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A spectral method for assessing and com-
bining multiple data visualizations

Rong Ma 1, Eric D. Sun2 & James Zou 2

Dimension reduction is an indispensable part of modern data science, and
many algorithms have been developed. However, different algorithms have
their own strengths and weaknesses, making it important to evaluate their
relative performance, and to leverage and combine their individual strengths.
This paper proposes a spectral method for assessing and combining multiple
visualizations of a given dataset produced by diverse algorithms. The pro-
posed method provides a quantitative measure – the visualization eigenscore
– of the relative performance of the visualizations for preserving the structure
around each data point. It also generates a consensus visualization, having
improved quality over individual visualizations in capturing the underlying
structure. Our approach is flexible and works as a wrapper around any visua-
lizations. We analyze multiple real-world datasets to demonstrate the effec-
tiveness of the method. We also provide theoretical justifications based on a
general statistical framework, yielding several fundamental principles along
with practical guidance.

Data visualization and dimension reduction is a central topic in sta-
tistics and data science, as it facilitates intuitive understanding and
global views of high-dimensional datasets and their underlying struc-
tural patterns through a low-dimensional embedding of the data1,2. The
past decades have witnessed an explosion in machine learning algo-
rithms for data visualization and dimension reduction. Many of them,
such as Laplacian eigenmap3, kernel principal component analysis
(kPCA)4, t-SNE5, andUMAP6, have been regarded as indispensable tools
and state-of-art techniques for generating graphics in academic and
professional writings7, and for exploratory data analysis and pattern
discovery in many research disciplines, such as astrophysics8, com-
puter vision9, genetics10, molecular biology11, especially in single-cell
transcriptomics12, among others.

However, the wide availability and functional diversity of data
visualizationmethods alsobrings forth new challenges to data analysts
and practitioners13,14. On the one hand, it is critically important to
determine among the extensive listwhich visualizationmethod ismost
suitable and reliable for embedding a given dataset. In fact, even for a
single visualization method, such as t-SNE or UMAP, oftentimes there
are multiple tuning parameters to be determined by the users, and
different tuning parameters may lead to distinct visualizations15,16.

Thus, for a given dataset, selecting the most suitable visualization
method and along with its tuning parameters calls for a method that
provides quantitative and objective assessment of different visualiza-
tions of the dataset. On the other hand, as different methods are
usually based on distinct ideas and heuristics, they would generate
qualitatively diverse visualizations of a dataset, each containing
important features about the data that are possibly unique to the
visualization method. Meanwhile, due to the noisiness and high-
dimensionality of many real-world datasets, their low-dimensional
visualizations necessarily contain distortions from the underlying true
structures,which againmayvary fromone visualization to another. It is
therefore of substantial practical interest to combine strengths and
reach a consensus among multiple data visualizations, in order to
obtain an even better meta-visualization of the data that captures the
most information and is least susceptible to the distortions. Naturally,
a meta-visualization would also save practitioners from painstakingly
selecting a single visualization method among many.

Quantitative assessment of dimension reduction and data visua-
lization algorithms have been studied extensively. For example, many
evaluation methods are based on distortion measures from metric
geometry17–20, whereas some other methods rely on information-

Received: 26 July 2022

Accepted: 3 February 2023

Check for updates

1Department of Statistics, Stanford University, Stanford, CA, USA. 2Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
e-mail: jamesz@stanford.edu

Nature Communications |          (2023) 14:780 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0002-9248-8503
http://orcid.org/0000-0001-8880-4764
http://orcid.org/0000-0001-8880-4764
http://orcid.org/0000-0001-8880-4764
http://orcid.org/0000-0001-8880-4764
http://orcid.org/0000-0001-8880-4764
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36492-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36492-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36492-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36492-2&domain=pdf
mailto:jamesz@stanford.edu


theoretic precision-recall measures21,22, co-ranking structure23, or
graph-based criteria16,24. See also recent reviews by Bertini et al.25,
Nonato and Aupetit13 and Espadoto et al.14. However, most of these
existing methods evaluate data visualizations by comparing them
directly with the original dataset, without accounting for its noisiness.
The thus obtained assessment may suffer from intrinsic bias due to
ignorance of the underlying true structures, only approximately
represented by the noisy observations.

Compared to the quantitative assessment of data visualizations,
there is a scarcity of meta-visualization methods that combine
strengths ofmultiple data visualizations. Pagliosa et al.26 proposed an
interactive method that assesses and combines different multi-
dimensional projection methods via a convex combination techni-
que. However, for supervised learning tasks such as classification,
there is a long history of research on designing and developingmeta-
classifiers that combinemultiple classifiers27–31. Compared with meta-
classification, the main difficulty of meta-visualization lies in the
identification of a common space to properly align multiple visuali-
zations, or low-dimensional embeddings, whose scales and coordi-
nate bases may drastically differ from one to another. Moreover,
unlike many meta-classifiers, which combines presumably indepen-
dent classifiers trained over different datasets, a meta-visualization
procedure typically relies on multiple visualizations of the same
dataset, and therefore has to deal with more complicated correlation
structure among the visualizations. The current study provides the
first meta-visualization method that can flexibly combine any num-
ber of visualizations, and has interpretable and provable perfor-
mance guarantee.

Here we present a spectral method for assessing and combining
multiple visualizations of a given dataset produced by diverse algo-
rithms, allowing for different settings of tuning parameters for indi-
vidual algorithms. The proposed method provides a quantitative
measure – the visualization eigenscore–of the relative performanceof
the visualizations for preserving the structure around each data point.

It also generates a consensus visualization, having improved quality
over individual visualizations in capturing the underlying structure.
Our approach is flexible and works as a wrapper around any visuali-
zations. In particular, our approach only needs access to the low-
dimensional embeddings rather than the rawdata; as a result, the users
can use ourmethod even if they don’t have access to the original data,
which is often the case.

Results
Overview of the method
Specifically, the proposed method takes as input a collection of
visualizations, or low-dimensional embeddings of a dataset, here-
after referred as candidate visualizations, and summarizes each
visualization by a normalized pairwise-distance matrix among the
samples. With respect to each sample in the dataset, we construct a
comparison matrix from these normalized distance matrices, char-
acterizing the local concordance between each pair of candidate
visualizations. Based on eigen-decomposition of the comparison
matrices, we propose a quantitative measure, referred as visualiza-
tion eigenscore, that quantifies the relative performance of the
candidate visualizations in a sample-wise manner, reflecting their
local concordance with the underlying low-dimensional structure
contained in the data. To obtain a meta-visualization, the candidate
visualizations are combined together into a meta-distance matrix,
defined as a row-wise weighted average of those normalized distance
matrices, using the corresponding eigenscores as the weights. The
meta-distance matrix is then used to produce a meta-visualization,
based on an existing method such as UMAP or kPCA, which is shown
to be more reliable and more informative compared to individual
candidate visualizations. Ourmethod is schematically summarized in
Fig. 1 and Algorithm 1, and detailed in Method section. The thus
obtained meta-visualization reflects a joint perspective aggregating
various aspects of the data that are oftentimes captured separately
by individual candidate visualizations.

Fig. 1 | A graphical illustration of the proposed method. The algorithm takes as
input the normalized pairwise distance matrices associated to a collection of can-
didate visualizations (viz1 to viz4) of a dataset. For each sample of the dataset, we
compute the similarity matrix between the rows of the normalized distance
matrices associated to the sample (rows highlighted in the same color), and then
define the corresponding eigenscores as the first eigenvector of the similarity

matrix. The size of the circles in the similarity matrices and the vectors of eigen-
scores indicate the magnitude of the entries (assumed to be non-negative). The
meta-distance matrix is defined such that its rows are the eigenscore-weighted
averageof the rows in the normalizeddistancematrices. Themeta-distance leads to
a meta-visualization, expected to be more concordant with the underlying true
structure than individual candidate visualizations.
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Numerically, through extensive simulations and analysis of mul-
tiple real-world datasets with diverse underlying structures, we show
the effectiveness of the proposed eigenscores in assessing and ranking
a collection of candidate visualizations, and demonstrate the super-
iority of the final meta-visualization over all the candidate visualiza-
tions in terms of identification and characterization of these structural
patterns. To achieve a deeper understanding of the proposedmethod,
we also develop a formal statistical framework, that rigorously justifies
the proposed scoring and meta-visualization method, providing the-
oretical insights on the fundamental principles behind the empirical
success of the method, along with its proper interpretations, and
guidance on practice.

