCh37, GM12878
cell) or the dataset (HepG2 cell) obtained by Zhou et al.18. The resulting
phase block lengths, switch error rate and hamming error rate were
listed in Supplementary Data 4. We used Margin version v2.2 and
WhatsHap version v1.4 to haplotag and phase the variants. The hap-
lotagged nanopore reads were grouped in individual CGIs, H3K4me3
or H3K27me3 peaks and the regions with reads coverage ≥20 were
selected for the following analysis. The number of CpG methylation
calls and unmethylation calls on grouped reads in each CGI was
recorded and used to evaluate allele-specific methylation through
Fisher’s exact test. In addition, the grouped reads overlapping
H3K4me3 or H3K27me3 peak regions were segmented into non-
overlapping 250bp windows, and the windows located in each peak

region were categorized into two groups: the ones harboring 6mA(s)
and the ones don’t. A bootstrap procedurewas applied by sampling 30
250-bp-windows for each bootstrap replication from every allele and
the number of windows containing 6mA(s) was recorded. The boot-
strapped distribution was generated by considering 100 bootstrap
replications and two-sided Fisher’s exact test was used to evaluate
allele-specific enrichment of 6mA-containing regions. The statistical
significance was corrected for multiple hypotheses using Benjamini-
Hochberg approach and the statistically significant results (p <0.01)
were selected using a target false discovery rate of 10%.

Classification of methylation sites with Megalodon
Fast5 files weremodification basecalled withMegalodon (v2.5.0) using
model res_dna_r941_min_modbases-all-context_v001.cfgwith --outputs
mod_mappings. The output mod_mappings.bam files were used to
compute methylation probability of every CpG or A site in each read.
When calling adeninemethylation,modification basecalled reads were
smoothed by calculating rolling average overwindows ranging from 12
to 100 bp in a NaN-sensitive manner (averaging only over ade-
nine bases).

Model training
hidden Markov model. As previous studies10,15,16, a hidden Markov
model was used to calculate the probability of observing a sequenceof
current events e1, …, en from nanopore sequencing device under the
assumption of that the true nucleotides sequence is S. A block of states
were constructed for every k-mer of S, includingmatch, skip, bad, and
softclip states, and a self-transition was allowed for thematch state to
account for two ormultiple observations of events from a particular k-
mer. The transition probabilities in ourmodelwere also set to constant
values and the emission distributions were described in 1.25.

In this study, when a sequence of current events, e1, …, en was
observed, the likelihood of the underlying nucleotides sequence to be
S was calculated by:

LðS∣e1, . . . ,en,ΘÞ=Pðe1, . . . ,en∣S,ΘÞ ð1Þ

Where Θ is the model parameters of the emission distributions of
individual k-mers.

Emission distributions. For R9.4 data, we also followed the principles
that the probability of observing an event ei given that the true
sequence in the pore is k-mer k is modeled by a Gaussian
distribution10,34:

P ei∣k,Θ
� �

=N a+ bμk , dσk

� �2� �
ð2Þ

Here, the equation is the emission distribution for thematch state
of R9 Hidden Markov Model. a, b and d are used to define the read-
specific deviations from the reference model N (μk, σ2

k) and calculated
using the event labels of reference k-mers through linear least square
method.

Expanding the emission lexicon. There are 4096 different Gaussian
distributions provided by ONT corresponding to individual 6-mers
consisted of four standard base nucleotide alphabets (A, C, G, T). In
order to handle two types methylation, we expanded the nucleotide
alphabet from the four standard nucleotide bases to six nucleotide
bases (A, C, G, T, M, Z) with M representing 5-methylcytosine and Z 6-
methyladenine, which resulted in an increase in the number of emis-
sion distributions to 66 = 46656. Since cytosine methylation only hap-
pened in CpG dinucleotides in current study, all of the k-mers withMH
(H represents A, C and T) and MZ were invalid methylation sites, such
as TAMAGG, TAMCGG, TAMTGGand TAMZGG,whereas TAMGGGwas
a valid 6-mer. In this study, we intentionally introduced partial adenine
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methylation, which enabled us to obtain parameters of k-mers with
6mA in all possible contexts. As the partial adenine methylation made
it impossible to precisely assign the learned parameters to k-mers that
were derived from a four-letter k-mer, but containmethyladenine(s) in
different positions, such as TZCACG, TACZCG and TZCZCG, where Z
denotes6mA.Hence,we replaced suchk-mers that containmethylated
adenine(s) and share the same nucleotide bases composition and
order except A/Z by k-mer �k. For instance, the 6-mers TZCACG,
TACZCG, TZCZCG were replaced by TACACG:, and TZCAMG,
TACZMG, TZCZMG by TACAMG.

Training emission distributions. The following is the description
about how to train new parameters of the emission distributions of
individual k-mers.

