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A mass spectrum-oriented computational
method for ionmobility-resolved untargeted
metabolomics

Mingdu Luo1,2, Yandong Yin1, Zhiwei Zhou 1, Haosong Zhang1,2, Xi Chen1,2,
Hongmiao Wang1,2 & Zheng-Jiang Zhu 1,3

Ion mobility (IM) adds a new dimension to liquid chromatography-mass
spectrometry-based untargeted metabolomics which significantly enhances
coverage, sensitivity, and resolving power for analyzing the metabolome,
particularly metabolite isomers. However, the high dimensionality of IM-
resolved metabolomics data presents a great challenge to data processing,
restricting its widespread applications. Here, we develop a mass spectrum-
oriented bottom-up assembly algorithm for IM-resolved metabolomics that
utilizes mass spectra to assemble four-dimensional peaks in a reverse order of
multidimensional separation. We further develop the end-to-end computa-
tional frameworkMet4DX for peak detection, quantification and identification
of metabolites in IM-resolved metabolomics. Benchmarking and validation of
Met4DX demonstrates superior performance compared to existing tools with
regard to coverage, sensitivity, peak fidelity and quantification precision.
Importantly, Met4DX successfully detects and differentiates co-eluted meta-
bolite isomers with small differences in the chromatographic and IM dimen-
sions. Together, Met4DX advances metabolite discovery in biological
organisms by deciphering the complex 4D metabolomics data.

Mass spectrometry-based untargeted metabolomics has become
increasingly successful in providing a comprehensive, unbiased and
quantitative characterization of metabolites in a biological system
under investigation1,2. However, the enormous chemical and the
compositional diversity of metabolome presents a grand challenge in
separation and identification of metabolites. This challenge is parti-
cularly prominent for isomeric metabolites, which tend to co-elute on
chromatography and share similar fragments in MS/MS spectra3,4.
Recently, liquid chromatography–ion mobility–mass spectrometry
(LC–IM–MS) has been emerging as a promising technology for four-
dimensional untargeted metabolomics5,6. Ion mobility adds a new
dimension of separation to LC–MS. After ionization, ion mobility
separatesmetabolite ions according to their sizes, shapes, and charges
in gas phase on the millisecond timescale, which effectively improves

the resolving power and selectivity without adding to analysis times7–9.
The ion mobility-derived collision cross-section (CCS) is a valuable
physiochemical property for metabolite identification with high
reproducibility across different instruments10–13. The hyphenation of
IM with LC and tandem MS provides a promising strategy for the
multidimensional analysis of the complex metabolome13–16. This tech-
nology has demonstrated distinct advantages over conventional
LC–MS, including improved separation and peak capacity, capability
to separate and differentiate metabolite isomers, and generation of
four-dimensional (4D) data (i.e., m/z, retention time, CCS, and MS/MS
spectrum) for metabolite identification6,17.

The high complexity of ion mobility-resolved untargeted meta-
bolomics presents a great challenge to data processing. In particular,
peak detection becomes more challenging in ion mobility-based four-
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dimensional data, which restricts the broad application of 4D meta-
bolomics. Compared to increasing software availability in ionmobility-
enhanced 4D proteomics18–21, very few software tools were developed
for 4D metabolomics22–24. Mass spectra generated from ion mobility-
resolved untargeted metabolomics are structurally complex because
of the additional ionmobility dimension. For 4Dpeakdetection in such
complex dataset, the top-down based dimensionality reduction is
often employed. For example, in 4Dproteomics, software tools suchas
MaxQuant18 and IonQuant19 slice the 4D data space (m/z, retention
time, ion mobility, and intensity) into multiple 3D sub-spaces (m/z,
retention time, and intensity) along the ion mobility dimension (Sup-
plementary Fig. 1a). Then, peak detection is performed in each 3D sub-
space using the conventional peak detection algorithm in LC–MS. This
strategy finally tracks along the ion mobility dimension and integrates
the same m/z-RT peaks in multiple 3D sub-spaces to form a 4D peak.
Alternatively, in 4D lipidomics, MS-DIAL22 developed a top-down
compressing strategy for dimensionality reduction. Specifically, the
4D data space was compressed into one 3D space (m/z, retention time,
and intensity) by summing the ionmobility dimension (Supplementary
Fig. 1b). Peak detection is first performed in retention time dimension.
For each detected LC peak, a second peak detection is applied in ion
mobility dimension. In summary, current 4D peak detection methods
aim to convert 4D data into 3D data through the top-down based
dimensionality reduction. Although dimensionality reduction sim-
plifies the data structures, it also introduces signal masking and arti-
facts, and may reduce the peak detection sensitivity. To foster a more
widespread application of 4D untargeted metabolomics and accel-
erate its development, more informatic solutions are urgently
required.