The main features of the method can be summarized as follows:
• We propose a computationally efficient spectral method for

assessing and combining multiple data visualizations. The
method is generic and easy to implement: it does not require
knowledge of the original dataset, and can be applied to a large
number of data visualizations generated by diverse methods.

• For any collection of visualizations of a dataset, our method
provides a quantitative measure – eigenscore – of the relative
performance of the visualizations for preserving the structure
around each data point. The eigenscores are useful on their own
rights for assessing the local and global reliability of a visuali-
zation in representing the underlying structures of the data, and
in guiding selection of hyper-parameters.

• The proposed method automatically combines strengths and
ameliorates weakness (distortions) of the candidate visualiza-
tions, leading to a meta-visualization, which is provably better
than all the candidate visualizations under a wide range of set-
tings. We show that the meta-visualization is able to capture
diverse intrinsic structures, such as clusters, trajectories, and
mixed low-dimensional structures, contained in noisy and high-
dimensional datasets.

• We establish rigorous theoretical justifications of the method
under a general signal-plus-noise model in the large-sample
limit. We prove the convergence of the eigenscores to certain
underlying true concordance measures, the guaranteed perfor-
mance of the meta-visualization and its advantages over
alternative methods, its robustness against possible adversarial
candidate visualizations, along with their conditions, interpreta-
tions, and practical implications.

Simulation Studies: Visualizing Noisy Low-Dimensional
Structures
To demonstrate the wide range of applicability and the empirical
advantage of the proposedmethod, we consider visualization of three
families of noisy datasets, each containing a distinct low-dimensional
structure as its underlying true signal. We assess performance of the
eigenscores and the quality of the resulting meta-distance matrix
based on 16 candidate visualizations produced by multiple visualiza-
tion methods.

For a given sample size n, we generate p-dimensional noisy
observations fYig1≤ i ≤n from the signal-plus-noise model Yi =Y

*
i +Zi,

where fY*
i g1 ≤ i≤n are the underlying noiseless samples (signals), and

fZig1≤ i ≤n are the random noises. Specifically, we generate true signals
fY*

ig1≤ i≤n from various low-dimensional structures isometrically
embedded in the p-dimensional Euclidean space. Each of the low-
dimensional structures lie in some r-dimensional linear subspace, and
is subject to an arbitrary rotation in Rp, so that these signals are
generally p-dimensional vectors with dense (nonzero) coordinates.
Then we generate i. i. d. noise vector Zi from the standardmultivariate
normal distribution N ð0,IpÞ, and use the p-dimensional noisy vector
Yi =Y

*
i +Zi as the final observed data. In this way, we simulated noisy

observations fYig1 ≤ i≤n of an intrinsically r-dimensional structure. For
our simulations, for some given signal-to-noise ratio (SNR) parameter

θ >0,we generate fY*
i g1≤ i ≤n uniformly fromeachof the following three

structures:
(i) Finite point mixture with r = 5: fY*

i g1≤ i ≤n are independently
sampled from the discrete set fγ1,γ2,:::,γr + 1g � Rp with equal
probability, where γi’s are arbitrary orthogonal vectors in Rp

with the same length, i.e., ∥γi∥2 = θ for 1 ≤ i ≤ r + 1.
(ii) Smiley face with r = 2: fY*

ig1≤ i ≤n are generated independently
and uniformly from a two-dimensional smiley face structure
(Supplementary Fig. 1 left) of diameter θ, isometrically
embedded inRp and subject to an arbitrary rotation.

(iii) Mammoth manifold with r = 3: fY*
ig1≤ i ≤n are generated inde-

pendently uniformly from a three-dimensional mammoth
manifold (Supplementary Fig. 1 right) of diameter θ, isome-
trically embedded in Rp and subject to an arbitrary rotation.

The thus generated datasets cover diverse structures including
Gaussian mixture clusters (i), mixed-type nonlinear clusters (ii), and a
connected smoothmanifold (iii). As a result, the first family of datasets
was set to have p = 500 and n = 900, and were obtained by fixing var-
ious values of the SNR parameter θ, and generating Y*

i 2 Rp from the
above setting (i) to obtain the noisy dataset fYig1 ≤ i≤n as described
above. Similarly, the second and the third families of datasets were
obtained by drawing Y*

i 2 Rp from the above settings (ii) and (iii),
respectively, and generating datasets fYig1≤ i≤n with p = 300 and
n = 500, for various values of θ.

For each dataset fYig1≤ i ≤n, we consider 12 existing data visuali-
zation tools including principal component analysis (PCA), multi-
dimensional scaling (MDS), Kruskal’s non-metric MDS (iMDS)32, Sam-
mon’s mapping (Sammon)33, locally linear embedding (LLE)34, Hessian
LLE (HLLE)35, isomap36, kPCA, Laplacian eigenmap (LEIM), UMAP, t-SNE
and PHATE37. Formethods such as kPCA, t-SNE,UMAP and PHATE, that
require tuning parameters, we consider two different settings (Sup-
plementary file Section A.2) of tuning parameters for each method,
denoted as kPCA1 and kPCA2, etc. Therefore, for each dataset we
obtain K = 16 candidate visualizations corresponding to different
combinations of visualization tools and tuning parameters. Applying
our proposed method, we obtain eigenscores fbsig1≤ i ≤n for the candi-
date visualizations. We also compare twometa-distances based on the
16 visualizations, which are, the proposed spectral meta-distance
matrix (meta-spec) based on the eigenscores, and the naive meta-
distance matrix (meta-aver) assigning equal weights to all the candi-
date visualizations, as in (4).

To evaluate the proposed eigenscores, for each setting and each

i∈ {1, 2, . . . , n}, we compute cosffðbsi,siÞ : = ðbsiÞ>si
kbsik2ksik2, for the angle

between the eigenscores bsi (see Methods) and the true local con-
cordance si defined as

si : = ðð�P
ð1Þ
i: Þ

>
�P
*
i:,ð�P

ð2Þ
i: Þ

>
�P
*
i:,:::,ð�P

ðKÞ
i: Þ

>
�P
*
i:Þ 2 RK , ð1Þ

where �P
*
i: is the i-th row of the normalized distance matrix �P

*
for the

underlying noiseless samples fY*
i g1≤ i≤n, defined as in (9) with XðkÞ

i ’s
replaced byY*

i ’s. Table 1 shows empiricalmean and standard error (SE)
of the averaged cosines 1

n

Pn
i = 1 cosffðbsi,siÞ, over the family of datasets

under the same low-dimensional structure associatedwith various θ as
shown in Fig. 2a. Our simulations showed that cosffðbsi,siÞ≈1, indicating
that the eigenscores bsi essentially characterize the true concordance
between the patterns contained in each candidate visualization and
that of the underlying noiseless samples, evaluated locallywith respect
to sample i. This justifies the proposed eigenscore as a precisemeasure
of performance of the candidate visualizations in preserving the
underlying true signals.

