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Automatic and accurate ligand structure
determination guided by cryo-electron
microscopy maps

Andrew Muenks 1,2, Samantha Zepeda 1, Guangfeng Zhou 1,2,
David Veesler 1,3 & Frank DiMaio1,2

Advances in cryo-electron microscopy (cryoEM) and deep-learning guided
protein structure prediction have expedited structural studies of protein
complexes. However, methods for accurately determining ligand conforma-
tions are lacking. In this manuscript, we develop EMERALD, a tool for auto-
matically determining ligand structures guided bymedium-resolution cryoEM
density. We show this method is robust at predicting ligands along with sur-
rounding side chains in maps as low as 4.5 Å local resolution. Combining this
with a measure of placement confidence and running on all protein/ligand
structures in the EMDB, we show that 57% of ligands replicate the deposited
model, 16% confidently find alternate conformations, 22% have ambiguous
density where multiple conformations might be present, and 5% are incor-
rectly placed. For five cases where our approach finds an alternate con-
formationwith high confidence, high-resolution crystal structures validate our
placement. EMERALD and the resulting analysis should prove critical in using
cryoEM to solve protein-ligand complexes.

Recent advancements in both microscope hardware and computa-
tional processing have led to cryo-electron microscopy (cryoEM)
emerging as a mainstream method for biomolecular structure deter-
mination. While in ideal cases cryoEM data approaches atomic
resolutions1–3, most structures determined by cryoEM are in the 3–5 Å
resolution range. At these resolutions, model building is time-con-
suming, error prone, and often ambiguous. To assist this process,
methods have been developed to automatically build de novo poly-
peptide chains into EM data4–7, and with the advent of AlphaFold 2,
high-quality starting models can oftentimes be obtained from
sequence information alone8,9.While thesemethods help build protein
models into cryoEM density, tools for automatic fitting of small
molecule ligands into cryoEM data are limited. Given the widespread
adoption of cryoEM in academia and in industry to support transla-
tional studies of drug targets, the ability to accurately model ligand-
bound structures is paramount.

There are numerous automated tools from X-ray crystallography
for modeling small molecule ligands10–13. However, their methodology
is unproven for use in interpreting all but the highest-resolution
cryoEM maps. Traditional ligand fitting methods rely on shape and
topological features of density maps to match10 or build11–13 the ligand
into density. But as resolution decreases below 3Å, the topological
features these methods rely on become less defined, and their accu-
racy in modeling ligands within 1 Å RMSD of a reference ligand falls
below 20%13,14. While these software packages have been updated to
consider cryoEM data, the updates focus on proteinmodeling without
reported updates to small molecule modeling15,16 or focus on small
molecule refinement instead of automatic model building17.

Along with map features, chemical force fields have provided an
energetic approach to accurately fit ligands into their respective den-
sity. Two approaches—GemSpot18 and MDFF19—utilize the ligand-
docking software GLIDE to model ligands into cryoEM data. How-
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ever, both require user input in either selecting models during the
protocol or choosing a starting configuration, limiting the automation
and applicability of these approaches. The protein modeling software
Rosetta recently incorporated a small molecule force field, Rosetta-
GenFF, which accurately models the energetics of arbitrary biomole-
cules in a manner balanced against Rosetta’s protein force field20.
Combining this energy model with a genetic-algorithm (GA) optimi-
zation method allowing for full receptor side chain flexibility, GALi-
gandDock, yielded superior performance in ligand docking accuracy
compared to other state-of-the-art methods.

Here, we leverage the docking power of RosettaGenFF and GA
optimization to overcome the challenges of modeling smallmolecules
at near-atomic resolution. We integrate cryoEM density data with the
physically realistic force field of RosettaGenFF to create RosettaE-
MERALD (EMMaps ERoded for Automatic Ligand Docking) for robust
ligand modeling into cryoEM maps with no user input during the
protocol. We evaluate the performance of EMERALD on all non-ion-
mediated ligand-bound protein structures deposited in the EMDB21

and compare our results to their respective deposited structures and
high-resolution crystal structures when available.

Results
An overview of EMERALD is illustrated in Fig. 1. GALigandDock places
ligands in a protein pocket by iteratively refining a pool of 100 con-
formations, selecting the best 100 models at each generation using
predicted energy. To enable this method to use cryoEM density, two
changes were integral: density-guided initial ligand placement and the
use of density in model selection at each round. Our initial placement
(fully described in Methods) first models density as a pseudo-atomic
skeleton (Fig. 1b). When generating the initial population of ligands,
ligands areplaced at the center of the skeleton and restrained topoints
in the skeleton. At each iteration, the population of ligand conformers
along with their surrounding flexible side chains are further optimized
against the sum of a weighted density correlation and the Rosetta-
GenFF energy (Fig. 1c) and finally refined in Rosetta to minimize the
energy of the models (Fig. 1d). The full protocol generates a structure
in 30–120min, depending on the size of the ligand and the
cryoEM map.