The LC–IM–MS empowered 4D metabolomics enables to sequen-
tially separate metabolites according to the required timescales from
LC, IM to MS (Fig. 1a). Inspired by the sequential separations, in this
work, we developed a mass spectrum-oriented bottom-up assembly
algorithm for 4D peak detection. The bottom-up assembly strategy
considers a mass spectrum (MS1 or MS2) as the smallest unit in 4D
dataset, and builds its related elution peaks in IM dimension and LC
dimension, respectively, in a reverse order of multidimensional
separation. We refer to this as a reverse engineering strategy from data
acquisition. With our 4D peak detection algorithm, we further devel-
oped an end-to-end computational framework, namely Met4DX, for
peak detection, quantification and identification of metabolites in 4D
untargeted metabolomics (Fig. 1b–e). We demonstrated that Met4DX
substantially improved 4D peak detection coverage and sensitivity in
different biological samples. Performances ofMet4DXwere thoroughly
benchmarked and validated with other existing tools, including cover-
age, sensitivity, and peak fidelity as well as quantification precision.
Importantly, Met4DX enabled to detect and differentiate co-eluted
isomeric metabolites even with small differences on LC and IM
separations. Finally, we demonstrated thatMet4DX supported accurate
identification of metabolites, in particular for co-eluted metabolites. In
summary, Met4DX is a mass spectrum-oriented end-to-end computa-
tional tool for peak detection, quantification, and identification of
metabolites in 4D untargeted metabolomics, which will empower the
widespread applications of ion mobility-resolved metabolomics.

Results
The Met4DX workflow
Met4DX provides an end-to-end computational workflow for peak
detection, quantification, and metabolite annotation in ion mobility-
enhanced 4D untargeted metabolomics (Fig. 1 and Supplementary
Fig. 2). AMS spectrum is the smallest unit in 4D data acquisition, while
the MS2 spectrum is highly essential for metabolite annotation. Thus,
Met4DX starts the 4D data processing from each individual
MS2 spectrum, and includes 4 major modules: (1) MS2 spectral dere-
plication; (2) the bottom-up assembly algorithm for 4Dpeakdetection;

(3) 4D peak alignment and grouping; and (4) multidimensional match
for metabolite annotation.

In data-dependent MS2 acquisition (DDA), for example, parallel
accumulation serial fragmentation (PASEF)-DDA in trapped ion mobi-
lity mass spectrometer (TIMS)25, the same precursor ion is usually
chosen and fragmentated multiple times to generate redundant
MS2 spectra. To address this issue, Met4DX first performs
MS2 spectral dereplication (Fig. 1b). Specifically, all acquired
MS2 spectra are binned using the 3D information of their precursor
ions (MS1), including m/z, retention time, and ion mobility (see
Methods). For each bin, 3D distances between any of two MS2 spectra
are calculated by integrating the similarities of ion mobility and RT of
their precursor ions and MS2 spectra. Then, a hierarchical cluster
analysis (HCA) is applied using the 3D distances amongMS2 spectra in
thebin, and generates theuniqueMS2 clusters for eachbin. Finally, the
MS2 spectrum with the highest spectral intensity (termed as unique
MS2 spectrum) is selected to represent the cluster. The dereplication
step significantly reduces the redundancy of MS2 spectra for sub-
sequent peak detection.

Second, we developed a MS spectrum-oriented bottom-up
assembly algorithm for 4Dpeakdetection, which is the coremodule of
Met4DX (Fig. 1c). The 4D peak detection is performed via 5 steps
starting from individual MS2 spectrum. In step 1, for each unique
MS2 spectrum,Met4DX searches its precursorMS1 data point in them/
z-ion mobility data frame with the precursor m/z, ion mobility, and
frame index recorded in the mgf file. In step 2, the adjacent MS1 data
points from the samem/z-ionmobility frame are retrieved to assemble
a possible ion mobility peak. Then, peak detection is performed in ion
mobility dimension. If a successful extracted ion mobilogram (EIM)
peak is obtained, in step 3, MS1 data retrieval and assembly of EIM
peaks are repeatedly extended to the adjacentm/z-ionmobility frames
(i.e., EIM extension). After that, in step 4, all MS1 data points from EIM
peaks in each mobility frame are summed up to rebuild the ion chro-
matogram inLCdimension. Similarly, peakdetection is also performed
in the assembled ion chromatogram (i.e., EIC detection). If a successful
EIC peak is obtained, in step 5, a 4D peak is constructed with recorded
apex and boundary information in EIM and EIC detections. Peak
intensity is generated from 3D peak volume. Most importantly,
Met4DX employs a serial of criteria during 4D peak detection to
reduce false positive and improve peak fidelity (see Methods). Col-
lectively, peak detection inMet4DX starts fromoneMS2 spectrum and
constructs the 4D peak in a reverse order of the sequential separation
in LC–IM–MS. Therefore, we refer our peak detection as a bottom-up
assembly strategy.