To assess the quality of two meta-distance matrices, for each

dataset, we compare the mean concordance 1
n

Pn
i= 1 ð�P

ðkÞ
i: Þ

>
�P
*
i: between
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the normalized distance of each candidate visualization and that of
the underlying noiseless samples, and the mean concordance
1
n

Pn
i= 1 ð�P

m
i: Þ

>�P
*
i: between the obtained meta-distance and that of the

underlying noiseless samples (see Methods). Figure 2a and Supple-
mentary Fig. 2 show boxplots of these mean concordances for the 16
candidate visualizations and the two meta-distances under each
setting of underlying structures across various values of θ. We
observe that for each of the three structures, our proposed meta-

distance is substantially more concordant with the underlying true
patterns, than every candidate visualization and the naive meta-dis-
tance, indicating the superiority of the proposed meta-distance. To
further demonstrate the advantage of the spectral meta-distance and
its benefits to the final meta-visualization, we compared our pro-
posed meta-visualization using UMAP, and candidate visualizations
of a dataset under setting (i) with θ = 5, and present their sample-wise

concordance fð�PðkÞ
i: Þ

>
�P
*
i:g1≤ i ≤n for each k, and fð�Pm

i: Þ
>�P

*
i:g1≤ i ≤n of the

Table 1 | Empirical mean and standard error (SE) of the averaged cosines 1
n

Pn
i = 1 cosffðbsi,siÞ, between the eigenscores and the

true concordance measures, over each family of datasets associated with a given low-dimensional structure under various
values of the SNR parameter θ

Low-Dimensional Structure Gaussian mixture Smiley face Mammoth

Simulation Setting (n,p) = (900, 500) (n,p) = (500, 300) (n,p) = (500, 300)

Empirical Mean (SE) 0.992 (10−5) 0.986 (10−5) 0.990 (10−5)

Fig. 2 | Results from simulation studies. a Boxplots (center line, median; box
limits, upper and lower quartiles; points, outliers) of the mean concordance with
the underlying true pattern for 15 candidate visualizations (HLLE omittted due to
very low concordance) and the two meta-distance matrices under each simula-
tion setting (Left: n = 900 independent samples generated from the Gaussian
mixture model; Middle: n = 500 independent samples generated from the smiley
face model; Right: n = 500 independent samples generated from the mammoth
model) across various values of the SNR value θ. See Supplementary Fig. 2 for

complete plots. b Results for n = 900 independent samples generated under the
Gaussian mixture model. Top: examples of candidate visualizations along with
their sample-wise concordance fð�PðkÞ

i: Þ
>
�P
*
i:g1 ≤ i ≤n with the structure of noiseless

samples, and the proposed meta-visualization using UMAP and the concordance
fð�Pm

i: Þ
>�P

*
i:g1 ≤ i ≤n for the proposed meta-distance. Bottom: boxplots (center line,

median; box limits, upper and lower quartiles; points, outliers) of concordance
measures as grouped by the true clusters. See Supplementary Fig. 3 for more
examples.

Article https://doi.org/10.1038/s41467-023-36492-2

Nature Communications |          (2023) 14:780 4



proposed meta-distance (Fig. 2b and Supplementary Fig. 3). We
observe that, while each individual method may capture some clus-
ters in the dataset but misses others, the proposed meta-
visualization is able to combine strengths of all the candidate
visualizations in order to capture all the underlying clusters. Finally,
to demonstrate the flexibility of our method with respect to higher
intrinsic dimension r, under the setting (i), we further evaluated the
performance of different methods for r∈ {15, 30, 50}. Supplementary
Fig. 4 shows consistent and superior performance of the proposed
method compared to the other approaches.

Visualizing clusters of religious texts
Cluster data are ubiquitous in scientific research and industrial appli-
cations.Ourfirst real data example concerns n = 590 fragments of text,
extracted from English translations of eight religious books or sacred
scripts including Book of Proverb (BOP), Book of Ecclesiastes (BOE1),
Book of Ecclesiasticus (BOE2), Book of Wisdom (BOW), Four Noble
Truth of Buddhism (BUD), Tao Te Ching (TTC), Yogasutras (YOG) and
Upanishads (UPA)38. All the text were pre-processed using natural
language processing into a 590 × 8265 Document Term Matrix that
counts frequency of 8265 atomic words, such as truth, diligent, sense,
power, in each text fragment. In other words, each text fragment was
treated as a bag of words, represented by a vector with 8265 features.
The word counts were centred and normalized before downstream
analysis.

As in our simulation studies, we still consider K = 16 candidate
visualizations generated by 12 different methods with various tuning
parameters (see Supplementary file Section A.2 for details). Figure 3a

contains examples of candidate visualizations obtained by PHATE, t-
SNE, and kPCA, whose median eigenscores were ranked top, middle
and bottom among all the visualizations (Fig. 3b), respectively. More
examples are included in Supplementary Fig. 5. In each visualization,
the samples (text fragments) were colored by their associated books,
showing how well the visualization captures the underlying clusters
of the samples. The usefulness and validity of the eigenscores in
Fig. 3b can be verified empirically, by visually comparing the clarity
of cluster patterns demonstrated by each candidate visualizations in
Fig. 3a and in Supplementary Fig. 5. Figure 3c is the proposed meta-
visualization (hereafter we used meta-spec and meta-aver to refer to
the final meta-visualizations rather than the meta-distance matrices
as in Section 2) of the samples by applying UMAP to the meta-
distance matrix, which shows substantially better clustering of the
text fragments in accordance with their sources. In addition, the
meta-visualization also reflected deeper relationship between the
eight religious books, such as the similarity between the two Hin-
duism books YOG and UPA, the similarity between Buddhism (BUD)
and Taoism (TTC), the similarity between the four Christian books
BOE1, BOE2, BOP, and BOW, as well as the general discrepancy
between Asian religions (Hinduism, Buddhism, Taoism) and non-
Asian religions (Christianity). All of these important phenomena,
while salient in our meta-visualization, only appeared vaguely in very
few candidate visualizations such as those produced by PHATE
(Fig. 3a) and UMAP (Supplementary Fig. 5).

To quantitatively evaluate the preservation of the underlying
clustering pattern, we computed for each visualization the Silhouette
indices39 with respect to the underlying true cluster membership,

Fig. 3 | Visualization of 590 fragments of texts from eight religious and biblical
books. a Three examples of candidate visualizations. The samples are marked
by eight different symbols and colors according to their associated books.
More examples are included in Supplementary Fig. 5. b Boxplots (center line,
median; box limits, upper and lower quartiles; points, outliers) of eigenscores
for all 16 candidate visualizations, each containing n = 590 samples. c The

proposed spectral meta-visualization using UMAP. d Median silhouette indi-
ces over n = 590 samples for the 16 candidate and 2 meta-visualizations. The
error bars of the meta-visualizations indicate the variability (95% confidence
interval over 50 rounds of repetitions) due to the visualization method
(UMAP) applied to the meta-distance matrix (13). Source data are provided as
a Source Data file.
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based on the normalized pairwise-distance matrices of the embed-
dings defined in (9). The Silhouette index (see Supplementary file
Section A.2 for its definition), defined for each individual sample in a
visualization,measures the amountof discrepancy between thewithin-
class distances and the inter-class distances with respect to a given
sample. As a result, for a given visualization, its Silhouette indices
altogether indicate how well the underlying cluster pattern is pre-
served in a visualization, andhigher Silhouette indices indicate that the
underlying clusters are more separate. Empirically, we observed a
notable correlation (ρ =0.679) between the median Silhouette indices
and the median eigenscores across the candidate visualizations (Sup-
plementary Fig. 6). In addition, for each candidate visualization, we
found that samples with higher Silhouette index tend to have higher
eigenscores (Supplementary Fig. 7), demonstrating the effectiveness
of eigenscores, and its benefits on the final meta-visualization. In
Fig. 3d, we show that, even taking into account the stochasticity of the
visualizationmethod (UMAP) applied to themeta-distancematrix, our
meta-visualization had the median Silhouette index much higher than
those of the candidate visualizations, as well as that of the meta-
visualization based on the naive meta-distance (meta-aver). It is of
interest to note that meta-spec was the only visualization with a posi-
tive median Silhouette index, showing its better separation of clusters
compared with other visualizations. Importantly, the proposed meta-
visualization was not sensitive to the specific visualization method
applied to the meta-distance matrices – similar results were obtained
when we replaced UMAP by PHATE, the method having the highest
median eigenscore in Fig. 3c, or t-SNE, for meta-visualization (Sup-
plementary Fig. 6).