To test EMERALD, we ran our docking protocol on all ligands with
25 or fewer rotatable torsion angles present in deposited cryoEM
structures determined at a minimum of 6 Å nominal resolution. This
yielded 1053 ligands to be placed. For each model, we ran three
independent trajectories, and we analyzed the resulting models using

three different criteria: (a) agreement of the deposited model to the
lowest energy predicted structure; (b) density fit and number of pro-
tein/ligand hydrogen bonds; and (c) convergence of the three trajec-
tories. This last criterion is used to evaluate the confidence in a
predicted model.

The results of these docking trajectories are summarized in Fig. 2.
In 57% of the cases, our density-guided docking produced a topmodel
within 1 Å RMSD (considering all non-hydrogen atoms in the ligand) of
the deposited model after energyminimization (match, Fig. 2a). While
an RMSD cutoff of 2 Å has traditionally been used for docking success,
the lack of confidence in the low-resolution reference models and
inability of RMSD to consider receptor contacts led us to divide results
further by density correlation and hydrogen bond contacts. There
were 401 cases (38%) where EMERALD produced a model with an
RMSD value >1 Å, and the model was similar or better than the
depositedmodel inbothmetrics (non-match, similarorbetter quality).
The smallest group belonged to 48 cases where the deposited model
was not recapitulated, but the EMERALDmodel had a worse density fit
or fewer hydrogenbonds than thedepositedmodel (non-match,worse
quality, 5%).Modeling accuracydecreases as ligandflexibility increases
and as the local resolution of the map surrounding the ligand worsens
(Fig. 2b, c). Also, we found that incorporating EM data in GALi-
gandDock is necessary for recapitulating deposited ligand structures
with high success rates (Supplementary Fig. 1).

Because of the low resolution of the density maps, it is difficult to
interpret the quality of docked poses from density fit and receptor
interactions alone. To instill more confidence in docking results, we
analyzed the convergence among the top-ranked ligand poses across
three replicates (Fig. 2d–f). Of the cases within 1 Å RMSD, 2 or more of
the trajectories converge for 81% of cases, further strengthening the
quality of the matched cases (Fig. 2d). Moreover, only 23% of the
worse-quality cases converge on the same ligandmodel (Fig. 2e). Given
how well trajectory convergence agrees with these categories, it can
serve as a proxy for confidence when our docked model differs from
the reference model in ambiguous cases. 42% of the ambiguous cases
have similar top models across our trajectories (Fig. 2f), giving us
confidence in an alternativemodel to the deposited structure for those
entries.

Our dataset includes 15 of the 20 cases benchmarked for the
GemSpot pipeline18, with five cases filtered out of the dataset for being
peptides or having inter-residue bonds like ion coordination. For 13 of
the 15 ligands, EMERALD produced a ligand within 1 Å of the deposited
structure, with nine of those placements assessed as confident. For the
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Fig. 1 | Overview of EMERALD docking protocol. a The cryoEMmap, coordinates
of the receptor, and the location of the binding site (red cross) are provided as
inputs. The binding pocket is calculated depending on the radius of the ligand
(circle) to determine boundaries and side chains to consider when modeling. b All
unmodeled density in the pocket is converted to a pseudo-atomic skeleton (inde-
pendent of ligand identity), which is used to generate an initial set of ligand

conformers. c Using a genetic algorithm, the pool of ligand conformers is opti-
mized against Rosetta energy and density fit. The population of ligand conformers
evolve over 10 generations with low energy conformations surviving and combin-
ing attributes with each other. d The 20 poses with lowest energy are refined in
Rosetta.
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other two cases, our models disagreed with the deposited model;
GemSpot also found solutions different from the deposited model in
these two cases.