We first performed basecalling using Guppy v4.4.2 with the “high
accuracy”model for the output ofMinION sequencing device and then
aligned individual reads to the reference genomeusingMinimap2with
default settings33. For the reads with mapping quality ≥20, we per-
formed initial alignment between events measured by MinION and k-
mers of reference subsequence S using nanopolish v0.13.2, after which
a collection of events was obtained for each k-mer k or �k. The collec-
tions of events were used to train new parameters of individual k-mers
as described by Simpson et al.10 and the trained new parameters were
used for the realignment of events to k-mers of substring S using
Viterbi algorithm.We iterated the process for 5 times and assigned the
parameters from the final iteration to each k-mer for the downstream
analysis in this study.

As previous study10, we also used the region from 50,000 bp to
3,250,000 bp of the E. coli K12 MG1655 genome for the parameters
training. Before training, the initial parameters for unmethylated k-
mers were set to ONT-provided values. For methylated k-mers, stan-
dard deviations were increased by 2 while keeping the mean the same
as unmethylated version of such k-mer.

Fitting gaussian mixture models. Let Ek denote the sequence of
events aligned to a k-mer, and E 0

k be the sequence of transformed
events to accounts for shift and scale parameters, where
Ek = e1, . . . ,en

� �
, E 0

k = ðe01, . . . ,e0nÞ, and e0i =
ei�ai
bi

. After transformation,
the distribution of e0i follows a single gaussian model with
Pðe0iÞ=Nðμk , ððdi=biÞσÞ2Þ in absence of mCpG and 6mA. For the train-
ing dataset treated byM. SssI, which methylated nearly all cytosines in
a CpG context (96.2%), a two-component Gaussianmixturemodel was
fitted to E 0

k when k-mer k contains CpG dinucleotides; For the training
dataset obtained from pA-Hia5 or pA-Hia5 & M. SssI-treated
DNA sample, where partially methylated adenine in various posi-
tion(s) was introduced, multiple-component Gaussianmixturemodels
were applied to E 0

k , when k-mers are �k s or contain two types of
methylations (M +Z); In contrast, a two-component Gaussian mixture
model was fitted to E 0

k when k-mer k contains only one adenine.

Pðe0iÞ=
X
j

ωjNðμj ,ððdi=biÞσjÞ2Þ ð3Þ

X
j

ωj = 1

In the equation, the weight ωj either represents the proportion of
events coming from methylated or unmethylated sequence in two-
component mixture models, or represents the proportion of events
coming from a specific modification state of a sequence in multiple-
component mixture models; μj and σj are either the parameters of
Gaussian distributions for unmethylated or methylated version of k-
mer k, or the parameters of Gaussian distributions for k-mers that
constitute �k.

To use the expectation-maximization algorithm to fit ωj, μj, σj,
first, we took μk, μk ± 5, μk ± 10, σk, σk + 1 as the initial guess of the
parameters, where μk and σk are the parameters of unmethylation
version of k-mer k fromONTmodels, and 0.95 + 0.05, 0.5 + 0.3 + 0.2 or
0.25 + 0.25 + 0.25 + 0.25 as the initial value ofωj. Second, we calculated
the responsibility of the jth component of the mixture model for
observing events ei:

Expectation step

γ̂i,j =
ωjϕΘ̂j

ei
� �

P
j
ωjϕΘ̂j

ei
� � ð4Þ

Last, we updated the estimates for weights and parameters
as below:

Maximization step

ω̂j =

Pn
i= 1γ̂i,j
n

ð5Þ

μ̂j =

Pn
i= 1γ̂i,je

0
iPn

i= 1γ̂i,j
ð6Þ

σ̂2
j =

Pn
i = 1γ̂i,j ðe0i � μ0

jÞ bi
di

� �2

Pn
i = 1γ̂i,j

ð7Þ

Different sets of initial parameters were tried for a k-mer con-
taining methylated base(s). Expectation step and maximization step
were iterated until convergence or iterated 1000 times if convergence
didn’t happen for that set of initial parameters. For two-component
Gaussian mixture model, if two components were finally determined
and the parameters were consistent among all or parts of final itera-
tions, themeanwith larger differences fromONTmodel mean and the
companioned standard deviation were assigned to k-mer k with
methylated site(s). For example, if μ̂1, μ̂2, σ̂1 and σ̂2 were consistent
among all or parts of the final iterations and ∣μ̂1 � μref ∣>∣μ̂2 � μref ∣,
then the consistent values of μ̂1 and σ̂1 from the final iteration were
assigned to be the parameters of methylated k-mer k; if only one
component was finally determined and the parameters were con-
sistent, then the set of the parameters were assigned to methylated k-
mer k. For multiple-component Gaussian mixture model, the compo-
nent number was initially guessed based on the distribution of e0i from
a k-mer and the parameters from final iterations with mean not equal
to the reference mean of unmodified version of k-mer kwere assigned
to k-mer �k or k with two types of methylation. For example, three
means and standard deviations (μ̂1, μ̂2, μ̂3, σ̂1, σ̂2, σ̂3) were obtained for
a k-mer �k from the final iteration.When trying different initial guess for
k-mer �k, the obtained parameters from the final iterations were con-
sistent. If μ̂1 was the same with reference mean of unmodified version
k-mer k, then we assigned the values of μ̂2, μ̂3, σ̂2 and σ̂3 from the final
iteration to k-mer �k.