Visualizing cell cycles
Our second real data example concerns visualization of a different low-
dimensional structure, namely, a mixture of cycle and clusters, con-
tained in the gene expression profile of a collection of mouse
embryonic stem cells, as a result of the cell cycle mechanism. The cell
cycle, or cell-division cycle, is the series of events that take place in a
cell that cause it to divide into two daughter cells. Identifying the cell
cycle stages of individual cells analyzed during development is
important for understanding its wide-ranging effects on cellular phy-
siology and gene expression profiles. Specifically, we consider a
dataset containing n = 288 mouse embryonic stem cells40, whose
underlying cell cycle stages were determined using flow cytometry
sorting. Among them, one-third (96) of the cells are in the G1 stage,
one-third in the S stage, and the rest in the G2M stage. The raw count
data were preprocessed and normalized, leading to a dataset consist-
ing of standardized expression levels of 1147 cell-cycle-related genes
for the 288 cells (Methods).

We obtained 16 candidate visualizations as before, and applied
our proposed method. Figure 4a contains examples of candidate
visualizations obtained by t-SNE, LEIM, and kPCA, whose median
eigenscores were ranked top, middle and bottom among all the
visualizations, respectively, and the cells were colored according to
their true cell cycle stages. Figure 4b contains the boxplots of eigen-
scores for the candidate visualizations, indicating the overall quality of
each visualization. The variation of eigenscores within each candidate
visualization suggests that different visualizations have their own
unique features and strengths to be contributed to the meta-
visualization (Supplementary Fig. 8). Figure 4c is the proposed meta-

Fig. 4 | Visualization of the cell cycle of 288mouse emryonic stem cells. a Three
examples of candidate visualizations. The cells are marked by three different
symbols and colors according to their associated cell cycle stages. More examples
are included in Supplementary Fig. 16. b Boxplots (center line, median; box limits,
upper and lower quartiles; points, outliers) of eigenscores for all 16 candidate
visualizations, each containing n = 288 samples. c The proposedmeta-visualization

using kPCA. d Median Silhouette indices versus Kendall’s tau statistics for the 16
candidate and the 2 meta-visualizations (Red: proposed spectral meta-visualiza-
tion; Orange: naive simple average meta-visualization). For both metrics, a higher
value indicates a better visualization of the respective structure (cluster/cycle).
Source data are provided as a Source Data file.
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visualization by applying kPCA to the meta-distance matrix. Compar-
ing with Fig. 4a, the proposed meta-visualization showed better clus-
tering of the cells according to their cell cycle stages, as well as a more
salient cyclic structure underlying the three cell cycle stages (Supple-
mentary Figure 9). To quantify the performance of each visualization
in terms of these two underlying structures (cluster and cycle), we
considered two distinct metrics, namely, the median Silhouette index
with respect to the underlying true cell cycle stages, and the Kendall’s
tau statistic41 between the inferred relative order of the cells and their
true orders on the cycle. Specifically, to infer the relative order of cells,
we projected the coordinates of each visualization to the two-
dimensional unit circle centred at the origin (Supplementary Fig. 9),
and then determined the relative orders based on the cells’ respective
projected positions on the unit circle. Figure 4d shows that the pro-
posedmeta-visualizationwas significantly better than all the candidate
visualizations and the naive meta-visualization in representing both
aspects of the data.

Visualizing trajectories of cell differentiation
Our third real data example concerns visualization of a mixed pattern
of a trajectory and clusters underlying the gene expressionprofiles of a
collection of cells undergoing differentiation42. Specifically, 421mouse
embryonic stem cells were induced to differentiate into primitive
endoderm cells. After the induction of differentiation, the cells were
dissociated and individually captured at 12- or 24-hour intervals (0, 12,
24, 48 and 72 h), and each cell was sequenced to obtain the final total
RNA sequencing reads using the random displacement amplification
sequencing technology. As a result, at each of the five-time points,
there were about 70 to 90 cells captured and sequenced. The raw

count data were preprocessed and normalized (Methods), leading to a
dataset consisting of standardized expression levels of 500 most
variable genes for the 421 cells.

Again, we obtained 16 candidate visualizations as before, and
applied our proposed method. In Fig. 5a–c we show examples of
candidate visualizations, boxplots of the eigenscores, and the meta-
visualization using kPCA. The global (Fig. 5b) and local (Supple-
mentary Fig. 10) variation of eigenscores demonstrated contribution
of different visualizations to the final meta-visualization according to
their respective performance. We observed that some candidate
visualizations such as kPCA, UMAP (Fig. 5a) and PHATE (Supple-
mentary Fig. 11) to some extent captured the underlying trajectory
structure consistent with the time course of the cells. However, the
meta-visualization in Fig. 5c showed much more salient patterns in
terms of both the underlying trajectory and the cluster pattern
among the cells, by locally combining strengths of the individual
visualizations (Supplementary Fig. 10). We quantified the perfor-
mance of visualizations from these two aspects using the median
Silhouette index with respect to the underlying true cluster mem-
bership (i.e., batches of time course) and Kendall’s tau statistic
between the inferred cell order and the true order along the pro-
gression path. To infer the relative order of the cells from a visuali-
zation, we ordered all the cells based on the two-dimensional
embedding along the direction that explained the most variability of
the cells. In Fig. 5d, we observed that, the proposed meta-
visualization had the largest median Silhouette index as well as the
largest Kendall’s tau statistic, compared with all the candidate
visualizations and the naive meta-visualization, showing the super-
iority of the proposed meta-visualization in both aspects.

Fig. 5 | Visualizationof 421 cells undergoingdifferentiation. aThree examples of
candidate visualizations. The individual cells are marked by five different symbols
and colors according to the time points they were captured and sequenced. More
examples are included in Supplementary Fig. 11. b Boxplots (center line, median;
box limits, upper and lower quartiles; points, outliers) of eigenscores for all 16

candidate visualizations, each containing n = 421 samples. c The proposed meta-
visualization using kPCA.dMedian Silhouette indices versus Kendall’s tau statistics
for the 16 candidate and the 2 meta-visualizations (Red: proposed spectral meta-
visualization; Orange: naive simple average meta-visualization). Source data are
provided as a Source Data file.
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Computational cost
For datasets of moderate size as the ones analyzed in the previous
sections, the proposed method had a computational cost compar-
able to that of t-SNE or UMAP for generating a single candidate
visualization (Supplementary Fig. 12). As for very large and high-
dimensional datasets, there are a few features of the proposed
algorithm that make it readily scalable. First, although our method
relies on computing the leading eigenvector of generally non-sparse
matrices, these matrices (i.e., Gi in Algorithm 1) are of dimension
K × K, where K – the number of candidate visualizations – is usually
much smaller compared to the sample size n or dimensionality p of
the original data. Thus, for each sample i, the computational cost due
to the eigendecomposition is mild. Second, given the candidate
visualizations, our proposed algorithm is independent of the
dimensionality (p) of the original dataset, as it only requires as input
a set of low-dimensional embeddings produced by different visuali-
zation methods. Third, since our algorithm computes the eigen-
scores and the meta-distance with respect to each sample
individually, the algorithm can be easily parallelized and carried out
in multiple cores to further reduce time cost.