Crystal models confirm alternate conformations for EM data
To cross-validate our results—particularly in cases where we found a
different solution than the depositedmodel—we looked for all models
with a corresponding high-resolution crystal structure (see Methods).
We identified 100 cases where EMERALD converged on a ligand pla-
cement and a corresponding high-resolution crystal structure was
available. The converged docked model was within 1 Å RMSD of the
ligand modeled in the crystal structure for 67% of cases, while 58% of
the deposited EMmodels were within this distance. Considering cases
where the model predicted from EMERALD and the reference EM
model differ, there were six cases where the EMERALD model was
within 1 Å RMSD to the crystal structure while the EM model was not,
three cases where the EMmodel was within 1 Å of the crystal structure
but the EMERALD model was not, and eight cases where both models
differed from the crystal structure bymore than 1 Å. In addition, in five
of the six cases where our model predicts the crystal structure, our
ligand model improves density correlation by at least 0.03, compared
to the deposited cryoEM model.

We show docked models supported by crystal structures in Fig. 3
to highlight the quality of our protocol. These examples include: (a)
the hippocampal AMPA receptor with the antagonist MPQX22, where
our model makes additional hydrogen bond and π-stacking interac-
tions with the ligand, matching the crystal structure23 (Fig. 3a); (b)
NBQX in an AMPA receptor24, where the ligand is flipped, better
matching the density, andmaking bidentate interactions with a nearby
arginine residue (Fig. 3b); (c) DNMDP bound to the SLFN12-PDE3A
complex25, where small changes better match the crystal structure
(Fig. 3c); (d) an ADP molecule in ClpB disaggregase26 (Fig. 3d), where
the phosphate groups recapitulate the crystal structure; and (e) a
glutamate ligand in the AMPA glutamate receptor24, whichwasmissing
an oxygen atom in the deposited structure; when the full glutamate
molecule is docked, the carboxylates are placed in a configuration
matching the crystal structure27 (Fig. 3e).

Therewere three caseswhereourdockingprotocol found a ligand
different than the crystal structure, while the EM model matched the
crystal structure closely. All three cases were different maps of the
same system, a folate molecule bound to MERS-CoV28,29. In all 3, the
EMERALDmodel and the crystal structure only differ in the placement
of a flexible arm with high B-factors in the crystallographic data
(Supplementary Fig. 2)30. These results lend more support for EMER-
ALD convergence as a confidencemetric,whichweused to furtherfind
instances of alternate ligand conformations.

Docked poses reveal plausible alternate conformations
Even without crystal structures for reference, trajectory con-
vergence and improved ligand density fit provide confidence in other
docked poses. In the case of an antimicrobial bound multiple trans-
ferable resistance (Mtr) pump31, our protocol converges on an ampi-
cillinmolecule that isflipped so that its phenyl group isnow in a pocket
of unassigned density (Fig. 4a, b). While the deposited model places
the phenyl group sandwiched between two phenylalanine residues
(Fig. 4a), our docked model packs the group near a cluster of hydro-
phobic residues known to interact with other antibiotics31 (Fig. 4b). In
addition, nearby arginine, serine, and threonine residues have been
suggested to generally coordinate ligands binding to the pump31; our
model has the carboxyl group positioned to make interactions with
these residues directly or possibly through bridging water molecules.
While it is likely that an antibiotic would bind non-specifically to this
site, EMERALD ranks our presented orientation the highest across all
three trajectories, and there is a large predicted energy gap (about
10 kcal/mol) between the converged conformation and the best-
scoring conformation with the phenyl group outside this hydrophobic
pocket, suggesting that this pose is strongly favored by EMERALD.

Another instance of improving density fit and receptor interac-
tions is a lipid phosphatidylinositol 4,5-bisphosphate (PIP2) bound to
transient receptor potential melastatin member 8 (TRPM8)32. The
EMERALD docked model correlates with the map 10% better than the
deposited model, placing all the phosphate groups into density and
placing the likely disordered glycerol backbone and beginning of the
lipid tails in weaker density (Fig. 4c, d). Moreover, the 4,5 phosphate

Fig. 2 | Benchmarking EMERALDagainst the EMDB. aA comparison of EMERALD
models to the deposited structures for 1053 EMDB-deposited complexes. In total,
57% of EMERALD-docked models were placed within 1 Å RMSD of the deposited
ligand (match, green); 38% were more than 1 Å RMSD of the deposited ligand but
had similar or better density correlations and numbers of hydrogen bonds (similar
or better quality, orange), and 5% were more than 1 Å RMSD from the deposited
ligand and had worse density correlations or number of hydrogen bonds (worse

