Table 3 Comparative assessment of candidate biomarker multivariate models at a fixed specificity and sensitivity for the diagnosis of liver injury

From: Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans

Metric

Model

Threshold

Confirmatory cohort

Replication cohort

Specificity ≥ 0.90

Specificity

Sensitivity

TN

TP

FN

FP

Specificity

Sensitivity

TN

TP

FN

FP

Logistic regression

FBP1 + GSTA1

0.50

0.92

0.31

70

10

22

6

0.90

0.13

37

3

21

4

FBP1 + GSTA1 + LECT2

0.45

0.91

0.56

69

18

14

7

0.83

0.33

34

8

16

7

FBP1 + CES1 + LECT2

0.52

0.91

0.47

69

15

17

7

0.85

0.21

35

5

19

6

Random forest

FBP1 + LECT2

0.46

1.00

1.00

76

32

0

0

0.83

0.42

34

10

14

7

FBP1 + LECT2 + CPS1

0.46

1.00

1.00

76

32

0

0

0.76

0.46

31

11

13

10

Sensitivity ≥ 0.90

Logistic regression

FBP1 + GSTA1

0.14

0.36

0.91

27

29

3

49

0.29

0.96

12

23

1

29

FBP1 + GSTA1 + LECT2

0.14

0.39

0.91

30

29

3

46

0.46

0.88

19

21

3

22

FBP1 + CES1 + LECT2

0.16

0.41

0.91

31

29

3

45

0.46

0.79

19

19

5

22

Random forest

FBP1 + LECT2

0.46

1.00

1.00

76

32

0

0

0.83

0.42

34

10

14

7

FBP1 + LECT2 + CPS1

0.46

1.00

1.00

76

32

0

0

0.76

0.46

31

11

13

10

  1. Each model compared onset non-DILI (NDO) cases versus DILI cases (DO) and was trained using the confirmatory cohort and validated using the replication cohort.
  2. TP true positive, TN true negative, FP false positive, FN false negative.