To demonstrate the computational efficiency of the proposed
method for large and high-dimensional datasets, we evaluated the
proposed method on real single-cell transcriptomic datasets43 of
various sample sizes (n∈ {1000, 2000, 4000, 8000, 14000} cells of
nine different cell types from the neurogenic regions of mice) and
dimensions (p∈ {500, 1000, 2000} genes). For each dataset, we
obtained 11 candidate visualizations and applied Algorithm 1 to
generate the final meta-visualization (Methods). Supplementary
Fig. 13b contains boxplots of median Silhouette indices for each
candidate visualizations and the meta-visualization (highlighted in
red) with respect to the underlying true cell types, showing the stable
and superior performance of the proposed method under various
sample sizes and dimensions. In Supplementary Fig. 13a, we com-
pared the running time for generating the 11 candidate visualizations,
and that for generating the meta-visualizations based on Algorithm 1,
on a MacBook Pro with 2.2 GHz 6-Core Intel Core i7. In general, as n
became large, the running time of the proposed algorithm also
increased, but remained much less than that for generating the
candidate visualizations. The difference in time cost became more
significant as n increased, demonstrating that for very large and high-
dimensional datasets the computational cost essentially comes from
generating candidate visualizations, rather than from the meta-
visualization step. In particular, for dataset of sample size as large as
8000 and of dimension 2000, it took about 60 mins to generate all
the 11 candidate visualizations, and took about additional 12 mins to
generate the meta-visualization. Moreover, Supplementary Fig. 13a
also demonstrated that, for each n, when p increased, the running
time for generating the candidate visualizations was longer, but
the time cost for meta-visualization remained about the same (dif-
ference less than one minute). We also note that users often
create multiple visualizations for data exploration, and our approach
can simply reuse these visualizations with little additional
computational cost.

Theoretical guarantees
We develop a general and flexible theoretical framework, to investi-
gate the statistical properties of the proposed methods, as well as the
fundamental principles behind its empirical success. Throughout, for a
matrix A= ðaijÞ 2 Rn ×n, we define its spectral norm as
k A k = supkxk2 ≤ 1 k Axk2. For sequences {an} and {bn}, we write
an = o(bn) or bn≫ an if limnan=bn =0, and write an≍ bn if there exists
constants C1,C2 > 0 such that C1bn ≤ an ≤C2bn for all n. We consider
visualizing a p-dimensional dataset fYig1≤ i≤n containing n samples.
From fYig1 ≤ i≤n, suppose we obtain a collection of K (candidate)
visualizations of the data, produced by various visualization methods.

We denote these visualizations as two-dimensional embeddings
fXðkÞ

i g1≤ i≤n � R2 for k∈ {1, 2, . . . ,K}. As can be seen from Methods
Section, there are two key ingredients of our proposed method,
namely, the eigenscores fbsig1 ≤ i≤n for evaluating the candidate visuali-
zations, and the meta-distance matrix �P

m
that combines multiple

candidate visualizations to obtain a meta-visualization. To formally
study their properties, we introduce a genericmodel for the collection
of K candidate visualizations produced by multiple visualization
methods, with possibly different settings of tuning parameters for a
single method as considered in previous sections. Specifically, we
assume fYig1≤ i ≤n are generated as

Yi =Y
*
i +Zi, i= 1, 2,:::,n, ð2Þ

where fY*
i g1≤ i≤n are the underlying noiseless samples and fZig1≤ i≤n are

the random noises. Recall that fPðkÞg1≤ k ≤K are the distance matrices
associated to the candidate visualizations (seeMethods). Then, for the
candidate visualizations, we consider a scaled signal-plus-noise
expression

PðkÞ
i: = ci,kðP*

i: +h
ðkÞ
i Þ, k = 1, 2,:::,K , ð3Þ

induced by (2), where ci,k≥0 is a global scaling parameter, P*
i: is the i-th

row of the pairwise distance matrix P* = ðk Y*
i � Y*

jk2Þ1≤ i,j ≤n of the
underlying noiseless samples, and hðkÞ

i is a random vector character-
izing the relative distortion of PðkÞ

i: associated to the k-th candidate
visualization, from the underlying true pattern P*

i:. Before character-
izing thedistributions of fhðkÞ

i g1≤ k ≤K , wepoint out that, in principle, the
relative distortions fhðkÞ

i g1 ≤ k ≤K are jointly determined by the random
noises fZig1 ≤ i≤n in (2), and the features and relations between of the
specific visualization methods. Importantly, in line with what is often
encountered in practice, equation (3) allows for flexible and possibly
distinct scaling and directionality for different candidate visualiza-
tions, by introducing the visualization-specific parameter ck, and by
focusing on the pairwise distance matrices, rather than the low-
dimensional embeddings fXðkÞ

i g1≤ i ≤n themselves.
To quantitatively describe the variability of the distortions

fhðkÞ
i g1 ≤ k ≤K across K candidate visualizations, we assume

(C1a) fhðkÞ
i g1≤ k ≤K are identically distributed sub-Gaussian vectors

with parameter σ2, that is, for any deterministic unit vector
g 2 Rn, we have E expfðhðkÞ

i Þ>gg ≤ expðσ2=2Þ, and that k
hðkÞ
i k22 = cσ2nð1 + o ð1ÞÞ for some constant c >0 with high prob-

ability, that is, with probability at least 1 − n−D for some large
constant D > 0 for all sufficiently large n.

This assumption makes (3) a generative model for fPðkÞ
i: g1≤ k ≤K with

ground truth P*
i: and random distortions, where the variance parameter

σ describes the average level of the distortions of candidate visualiza-
tions from the truth after proper scaling. In relation to (2), such a
condition can be satisfied when the signal structure fY*

i g1 ≤ i≤n is finite,
the noise fZig1≤ i≤n is sub-Gaussian, and the dimension reduction map
underlying the candidate visualization is bounded and sufficiently
smooth. See Supplementary file Section B.2 for details. In addition, we
also need to characterize the correlations among these random dis-
tortions, not only because the candidate visualizations are typically
obtained from the same dataset fYig1≤ i ≤n, but also because of the
possible similarity between the adopted visualization methods, such as
MDS and iMDS, or t-SNE under different tuning parameters. Specifically,
for any j, k∈ {1, 2, . . . ,K}, we define the cross-visualization covariance
Σ jk =EhðjÞ

i ðhðkÞ
i Þ>, and quantify the level of dependence between a pair

of candidate visualizations by ρjk= ∥Σjk∥/σ2. By Condition (C1a), we have
ρjj≤ 1 for all j. For all correlation parameters fρjkg1 ≤ j,k ≤K , we assume
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(C1b) The matrix R = ðρjkÞ1≤ j,k ≤K satisfies ρ≔∥R∥ = o(K).

Condition (C1b) covers a wide range of correlation structures
among the candidate visualizations, allowing in particular for a subset
of highly correlated visualizations possibly produced by very similar
methods. The parameter ρ characterizes the overall correlation
strength among the candidate visualizations, which is assumed to be
not too large. As a comparison, note that a set of pairwise independent
candidate visualizations implies that ρ ≈ 1, whereas a set of identical
candidate visualizations have ρ ≈K. In particular, the requirement
ρ = o(K) can be satisfied if, for example, among K candidate visualiza-
tions, there are subsets of atmost

ffiffiffiffi
K

p
visualizations that are produced

by very similar procedures, such as by the same method under dif-
ferent tuningparameters, so thatρ ≤

ffiffiffiffi
K

p
= oðKÞ.WhenCondition (C1b)

fails, as all the candidate visualizations are essentially similarly dis-
torted from truth, combination of them will not be substantially more
informative than each individual visualization.

Under Condition (C1a), it holds that E k hðkÞ
i k2 � σ

ffiffiffi
n

p
. Hence, we

can use the quantity kP*
i:k2

σ
ffiffi
n

p to characterize the overall SNR in the can-
didate visualizations as modelled by (3), which reflects the average
quality of the candidate visualizations in preserving the underlying
true patterns around sample i. Before stating our main theorems, we
first introduce ourmain assumption on theminimal SNR requirement,
that is,

(C2) For (σ, ρ) defined in (C1a) and (C1b), it holds that kP*
i:k2

σ
ffiffi
n

p ≫
ffiffiffiffiffiffiffiffiffi
ρ=K

p
and K = o(n) as n→∞.

Our algorithm is expected to perform well if
ffiffiffiffiffiffiffiffiffi
ρ=K

p
is small rela-

tive to the overall SNR. The condition K = o(n) is easily satisfied for a
sufficiently large dataset.