quality, blue).b, cBins of binding pocket local resolution (b) and number of torsion
angles in the small molecule (c) shown as percentage by docking result. d–f The
convergence of the best ranking models across multiple runs for matches (d),
worse quality (e), and similar or better quality (f) cases. The darkest shade had
multiple runs converge with all atoms within 1 Å of each other, the middle shade
had multiple runs converge with at least 60% of atoms within 1 Å, and the lightest
shade had divergent top-scoring models.
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Fig. 3 | Alternate conformations predicted with EMERALD match high-
resolution crystal structures. a–e Comparison of the deposited model (left,
white), EMERALD model (center and right, blue), and higher resolution crystal
model (right, purple). a Antagonist ZK200775 in AMPA receptor (EMDB: 23292,
PDB: 7LEP, local resolution: 3.45Å) and its associated crystal model (PDB: 5ZG2).
b Molecule NBQX bound to the AMPA receptor (EMDB: 12805, PDB: 7OCE, local

resolution: 2.75 Å) and its associated crystal model (PDB: 6FQH). c DNMDP bound
to the SLFN12-PDE3A complex (EMDB: 23495, PDB: 7LRD, local resolution: 2.95 Å)
and its associated crystal model (PDB: 7KWE). d ADP bound to ClpB (EMDB: 21553,
PDB: 6W6E, local resolution: 4.42Å) and its associated crystal model (PDB: 5LJ8).
eGlutamate ligand in anAMPA receptor (EMDB: 12806, PDB: 7OCF, local resolution:
4.26 Å) and its associated crystal model (PDB: 3TKD).
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groups of our docked model make more interactions with basic resi-
dues that bind PIP2 in other structures of TRPM832. While the start of
the acyl chains are oriented away from the transmembrane region of
the protein, this is likely occurring because the chains are truncated.
Considering the phosphate placements in the depositedmodel do not
appear in the top 20 lowest-energy models for any trajectory and the
reasons above, EMERALD predicts a more accurate model of PIP2
binding.

Additional cases with confident alternative models are shown in
Fig. 4e–h. For the ATP analog in a structure of the ATP11C flippase33 the
gamma phosphate sticks out of density in the deposited model
(Fig. 4e) but is modeled into the density and interacting with a nearby
lysine residue in the docked model (Fig. 4f). Finally, our EMERALD
model of a small molecule GO52 bound to the CD4-HIV-1 Env SOSIP
complex34 confidently fits the amide and piperidine groups into the
map better than the deposited map, while keeping the hydrophobic
interactions as the deposited model (Fig. 4g, h).

We next identified cases where: (a) the EMERALD model and
deposited structure were different, and (b) half maps were available in
the EMDB. For these cases, models were refined into one half map and
validated against the other using real-space density correlation. When
comparing the deposited and EMERALD models (Supplementary
Fig. 3a), we found two instances where EMERALD’s model fits the
validation map worse (Supplementary Fig. 3b–e), seven cases where it
fits the validation map better (one of which is shown in Fig. 4d), and
saw equivalent quality for the remaining 53 cases.

Low-confidence unmatched cases show pseudo-symmetry or
weak density
While our analysis confidently discovers alternate ligand models, 58%
of docked molecules with similar quality to the deposited model have
medium or low confidence. We found that small molecules that have
pseudo-symmetry or have flexible moieties represent these low-
confidence cases because of the challenges they provide from their
often noisy and inconclusive density. In some instances, two or more
replicates of EMERALD agree on a substructure of the molecule (dark
blue, Fig. 5a, b)35, but differ in a rotamer of a functional group or a

flexible group (light blue, Fig. 5a, b). For other ligands, ambiguous
density leads to little agreement among the reference model and low-
energy Rosetta models (Fig. 5c, d). The authors for the allosteric
modulator of a dopamine receptor note the lack of confidence in the
deposited structure36, but have mutagenesis studies to confirm the
conformation modeled (Fig. 5c)37. However, one model found with
EMERALD aligns with their opposingmodel and fulfills an unexplained
region of density in the deposited model (Fig. 5d). Altogether, these
entries show the difficulty in interpreting cryoEM data at medium to
low resolution leading to ambiguous density explanations for a single
map, and the limits to automated ligand docking using our protocol.

Cases with worse ligand models show poor initial sampling
To learnwhat improvements could bemade to EMERALD in the future,
we looked at instances where EMERALD predicts a ligand with worse
metrics than the referencemodel.We found that these cases often had
density that is discontinuous or noisy, leading to incorrect skeletoni-
zation. For a ubiquinone binding electron transport protein38, the
density skeleton only finds density near the head group (Supplemen-
tary Fig. 4c). Without a complete skeleton, the initial population
struggles to find the deposited conformation, placing the head group
exposed to solvent (Supplementary Fig. 4b). In this case, if the 2.63 Å
data is instead truncated at 4.0 Å resolution, the density becomes
more continuous, and the skeleton generated by EMERALD matches
the ligand conformation much more closely (Supplementary Fig. 4d).
With a complete skeleton, the docked model is no longer worse than
the deposited model. The head group of the lowest-energy model
makes the same hydrogen bond interactions as the deposited model,
and the docked model improves density correlation by 0.03 (Supple-
mentary Fig. 4e). This underscores the importance of the initial sam-
pling step, especially when evaluating ligands with a large number of
rotatable bonds, and identifies areas for future upgrades in EMERALD.