Classification of methylation sites. The following is the description
about calling CpG methylation and 6mA-containing sites in individual
nanopore reads from nanoHiMe-seq using our trained model.

For classification of CpG site(s), we also constructed substring SR,
which harbors one or multiple CpG dinucleotides and at least 10 bp
CpG free sequences on both sides, and jointly tested CpGs for
methylation in each SR from individual reads10. As to adenines, we used
50 bp sliding windows for the classification and, instead of assessing
which adenines in a window was methylated or unmethylated, we
evaluated whether the window contained methylated adenine(s) or
not. We used log likelihood ratio to call a CpG or a group of CpGs as
methylated or unmethylated, as well as to call a 50-bp window as a
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6mA-containing segment or non-6mA segment. For the substrings
containing both adenine(s) and CpG(s), we calculated the likelihood
for combinations of being methylated or unmethylated (no methyla-
tion - ref 1, all CpGs methylated - ref 2, 6mA-containing - ref 3, all CpGs
methylated&6mA-containing - ref 4), using hiddenMarkovmodelwith
the parameters trained above. We calculated a log likelihood ratio for
callingCpGmethylation by summing the likelihoods of sequenceswith
methylated CpG(s) or unmethylated CpG(s). We did calculation in the
same way for calling 6mA-containing sites:

LLRðSM Þ=
X
i

log max
θ2Θ

L Si∣e1, . . . ,en,Θ
� �� �

�
X

j
log max

θ2Θ
L Sj ∣e1, . . . ,en,Θ
� �� � ð8Þ

Where i is ref 2 and ref 4, j is ref 1 and ref 3 for calling CpGmethylation; i
is ref 3 and ref 4, j is ref 1 and ref 2 for calling 6mA-containg sites. The set
of parameters that resulted in maximum likelihood of observing
substrings with methylated CpG(s) and/or 6mA(s) were selected for
the calculationwhenmultiple trained sets of parameterswere available
for a k-mer. Throughout the text, we set a threshold of 1.5 to call
methylatedCpGs and−1.5 to call unmethylatedCpGs, and set 8 or 32 to
call a 50bp segment as a 6mA-containing or non-6mA window.

Exploring H3K4me3/3K27me3 marked regions from nanoHiMe-
seq data. For nanoHiMe-seq data generated using antibody against
H3K4me3 or H3K27me3, we used the threshold of 8 or 32 to call 6mA-
containing sites in 50 bpwindows. The analysis was also performed for
the data generated from IgG and the 6mA-containing site called from
IgGdata were used for background correction in every segment across
the genome:

Rf =Rs � sf *Rb ð9Þ

sf =Cs=Ci ð10Þ
sf means scaling factor; Cs means the coverage depth of the segment
by the H3K4me3 or H3K27me3 nanoHiMe-seq data; Ci means the
coverage depth of the corresponding segment by IgG data; Rf means
number of predicted 6mA-containing sites after background correc-
tion; Rs means the number of predicted 6mA-containing sites in
H3K4me3 or 3K27me3 nanoHiMe-seq data; Rb means the number of
predicted 6mA-containing sites in IgG data.

Statistics and reproducibility
Unmapped sequencing reads were discarded in analysis, otherwise no
data were excluded from the analyses. Two-sided Fisher’s exact test
was used to evaluate allele-specific enrichment of 6mA-containing
regions and allele-specific CpGmethylation. The statistical significance
was corrected for multiple hypotheses using Benjamini–Hochberg
approach and the statistically significant results (p <0.01) were selec-
ted using a target false discovery rate of 10%.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the European Nucleotide Archive (ENA) under accession number
PRJEB47152. The minimum datasets that are necessary to interpret,
verify and extend our research have been deposited in the Zenodo
(https://doi.org/10.5281/zenodo.7388709). The relevant processed
data are included as Supplementary Information and Source Data. The

HepG2 ChIP-seq data used in this study are from Encyclopedia of DNA
Elements (ENCODE) with accession number ENCFF223BZS,
ENCFF632WJV and ENCFF712HMU for H3K4me3 peak information;
ENCFF554AJT, ENCFF942HPS, ENCFF833HZR, ENCFF447EJD,
ENCFF663ZBD, and ENCFF053ZWM for alignment information of
individual sequencing reads from H3K4me3 ChIP-seq experiments;
ENCFF546TJV and ENCFF950VUB for H3K27me3 peak information;
ENCFF591ZGI, ENCFF502ALT, ENCFF730WFM, and ENCFF560BZE for
alignment information of individual sequencing reads fromH3K27me3
ChIP-seq experiments. Whole-genome Bisulfite Sequencing (WGBS)
data are from ENCODE with accession number ENCFF847OWL,
ENCFF390OZB, ENCFF064GJQ, and ENCFF369YQW. The active pro-
moters used are selected based onHepG2 RNA-seq data from ENCODE
under accession number ENCSR000CPC, ENCSR000CPE, and
ENCSR000CPF. Source data are provided with this paper.

Code availability
Source code for analysis is available at https://github.com/YinLabTJ/
nanoHiMe.
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