Recall that si = ðð�P
ð1Þ
i: Þ

>
�P
*
i:,ð�P

ð2Þ
i: Þ

>
�P
*
i:,:::,ð�P

ðKÞ
i: Þ

>
�P
*
i:Þ: The following

theorem concerns the convergence of eigenscores to the true con-
cordance si, and is proved in Supplementary file Section B.3.

Theorem 1. Under Conditions (C1a) (C1b) and (C2), for each

i∈ {1, 2, . . . , n}, it holds that cosffðbsi,siÞ= ðbsiÞ>si
kbsik2ksik2 ! 1 in probability

as n→∞.
Theorem 1 implies that, as long as the candidate visualizations

contain sufficient amount of information about the underlying true
structure, and are not terribly correlated, the proposed eigenscores
fbsig1≤ i ≤n are quantitatively reliable, as they converge to the actual
quality measures fsig1≤ i≤n asymptotically. In other words, the eigen-
scores provide a point-wise consistent estimation of the concordance
between the candidate visualizations as summarized by fPðkÞg1≤ k ≤K
and the underlying true patterns P*, justifying the empirical observa-
tions in Table 1. Importantly, Condition (C2) suggests that our pro-
posed eigenscores may benefit from a larger number K of candidate
visualizations, or a smaller overall correlation ρ, that is, a collection of
functionally more diverse candidate visualizations.

Our second theorem concerns the guaranteed performance of
our proposed meta-distance matrix and its improvement upon the
individual candidate visualizations in the large-sample limit.

Theorem 2. Under Conditions (C1a) (C1b) and (C2), for each
i∈ {1, 2, . . . , n}, it holds that cosffð�Pm

i: ,P
*
i:Þ ! 1 in probability as n→∞.

Moreover, for any constant δ∈ (0, 1), there exist a constant C >0 such
that, whenever k P*

i:k2 ≤ Cσ
ffiffiffi
n

p
, we havemax1≤ k ≤K cosffðPðkÞ

i: ,P*
i:Þ<1� δ

in probability as n→∞.
Theorem2 is proved in Supplementaryfile SectionB.4. In addition

to the point-wise consistency of �P
m
as described by cosffð�Pm

i: ,P
*
i:Þ ! 1

in probability, Theorem 2 also ensures that the proposed meta-
distance is in general no worse than the individual candidate

visualizations, suggesting a competitive performance of the meta-
visualization. In particular, if in addition to Conditions (C1a) (C1b) and
(C2) we also have kP*

i:k2
σ

ffiffi
n

p ≤ C, that is, the magnitude of the random dis-
tortions from the true structure P*

i: is relatively large, then each can-
didate visualization necessarily has at most mediocre performance,
i.e., max1 ≤ k ≤K cosffðPðkÞ

i: ,P*
i:Þ<1� δ in probability. In such cases, the

proposedmeta-distances is still consistent and thus strictly better than
all candidate visualizations. Theorem 2 justifies the superior perfor-
mance of the spectral meta-visualization demonstrated in previous
sections, compared with 16 candidate visualizations.

Among the three conditions required for the consistency of the
proposed meta-distance matrix, Condition (C2) is most critical as it
describes the minimal SNR requirement, that is, how much infor-
mation the candidate visualizations altogether should contain about
the underlying true structure of the data. In this connection, our
theoretical analysis indicates that, in fact, such a signal strength
condition is also necessary, not only for the proposed method, but
for any possible methods. More specifically, in Supplementary file
Section B.6, we proved (Theorem 4) that, it’s impossible to construct
a meta-distance matrix that is consistent when Condition (C2) is
violated. This result shows that the settings where our meta-
visualization algorithm works well is essentially the most general
setting possible.

Robustness of spectral weighting against adversarial
visualizations
In our numerical studies, in addition to the proposed meta-visualiza-
tion, we also considered the meta-visualization based on the naive
meta-distance matrix �P

a
, whose rows are

�P
a
i: =

1
K

XK
k = 1

�P
ðkÞ
i: 2 Rn, ð4Þ

which is a simple average across all the candidate visualizations. We
observed in all our real-world data analyses that, such a naive meta-
visualization only had mediocre performance compared to the
candidate visualizations (Figs. 3, 4, and 5), much worse than the
proposed spectral meta-visualization. The empirical observations
suggest the advantage of informative weighting for combining
candidate visualizations.

The empirically observed suboptimality of the non-informative
weighting procedure can justified rigorously by theory. Our next
theorem concerns the behavior of the proposed meta-distance
matrix �P

m
and the naive meta-distance matrix �P

a
when combining a

mixture of well-conditioned candidate visualizations, as character-
ized by our assumptions (C1a) (C1b) and (C2), and some adversarial
candidate visualizations whose pairwise-distance matrices does not
contain any information about the true structure. Specifically, we
suppose among all the K candidate visualizations, there is a collec-
tion C0 of (1 − η)K well-conditioned candidate visualizations for some
small η∈ (0, 1), and a collection C1 of ηK adversarial candidate
visualizations.

Theorem3. For any i∈ {1, 2, . . . , n}, suppose among all the K candidate
visualizations, there is a collection C0 of (1− η)K candidate visualiza-
tions for some small η∈ (0, 1) satisfying Conditions (C1a) (C1b) and
(C2), and a collection C1 of ηK adversarial candidate visualizations such

that ðPðkÞ
i: Þ>P*

i: =0 for all k 2 C1. Then, for the proposed meta-distance
�P
m
, we still have cosffð�Pm

i: ,P
*
i:Þ ! 1 in probability asn→∞. However, for

the naive meta-distance �P
a
, even if k P*

i:k2≫σ
ffiffiffi
n

p
, we have

cosffð�Pa
i:,P

*
i:Þ<1� η in probability as n→∞.

Theorem 3 is proved in Supplementary file Section B.5. By Theo-
rem 3, on the one hand, even when there are a small portion of really
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poor (adversarial) candidate visualizations to be combined with other
relatively good visualizations, the proposed method still perform well
thanks to the consistent eigenscoreweighting in light of Theorem1.On
the other hand, no matter how strong the SNR is for those well-
conditioned candidate visualizations, the method based on non-
informative weighting is strictly sub-optimal. Indeed, when
k P*

i:k2≫σ
ffiffiffi
n

p � E k hik2, although we have cosffðPðkÞ
i: ,P*

i:Þ ! 1 in
probability for all k 2 C0, the non-informative weighting would suffer
from the non-negligible negative effects from the adversarial visuali-
zations in C1, causing a strict deviation from P*; see, for example,
Figs. 3–5 (b)(d) for empirical evidences from real-world data.

Limitations of original noisy high-dimensional data
The proposed eigenscores provide an efficient and consistent way of
evaluating the performance of the candidate visualizations. As
mentioned in Introduction, a number of metrics have been proposed
to quantify the distortion of a visualization by comparing the low-
dimensional embedding directly with the original high-dimensional
data. Such metrics essentially treat the original high-dimensional
data as the ground truth, and do not take into account the noisiness
of the high-dimensional data. However, for many datasets arising
from real-world applications, the observed datasets, as modelled by
(2), are themselves very noisy, which may not make an ideal refer-
ence point for evaluating a visualization that probably has already
significantly denoised the data through dimension reduction. For
example, all the three real-world datasets we have considered con-
tain muchmore features than number of samples. In each case, there
are some underlying clusters among the samples, but the original
datasets showed significantly weaker cluster structure compared to
most of the 16 candidate visualizations (Supplementary Figure 14),
suggesting that directly comparing a visualization with the noisy
high-dimensional data may be misleading. In this respect, our theo-
rems indicate that the proposed spectral method is able to precisely
assess and effectively combinemultiple visualizations to better grasp
the underlying noiseless structure P*, without referring to the original
noisy datasets, making it more robust, flexible, and computationally
more efficient.

