Table 2 SC orders in the mean-field analysis
R | Pairing in 1 × 1 unit cell | Pairing in 2 × 2 unit cell \({\hat{\Gamma }}_{R}({{{{{{{\boldsymbol{k}}}}}}}})\) | Label | Basis function |
---|---|---|---|---|
Ag | \(\frac{1}{\sqrt{3}}{\lambda }_{0},\frac{1}{\sqrt{2}}\left[\frac{\sqrt{3}}{2}{\lambda }_{7}+\frac{1}{2}{\lambda }_{8}\right],\) | \(\frac{1}{\sqrt{3}}{L}_{0}^{0},\frac{1}{\sqrt{2}}\left[\frac{\sqrt{3}}{2}{L}_{7}^{0}+\frac{1}{2}{L}_{8}^{0}\right],\) | \({\Gamma }_{{A}_{g}}^{(1)},{\Gamma }_{{A}_{g}}^{(2)},\) | x2, y2, z2 |
 | \(\frac{1}{\sqrt{2}}\left[{c}_{1}{\lambda }_{1}+{c}_{2}{\lambda }_{2}\right]\), | \(\frac{1}{\sqrt{2}}\left[{c}_{1}{L}_{1}^{+}+{c}_{2}{L}_{2}^{+}-({s}_{1}{L}_{4}^{-}+{s}_{2}{L}_{5}^{-})\right],\) | \({\Gamma }_{{A}_{g}}^{(3)},\) |  |
 | c3λ3 | \(\left[{c}_{3}{L}_{3}^{+}-{s}_{3}{L}_{6}^{-}\right]\) | \({\Gamma }_{{A}_{g}}^{(4)}\) |  |
B1g | \(\frac{1}{\sqrt{2}}\left[-\frac{1}{2}{\lambda }_{7}+\frac{\sqrt{3}}{2}{\lambda }_{8}\right],\) | \(\frac{1}{\sqrt{2}}\left[-\frac{1}{2}{L}_{7}^{0}+\frac{\sqrt{3}}{2}{L}_{8}^{0}\right],\) | \({\Gamma }_{{B}_{1g}}^{(1)},\) | xy |
 | \(\frac{1}{\sqrt{2}}\left[{c}_{1}{\lambda }_{1}-{c}_{2}{\lambda }_{2}\right]\) | \(\frac{1}{\sqrt{2}}\left[{c}_{1}{L}_{1}^{+}-{c}_{2}{L}_{2}^{+}-({s}_{1}{L}_{4}^{-}-{s}_{2}{L}_{5}^{-})\right]\) | \({\Gamma }_{{B}_{1g}}^{(2)}\) |  |
B2u | \(\frac{1}{\sqrt{2}}\left[{s}_{1}{\lambda }_{4}-{s}_{2}{\lambda }_{5}\right]\) | \(\frac{1}{\sqrt{2}}\left[{s}_{1}{L}_{4}^{+}-{s}_{2}{L}_{5}^{+}-({c}_{1}{L}_{1}^{-}-{c}_{2}{L}_{2}^{-})\right]\) | \({\Gamma }_{{B}_{2u}}^{(1)}\) | y |
B3u | \(\frac{1}{\sqrt{2}}\left[{s}_{1}{\lambda }_{4}+{s}_{2}{\lambda }_{5}\right],\) | \(\frac{1}{\sqrt{2}}\left[{s}_{1}{L}_{4}^{+}+{s}_{2}{L}_{5}^{+}+({c}_{1}{L}_{1}^{-}+{c}_{2}{L}_{2}^{-})\right],\) | \({\Gamma }_{{B}_{3u}}^{(1)},\) | x |
 | s3λ6 | \(\left[{s}_{3}{L}_{6}^{+}-{c}_{3}{L}_{3}^{-}\right]\) | \({\Gamma }_{{B}_{3u}}^{(2)}\) |  |