Blind modeling of linoleic acid
To demonstrate our protocol’s utility in structure determination, we
used EMERALD to create a model for linoleic acid bound in a pre-
viously undetermined protein structure. Determining this model

Fig. 4 | Alternate conformations found by EMERALD in cases without crystal
structures. a, b The deposited structure (a) and EMERALD docked model (b) of
Ampicillin bound to Mtr pump (EMDB: 21228, PDB: 6VKS, local resolution: 3.84Å).
c, d The deposited structure (c) and EMERALD docked model (d) of PIP2 bound to
the TRMP8 ion channel (EMDB: 0487, PDB: 6NR2, local resolution: 4.07Å). e, f The

deposited model (e) and EMERALD model (f) of an ATP analog in flippase ATP11C
(EMDB: 30163, PDB: 7BSP, local resolution: 4.06Å). g, h The deposited model
(g) and EMERALD model (h) of GO52 bound to the CD4-HIV-1 Env SOSIP complex
(EMDB: 22049, PDB: 6X5C, local resolution: 4.11 Å).
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manually would be an arduous task considering high flexibility of the
ligand (Fig. 6a). Despite the difficulty of modeling the suspected
ligand, EMERALD predicts a small molecule conformation that fits the
density, makes an anchoring electrostatic interaction with a neigh-
boring arginine residue, and introduces little torsional strain
throughout the hydrophobic tail (Fig. 6b). Thisplacement is supported
by the structure of linoleic acid bound to a related protein39. Creating
themodel required nouser input once ligand restraintfilesweremade,
and the ease and accuracy whenmodeling linoleic acid prove the value
of EMERALD for structure determination.

Discussion
Here, we show a method EMERALD that is capable of accurately and
automatically producing deposition-ready smallmoleculemodels into
cryoEM maps without human bias during modeling. After being
benchmarked on over one thousand ligand-bound entries in the
EMDB, EMERALD identifies a confident solution in 62% of entries, in
some cases identifying alternate models supported by crystal struc-
tures and map validation. Moreover, we show this fully automated
protocol determining the conformation of linoleic acid in a previously
unsolved structure.

The method should be generally applicable to most ligands with
fewer than 25 rotatable bonds; larger ligands have too large of a search
space for this algorithm to effectively sample. Discontinuous or noisy
density also proved challenging, though modified map processing to
improve density connectivity was shown to rescue at least one of these
cases. Our current approach only models a single ligand at a time,
which complicates density assignment for structures with ligands close
together like electron transport proteins. Finally, Rosetta’s poor

handling of metal ions precludes modeling ions as cofactors or as
ligands themselves, leaving a significant groupofproteins unanalyzed40

Currently, our method requires the modeler to know the identi-
fication and approximate binding location of the ligand, a non-trivial
task when studying novel protein-ligand complexes. For more utility
during model building, expanding our method to recognize potential
unmodeled ligand blobs and quickly assess possible ligands to deter-
mine identity would be beneficial. As is, however, EMERALD offers an
automatic tool for ligand modeling that will prove helpful for the now
common scenario of ligand-bound structure determination through
cryoEM, and EMERALDwill serve as a valuable addition to the toolkit of
Rosetta EM modeling methods4,41,42 for model building under one
software package.

Methods
Creating the protein-ligand dataset
All single-particle EMDB entries with an associated ligand bound
structure at 6 Å nominal resolution or better as of September 03, 2021
were obtained. Given the specificity of trying to model ions and gly-
cans, structures with only these types of ligands were excluded from
the dataset. In addition, the set had several cases with small molecules
in close proximity. To simplify the docking situation, entries with two
or more ligands within the binding pocket as defined in our docking
protocol were also eliminated from the set. To only have entries with
complete macromolecule-ligand complex models that fit the EM
density well, structures with a density correlation below0.4 or that left
large regions of density unmodeled were dropped. When considering
the first instance of a unique ligand for each EMDB entry, there were a
total of 1704 total cases to process for docking.