Benefits of including more functionally diverse visualizations
Our theoretical analysis implies that the proposed meta-visualization
may benefit from a large number (larger K) of functionally diverse
(small ρ) candidate visualizations. To empirically verify this theoretical
observation, we focused on the religious and biblical text data and the
mouse embryonic stem cells data, and obtained spectral meta-
visualizations based on a smaller but relatively diverse collection of 5
candidate visualizations, produced by arguably the most popular
methods, namely, t-SNE, PHATE, UMAP, PCA and MDS, respectively.
Comparedwith the 16 candidate visualizations considered earlier, here
we have presumably similar ρ but much smaller K. As a result, for the
religious and biblical texts data, the meta-visualization had a median
Silhouette index 0.187 (Supplementary Figure 15), which was smaller
than the median Silhouette index 0.275 based on the 16 candidate
visualizations as in Fig. 3d; for the cell cycle data, the meta-
visualization had a median Silhouette index -0.062 and a Kendall’s
tau statistic 0.313, both smaller than the respective values based on the
16 candidate visualizations as in Fig. 4d. On the other hand, we also
evaluated the effect when ρ is increased but K remains fixed. Specifi-
cally, we obtained 16 candidate visualizations, all produced by PHATE
with varying nearest neighbor parameters, the final spectral meta-
visualization had a median Silhouette index 0.094, which was even
lower than the above meta-visualization based on five distinct meth-
ods, although being still slightly better than the 16 PHATE-based can-
didate visualizations (Supplementary Figure 15). These empirical
evidences were in line with our theoretical predictions, suggesting
benefits of including more diverse visualizations.

Discussion
We developed a spectral method in the current study to assess and
combinemultipledata visualizations. Theproposedmeta-visualization
combines candidate visualizations through an arithmetic weighted
average of their normalized distance matrices, by their corresponding
eigenscores. Although the proposedmethodwas shownboth in theory
and numerically to outperform the individual candidate visualizations
and their naive combination, it is still unclear whether there exists any
other forms of combinations that lead to even better meta-
visualizations. For example, one could consider constructing a meta-
distance matrix using the geometric or harmonic (weighted) average,
or an average based on barycentric coordinates44. We plan to investi-
gate such problems concerning how to optimally combining multiple
visualizations in a subsequent work.

Although originally developed for data visualization, the pro-
posed method can be useful for other supervised and unsupervised
machine learning tasks, such as combining multiple algorithms for
clustering, classification, or prediction. For example, for a given data-
set, if one has a collection of predicted clustermemberships produced
by multiple clustering algorithms, one could construct cluster mem-
bership matrices with (i, j)-th entry being 0 if sample i and j are not
assigned to the same cluster and being 1 otherwise. Then we may
define the similarity matrix as in (11), obtain the eigenscores for the
candidate clusterings, and a meta-clustering using (13). It is of interest
to know its empirical performance and if the fundamental principles
unveiled in the current work continue to hold for such broader range
of learning tasks.

Methods
Eigenscore and meta-visualization methodology
Throughout, without loss of generality, we assume that for visualiza-
tion purpose the target embedding is two-dimensional, although our
discussion applies to any finite-dimensional embedding.

Algorithm 1. Spectral assessment and combination of multiple data
visualizations

Input: candidate visualizations fXðkÞ
i g1 ≤ i≤n for k∈ {1, 2, . . . ,K}.

1. Construct normalized pairwise-distance matrices: for each
k∈ {1, 2, . . . ,K}, calculate

�P
ðkÞ

= ½DðkÞ��1
PðkÞ, ð5Þ

where PðkÞ = ðk XðkÞ
i � XðkÞ

j k2Þ1≤ i,j ≤n andDðkÞ = diag ðk PðkÞ
1: k2,:::, k PðkÞ

n: k2Þ.
2. Obtain eigenscores: for each i∈ {1, 2, . . . , n},

(i) calculate the similarity matrix

Gi = ðð�P
ðk1Þ
i: Þ

>
�P
ðk2Þ
i: Þ1≤ k1 ,k2 ≤K

: ð6Þ

(ii) perform eigen-decomposition ofGi and define the eigenscores

bsi = ðŝi,1,ŝi,2,:::,ŝi,K Þ : = ∣bui∣, ð7Þ

where bui is the eigenvector of Gi associated to its largest eigenvalue.
3. Construct meta-distance matrix: for each i∈ {1, 2, . . . , n}, calcu-

late the eigenscore-weighted average

�P
m
i: =

XK
k = 1

ŝi,k �P
ðkÞ
i: , ð8Þ

and define �P
m 2 Rn×n whose i-th row is �P

m
i: .

4. Obtain meta-visualization: apply an existing visualization
method (e.g., UMAP or kPCA) to �P

m
to obtain a meta-

visualization.

Output: the eigenscores fbsig1≤ i≤n, and the meta-visualization.
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Measuring normalized distances from each visualization
In order that the proposed method is invariant to the respective scale
and coordinate basis (i.e., directionality) of the low-dimensional
embeddings generated from different visualization method, we start
by considering the normalized pairwise-distance matrix for each
visualization.

Specifically, for each k∈ {1, 2, . . . ,K}, we define the normalized
pairwise-distance matrix

�P
ðkÞ

= ½DðkÞ��1
PðkÞ 2 Rn×n, ð9Þ

where

PðkÞ = ðk XðkÞ
i � XðkÞ

j k2Þ1≤ i,j ≤n 2 Rn ×n, ð10Þ

is the un-normalized Euclidean distance matrix, and DðkÞ = diag ðk
PðkÞ
1: k2, k PðkÞ

2: k2,:::, k PðkÞ
n: k2Þ is a diagonalmatrixwith its diagonal entries

being the ℓ2-norms of the rows fPðkÞ
1: ,:::,P

ðkÞ
n: g of P(k). As a result, the

normalized distance matrix �P
ðkÞ

has its rows being unit vectors, and is
invariant to any scaling and rotation of the visualization fXðkÞ

i g1≤ i ≤n.
The normalized distance matrices f�PðkÞg1≤ k ≤K summarize the

candidate visualizations in a compact and efficient way. Their scale-
and rotation-invariance properties are particularly useful for compar-
ing visualizations produced by distinct methods.

Sample-wise eigenscores for assessing visualizations
Our spectral method for assessing multiple visualizations is based on
the normalized distance matrices f�PðkÞg1≤ k ≤K . For each i∈ {1, 2, . . . , n},
we define the similarity matrix

Gi = ðð�P
ðk1Þ
i: Þ

>
�P
ðk2Þ
i: Þ1≤ k1 ,k2 ≤K

2 RK ×K , ð11Þ

which summarizes the pairwise similarity between the candidate
visualizations with respect to sample i. By construction, the entries of
Gi are inner-products between unit vectors, each representing the
normalized distances associated with sample i in a candidate

visualization. Naturally, a larger entry ð�Pðk1Þ
i: Þ

>
�P
ðk2Þ
i: indicates higher

concordance between the two candidate visualizations. Then, for each
i∈ {1, 2, . . . , n}, we define the vector of eigenscores bsi = ðŝi,1,:::,ŝi,K Þ for
the candidate visualizations with respect to sample i as the absolute

value of the eigenvector bui 2 RK of Gi associated to its largest
eigenvalue, that is,

bsi : = ∣bui∣, ð12Þ

where the absolute value function ∣ ⋅ ∣ is applied entrywise. As
explained in our main text, the nonnegative components of bsi
quantify the relative performance of K candidate visualizations with
respect to sample i, with higher eigenscores indicating better per-
formance. Consequently, for each candidate visualization fXðkÞ

i g1≤ i ≤n,
one obtains a set of eigenscores fŝi,kg1≤ i≤n summarizing its perfor-
mance relative to other candidate visualizations in a sample-wise
manner. Ranking and selection among candidate visualizations can
be achieved based on various summary statistics of the eigenscores,
such as mean, median, or coefficient of variation, depending on the
specific applications. In particular, when some candidate visualiza-
tions are produced by the same method but under different tuning
parameters, the eigenscores can be used to select the most suitable
tuning parameters for visualizing the dataset. However, a more
substantial application of the eigenscores is to combine multiple
data visualizations into a meta-visualization, which has improved
signal-to-noise ratio and higher resolution of the structural informa-
tion contained in the data.

