Table 1 Summary of the time dependence of Fn(τ) for the three classes of RWs—recurrent, marginal, and transient

From: Universal exploration dynamics of random walks

 

tn

Tn

1 τtn

tnτTn

Tnτ

μ < 1 [recurrent]

n1/μ

n1/μ

τ−(1+μ) ≡ τ−(2−θ)

 

\(\exp \left[-{{{{{{{\rm{const}}}}}}}}\,\tau /{n}^{1/\mu }\right]\)

μ = 1 [marginal]

\(\sqrt{n}\)

n3/2

τ-(1+μ)τ-(2-θ)

\(\exp \big[-{{{{{{{\rm{const}}}}}}}}{\left(\tau /{t}_{n}\right)}^{\mu /(1+\mu )}\big]\)

\(\exp \left[-{{{{{{{\rm{const}}}}}}}}\,\tau /{n}^{1/\mu }\right]\)

μ > 1 [transient]

1

n(μ+1)/μ

 

\(\exp \big[-{{{{{{{\rm{const}}}}}}}}{\left(\tau /{t}_{n}\right)}^{\mu /(1+\mu )}\big]\)

\(\exp \left[-{{{{{{{\rm{const}}}}}}}}\,\tau /{n}^{1/\mu }\right]\)

  1. The constants are independent of n and τ. The crossover times tn and Tn are given up to logarithmic prefactors. The time regimes identified in the last three columns are the same as the ones presented in Fig. 2. The persistence exponent θ is here given by θ = 1 − μ, see text.