Fig. 5 | Examples of low-confidence docked models where there may be ambi-
guity or heterogeneity in the data. a The deposited model of a phosphoserine
lipid in ATPase (EMDB: 21844, PDB: 6WLW, local resolution: 2.75 Å) and the
EMERALD-docked model (b) place the fatty acid tails in strong density, but have
differences in the head group. The lowest-energy models for all three triplicates

find the same lipid tail orientations (dark blue). c The deposited model of
LY3154207 bound to DRD1 (EMDB: 30395, PDB: 7CKZ, local resolution: 3.09Å) and
EMERALD-docked model (d) adopt different conformations. With low-resolution
density and few residue binding partners, both models are equally plausible.
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File preparation for docking
For accurate ligand docking, small molecules need proper protonation
states and partial charges. However, the protonation state assigned can
depend on the protonation assignment method. To determine the most
likely protonation state for a small molecule, we calculated protonation
states with three assignment tools—phenix.elbow43, openbabel44, and
dimorphite45—and selected the protonation state assigned with two or
more methods. If there was no agreement or failures during the assign-
ment, the phenix.elbow assignment was used for modeling. SDF files of
thefirst instance of each unique ligand-entry pairwere downloaded from
the PDB and used for input. For processing with phenix.elbow, all pos-
sible hydrogen atoms were added to the SDF file using openbabel, and
then hydrogen atomswere removed to the final protonation assignment
using phenix.elbow. To generate the protonation state with openbabel,
the hydrogen atoms were simply added to the downloaded SDF file at a
pH of 7.4. Instead of adding protons to a structure, dimorphite (which
utilizes RDKit46) protonated small molecules as SMILES strings, which
were then converted to a structure via openbabel. All three protonation
assignment methods agreed for 794 instances with two methods
agreeing for 157 cases (Supplementary Fig. 5).

With the protonation state assigned, a mol2 file with AM1-BCC
partial charges was generated with antechamber47,48. Finally, a Rosetta
specific parameters file was created for each ligand. Receptors were
cleaned by eliminating non-macromolecular atoms in the PDB file and
replacingmodified residueswith their unmodified correspondent. The
ligand to be docked was added to its position in the deposited struc-
ture and randomly translated 0.0–2.0 Å in any direction before
docking.

Density erosion and alignment
Toensure the quality of ligand conformations in the ligandpool during
the genetic algorithm, randomly perturbed ligands were aligned into
unmodeled density to generate the initial pool. Voxels in the density
map within 10 Å of the center of mass of the ligand but >2.5 Å from an
atom in the receptor were searched and eroded in a modified erosion
algorithm from previously described methods12,49. Briefly, voxels were

labeled as 0 if their associated density map value was below a density
value threshold and labeled as 1 if above it. The voxelswere searched in
order of density value, and voxels with neighboring voxels of 0 value
were removed from the skeleton. If removing a voxel breaks skeleton
continuity or if all of the voxel’s neighbors had a value of 0, then the
voxel was added back into the skeleton. This process was repeated
until a skeleton remained of voxels with high density values.

Blobs of density are often discontinuous and difficult to separate
from noise at lower resolution. To account for the low resolution,
skeletonizing density was performed in two successive steps with
increasing strictness on erosion. On the first pass, peaks in the density
were detected and eroded only considering voxels sharing a face with
each other. This keeps connections between density blobs that may be
disjointed. The remaining voxels were clustered into potential skeleton
networks by separating groupsof voxels that are 3 Å away fromanother
group. Only the largest network of voxels was chosen for further ero-
sion to eliminate noisy voxels. The largest group of voxels underwent a
second, stricter erosion that considered all voxels that share a face or
edge with each other, leading to a pseudo-atomic skeleton.

The skeleton was used during initial ligand conformer generation
of the genetic algorithm to ensure a starting pool of ligands that already
fit into the density. Small molecules were randomly translated and
perturbed in the binding pocket and half of the small molecules in the
initial poolwere aligned to the skeleton. For alignment, the ligandswere
centered on the center ofmass of the skeleton, and then atom-skeleton
point pairs were determined. The shortest distance of an atom-skeleton
pair while searching over all pairs was found, and this search was
repeated until either all atoms or all skeleton points had a unique
pairing. For the coordinates in each atom-skeleton pair, the topped out
harmonic function in Eq. (1) was used to restrain ligand atoms:

Eij = 36ð1 � e�xij
2=9Þ ð1Þ

where Eij is an energy penalty applied and x is the distance in Ang-
stroms between the atom-skeleton pair i, j. The ligand is aligned into
the density over two stages of energy minimization with 20 and
15 short rounds of minimizations with the atom-skeleton restraints
updated after each round.