Importantly, the eigenscores essentially take the underlying true
signals rather than the noisy observations fYig1≤ i≤n as its referential
target for performance assessment, making the method easier to
implement and less susceptible to the effect of noise in the original
data (Supplementary Figure 14).

Meta-visualization using eigenscores
Using the above eigenscores, one canconstruct ameta-distancematrix
properly combining the information contained in each candidate
visualization. Specifically, for each i∈ {1, 2, . . . , n}, we define the vector
of meta-distances with respect to sample i as the eigenscore-weighted
average of all the normalized distances respect to sample i, that is,

�P
m
i: =

XK
k = 1

ŝi,k �P
ðkÞ
i: 2 Rn: ð13Þ

Then, themeta-distancematrix is defined as �P
m 2 Rn×n whose i-th row

is �P
m
i: . To obtain ameta-visualization, we take themeta-distancematrix

�P
m
and apply an existing visualizationmethod that allows for themeta-

distance �P
m
(or its symmetrized version �P

m
+ ð�PmÞ>) as its input.

Intuitively, for each i = 1, 2, . . . , n, we essentially apply a principal
component (PC) analysis to the normalized distance matrix
�Pi = �P

ð1Þ
i:

�P
ð2Þ
i: ::: �P

ðKÞ
i:

h i
2 Rn×K : Specifically, by definition45 the

leading eigenvector bui of Gi = �P
>
i
�Pi 2 RK ×K is the first PC loadings of

�Pi, whereas the first PC is defined as the linear combination
�Pibui =

PK
k = 1 ûi,k

�P
ðkÞ
i: . Under the condition that the first PC loadings are

all nonnegative (which is ensured with high probability under condi-

tion (C2) below), the first PC �Pibui is exactly the meta-distance �P
m
i:

defined in (13) above. When interpreted as PC loadings, the leading

eigenvector bui of Gi contains weights for different vectors f�PðkÞ
i: g1≤ k ≤K

so that thefinal linear combination �Pibui has the largest variance, that is,
summarizes the most information contained in �Pi. It is in this sense

that the meta-distance �P
m
i: is a consensus across f�PðkÞ

i: g1≤ k ≤K .

For our own numerical studies, we usedUMAP formeta-visualizing
datasets with cluster structures, and used kPCA for meta-visualizing all
the other datasets with smoother manifold structures, such as trajec-
tory, cycle, ormixed structures. The choice of UMAP in the former case
was due to its advantage in treating large numbers of clusters without
requiring prior knowledge about the number of clusters6,16; whereas the
choice of kPCA in the latter case was rooted in its advantage in cap-
turing nonlinear smooth manifold structures46. In each case, the hyper-
parameters used for generating the meta-visualization were deter-
mined without further tuning – for example, when using UMAP for
meta-visualization, we set the hyper-parameters the same as those
associated to the UMAP visualization which achieved higher median
eigenscore than other UMAP visualizations. Moreover, while in general
UMAP/kPCA works well as a default method for meta-visualization, our
proposed algorithm is robust with respect to the choice of this final
visualization method. In our numerical analysis, we observed empiri-
cally that other methods such as t-SNE and PHATE could also lead to
meta-visualizations with comparably substantial improvement over
individual candidate visualizations in terms of the concordance with
the underlying true low-dimensional structure of the data (see Sup-
plementary Figure 6). In addition, the meta-visualization shows
robustness to potential outliers in the data (Figs. 4 and 5).

Under a generic signal-plus-noise model, we obtain explicit the-
oretical conditions under which the performance of the proposed
spectral method is guaranteed. These conditions provide proper
interpretations andguidance on the applicationof themethod, suchas
how to more effectively prepare the candidate visualizations. For
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better understanding, we summarize these technical conditions
informally as follows.
(C1’) The performance of candidate visualizations are sufficiently

diverse in terms of their individual distortions from the
underlying true structures.

(C2’) The candidate visualizations altogether contains sufficient
amount of information about the underlying true structures.

Intuitively, Condition (C1’) concerns diversity of methods in pro-
ducing candidate visualizations, whereas Condition (C2’) is related to
the quality of the candidate visualizations. In practice, Condition (C2’)
is satisfied when the signal-to-noise ratio in the data, as described by
(2), is sufficiently large, so that the adopted visualization methods
perform reasonably well on average. On the other hand, a sufficient
condition for (C1’) is that, at most

ffiffiffiffi
K

p
out of K candidate visualizations

are very similarly distorted from the true patterns in terms of the
normalized distances �P

ðkÞ
. This would allow, for example, groups of up

to 3 to 4 candidate visualizations out of 10 to 15 visualizations being
produced by very similar procedures such as the same method under
different hyper-parameters.

Simulations
For each simulation setting, we let the diameter of the underlying
structure vary within a certain range so that the final results are
comparable across different structures. The final boxplots in Fig. 2a,
and Supplementary Figures 2 and 4 summarize the simulation
results across 20 equispaced diameter values for each underlying
structure.

Religious and biblical texts data
Each visualization method was applied to the Document TermMatrix,
with 8265 centred and normalized features and 590 samples (text
fragments). The raw data are provided in the Source Data file. For the
16 PHATE-based candidate visualizations obtained in Supplementary
Figure 15, we consider 16 values of nearest neighbor parameter knn
ranging from 2 to 150 with equal space.

Cell cycle data
The raw count data were preprocessed, normalized, and scaled by
following the standard procedure (R functions CreateSeuratObject,
NormalizeData and ScaleData under default settings) as incorpo-
rated in the R package Seurat. We also applied the R function
FindVariableFeatures in Seurat to identify 2000 most variable
genes for subsequent analysis. The final p = 1147 cell-cycle related
genes were selected based on two-sample t-tests. The pre-
processed data are provided in the Source Data file. The 16 can-
didate visualizations were generated the same way as in the pre-
vious example.

Cell differentiation data
The raw count data were preprocessed, normalized, and scaled using
Seurat package by following the similar procedure as described
above. The pre-processed data are provided in the Source Data file.
The 16 candidate visualizations were generated the sameway as in the
previous examples.

Computational cost
We considered the single-cell transcriptomic dataset43 that contains
more than 20,000 cells of different cell types from the neurogenic
regions of 28mice. For eachn∈ {1000, 2000, 4000, 8000, 14000}, we
randomly select n cells of nine different cell types, and selected sub-
sets of p∈ {500, 1000, 2000} genes to obtain an n × p count matrix.
After normalizing the count matrix, we applied various visualization
methods (PCA, HLLE, kPCA, LEIM, UMAP, t-SNE and PHATE) that are in
general scalable to large datasets (i.e., cost less than one minute for

visualizing 1000 samples of dimension 300), to generate 11 candidate
visualizations (with two different parameter settings for kPCA, t-SNE,
UMAP and PHATE). Then we ran our proposed algorithm to obtain the
final meta-visualization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The religious and biblical text data38 are downloaded from UCI
Machine Learning Repository [https://archive.ics.uci.edu/ml/machine-
learning-databases/00512/]. The cell cycle analysis is based on the
mouseembryonic stemcell data40 available in EMBL-EBIwith accession
code [E-MTAB-2805]. The cell trajectory analysis is basedon themouse
embryonic stem single cell data42, available in Gene Expression
Omnibus with accession code [GSE98664]. The single-cell tran-
scriptomic dataset43 used for evaluating computational cost is acces-
sible atBioProjectwith accession code [PRJNA795276]. Sourcedata are
provided with this paper.

Code availability
The R codes of the method, and for reproducing our simulations and
data analyses are available at our GitHub repository meta-
visualization47https://github.com/rongstat/meta-visualization.
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