Docking protocol and analysis
An initial population of 100 ligands were generated by randomly per-
turbing across a six-fold axis and the torsion angles of the ligand to be
docked. Half of the initial ligands were aligned to the density as
described above, while the other half of the population were selected
from the top 50 models of 5000 random ligand conformations to
ensure diversity in the initial population. The population initialization
contributes the longest to EMERALD’s completion time. All side chains
within 5 Å plus the radius of the ligand of the initial ligand center of
mass were also considered for optimization. The ligand population
and nearby side chains were optimized over 10 generations of a
genetic algorithm using default parameters in GALigandDock and a
scoring function with a high electron density score weight of 100 to
evaluate a ligand’s fit into density. The top 20 ligand conformers at the
end of the GA were further optimized along with nearby macro-
molecule atoms using a cartesian minimization in Rosetta. Example
scripts for running density-guided ligand docking are provided below.

All entries were run in triplicate and the lowest-energy model for
each individual run was further analyzed for docking success. Only
caseswith 25 or fewer torsion angleswere analyzed as the search space
of ligands with more torsions becomes difficult to fully explore during
a GA. This, along with losing cases from inherent failure during ligand
processing, left 1053 cases to analyze. Because of a low confidence in
the referencemodels due to their low resolution, dockedmodels were
notdirectly compared to their respective referencemodels. Instead, all
reference models were relaxed into their EM density map in Rosetta

Fig. 6 | Blind modeling of linoleic acid. a Unmodeled density for linoleic acid
(local resolution: 2.9 Å). b Output model from density-guided docking. The model
makes an anchoring electrostatic interaction with a nearby arginine residue and
models the tail strain-free into the density.
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using the cartesian minimization used after the genetic algorithm.
Alongwith a symmetry-independent RMSDvalue, dockedmodelswere
compared to reference models by the number of residues that make
hydrogen bondswith the ligand and a density correlation calculated in
Rosetta. These metrics were used to categorize docking results as
matches (docked pose within 1 Å of relaxed reference model); non-
match, similar quality (>1 Å RMSD, density correlationdock—density
correlationdeposited > 0.025 and hydrogen bondsdock—hydrogen
bondsdeposited > −1); or non-match, worse quality (>1 Å RMSD, density
correlationdock—density correlationdeposited < −0.025 or hydrogen
bondsdock—hydrogen bondsdeposited < −1). Further support for docking
success was calculated by determining the convergence of lowest
energy ligand models across the triplicate runs. The distance between
atom pairs across models were calculated and results were further
divided into those with two or more trajectories having their lowest
energymodelswithin 1 ÅRMSD,more thanwithin 1 Å for 60%of atoms,
or within 1 Å for fewer than 60% of atoms.

The resolution of cryoEM maps often varies from the nominal
resolution of a map, so to analyze the performance of EMERALD
against map resolution, we compared docking results to local resolu-
tion rather than nominal resolution. Maps with local resolution cal-
culations were generated with MonoRes via the Xmipp software
package50. The deposited maps were filtered with a Gaussian kernel
with a sigma of 0.02 times the map dimensions. Binary masks were
created using the filtered maps by keeping voxels with a value above
0.05 times the maximum voxel value in the filtered map. With the
binary masks, local resolution estimate maps for all instances were
created. To calculate the local resolution surrounding the modeled
ligand, the local resolution of all voxels within 5 Å of the ligand were
averaged. Voxels with zero local resolution values were not included in
the average. Considering that ligand binding sites are often less-
resolved areas of a map, the nominal resolution was reported if the
calculated local resolution of a map around the ligand was better than
1 Å than the nominal resolution since an error likely occurred.

The following command inRosettawas used for the low-passfilter
of map EMDB-30475:

$ROSETTA/main/source/bin/density_tools.default.
linuxgccrelease -truncate_hires 4.0 -mapfile emd_30475.
map -truncate_map

Comparison of docked and EM models to crystal structures
For each ligand-protein pair in the EMDB dataset, the PDB was sear-
ched for structures solved by X-ray crystallography at 2.6 Å resolution
or better with at least 50% sequence identity to the protein and con-
taining the same ligand. Results from the PDB were filtered further to
only contain entries with similar ligand binding pockets as the corre-
sponding EM model. The crystal models were aligned to the EM
models by aligning all residues within 10Å of the ligand using match-
maker in UCSF Chimera51. Once aligned, the density correlations of the
ligands in the crystalmodelswere calculated inRosetta. All entrieswith
a pocket-aligned RMSD > 1.5 Å and a ligand density correlation lower
than 0.1 of the EM model were discarded for being too unalike. This
gave 129 ligand-bound EMDB structures with similar crystal models.
The 100 cases from this set where EMERALD converged on the same
model were analyzed by RMSD to the ligand in the aligned
crystal model.

Half-map validation of docked models
Half maps for the instances with the non-match, similar or better
quality designation and EMERALD convergence were obtained from
the EMDB when available, giving 62 cases. Maps were sharpened with
phenix.auto_sharpen52, and the deposited and docked models were
refined into the first half map using a dualspace refinement in Rosetta.

The density cross correlations for both ligand refined models were
calculated with the first and second half map. If the difference in
density correlation with the second map was >0.05 between the two
models, the model with the higher correlation was considered better.

Visual analysis and images
Figures of ligand-boundmodels and their EMmaps were created using
UCSFChimera53. Maps displayed in figures were changed to 1.0Å using
the vop command in Chimera for visual consistency. Plotting of data
was performed using the ggplot2 package in R54.

Example EMERALD scripts
Example Rosetta XML script for docking:

<ROSETTASCRIPTS>
<SCOREFXNS>
<ScoreFunction Name=“relaxscore” weights=“beta_gen

pot”>
<Reweight scoretype=“elec_dens_fast” Weight=“100”>
<Reweight scoretype=“gen_bonded” Weight=“1.0”>
<Reweight scoretype=“coordinate_constraint” Weight=“1.
0”>
</ScoreFunction>
</SCOREFXNS>
<MOVERS>
<SetupForDensityScoring Name=“setupdens” >
<LoadDensityMap Name=“loaddens” mapfile=“%%map%%” >
<GALigandDock Name=“dock” scorefxn=“relaxscore” ngen=
“10” npool=“100” rmsdthreshold=“1.0” smoothing=“0.0”
ramp_schedule=“0.1,1.0” grid_step=“0.325” padding=“5.
0” nativepdb=“%%native%%” sidechains=“auto” final_exact_
minimize=“bbsc” random_oversample=“100” use_pharmaco
phore=“false” skeleton_threshold_const=“5.0” neighbor
hood_size=“7” sample_ring_conformers=“1” reference_
pool=“map”>
</MOVERS>
<PROTOCOLS>
<Add mover=“setupdens”>
<Add mover=“loaddens”>
<Add mover=“dock”>
</PROTOCOLS>
<OUTPUT scorefxn=“relaxscore”>
</ROSETTASCRIPTS>

Example command line for docking

$ROSETTA/main/source/bin/rosetta_scripts.linuxgc
crelease \
-in:file:extra_res_fa $ligand_params_file \
-in:file:overwrite_database_params \
-gen_potential \
-database $ROSETTA/main/database \
-score::gen_bonded_params_file scoring/score_functions/
generic_potential/generic_bonded.round6p.txt \
-s $input_model \
-overwrite \
-multi_cool_annealer 10 \
-parser:protocol $xml:file \
-parser:script_vars map=$em_map \
-atom_mask 2 \
-sliding_window 1 \
-edensity::score_sliding_window_context \
-edensity::mapreso $reso \
-edensity::grid_spacing 1.0 \
-no_autogen_cart_improper
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. PDB accession codes used in this
manuscript are: 7LEP, 5ZG2, 7OCE, 6FQH, 7LRD, 7KWE, 6W6E, 5LJ8,
7OCF, 3TKD, 6VKS, 6NR2, 7BSP, 6X5C, 6WLW, 7CKZ, 7M5E, 5VYH,
7OJ8, 6UKJ, 7CUW. EMDB accession codes used in this manuscript are:
23292, 12805, 23495, 21553, 12806, 21228, 0487, 30163, 22049, 21844,
30395, 23674, 12939, 20806, 30475. Models with hydrogen atoms for
EMERALD-dockedmodels in allmainfigures (Figs. 3–6) are provided in
Supplementary Data 1. Source data for Figs. 2B, C, and Supplementary
Fig. 3A are provided with the paper. The lowest energy models for all
cases for each individual EMERALD run are available for download at
https://files.ipd.uw.edu/pub/EMERALD/EMERALD_top1_models.tar.gz
[https://files.ipd.uw.edu/pub/EMERALD/EMERALD_top1_models.tar.
gz]. Source data are provided with this paper.

Code availability
All methods described are available as part of Rosetta, using weekly
releases after February 5, 2023 (version 2023.06 or later). The Rosetta
XML files and flags for running all the refinements discussed in this
manuscript are included in Methods. A demo for running EMERALD is
included in Supplementary Data 2.
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