Third, 4D peak alignment and grouping is performed to combine
multiple samples for quantification (Fig. 1c). Specifically, metabolic
peaks are matched between samples using 4D information (m/z,
retention time, mobility, and MS/MS spectrum). Matched peaks are
employed as landmarks to construct a retention time regressionmodel
for retention time correction and peak alignment. A density-based
peak grouping strategy is further applied with the distribution of m/z
and ion mobility values. Peak match between samples is also per-
formed to overcome the stochasticity during data acquisition. Finally,
gap filling is applied for missing values through targeted extraction. A
4D peak table is generated for metabolite quantification in multiple
samples and groups, while related 4D information for each feature (m/
z, retention time, CCS, andMS/MSspectrum) is also outputted. Fourth,
metabolite annotation is performed through multidimensional match
(Fig. 1d). In Met4DX, we curated a metabolite library of 135,638
metabolites collected fromKEGG andHMDBwith calculatedm/z, CCS,
RT, and MS/MS spectra (experimentally acquired or in silico pre-
dicted). In summary, Met4DX is a MS spectrum-oriented computa-
tional tool to provide an end-to-end data processing for 4D untargeted
metabolomics. Met4DX is now freely available as an R package in
GitHub.
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4D peak detection
We demonstrated 4D peak detection of Met4DX with NIST human
urine samples (n = 6 technical replicates) acquired using TIMS with
PASEF-DDA technology. In positive mode, a total of ~25,000
MS2 spectra acquired from each sample were inputted into Met4DX
for 3D binning and MS2 spectral dereplication (Fig. 2a). Most clusters
had only one unique MS2 spectrum (~60%; Supplementary Fig. 3). A
total of ~8600 unique MS2 spectra were generated for each replicate
(64% reduction; Fig. 2b). With them as inputs, the MS2 spectrum-
oriented bottom-up assembly was performed for 4D peak detection in
each sample, and ~6700 features were successfully detected (Fig. 2c).
On average, 78% of unique MS2 spectra enabled to achieve the suc-
cessful de novo assembles of 4D features. Finally, the application of
peak alignment and grouping generated a total of 7287 features with a

minimal fraction of 0.5 applied (Fig. 2d). The negative mode data is
shown in Supplementary Fig. 4. In negative mode, as high as 98% of
unique MS2 spectra enabled to achieve the successful de novo
assembles of 4D features.

More specifically, an example of kynurenic acid was employed to
demonstrated the bottom-up assembly algorithm for 4D peak detec-
tion in Mex4DX (Fig. 2e). After MS2 dereplication, a unique MS spec-
trum (m/z = 190.0500Da; mobility,1/K0 = 0.640 V·s/cm2; frame index =
1056) was generated to initiate peak detection. Met4DX first searched
and retrieved its precursor data point with m/z and mobility informa-
tion in the frame 1506. Then, adjacent MS1 data points in the same
frame were also retrieved to assemble the IM peak. The peak apex was
determined at 1/K0 of 0.640 V·s/cm2. The same IM peak assembly was
repeatedly implemented in adjacent frames (frame index 966 – 1146;

Fig. 1 | The Met4DX workflow for ion mobility-resolved untargeted metabo-
lomics. a The multidimensional separations and measurements of metabolites
using LC–IM–MS/MS technology. b–e Four major modules in Met4DX:
b MS2 spectral dereplication; c the bottom-up assembly algorithm for 4D peak

detection; d 4D peak alignment and grouping; and e multidimensional match for
metabolite annotation. The black dot in (b) represents the precursor ion of an
MS2 spectrum.
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Fig. 2e). All IM peaks in these frames were summed up to assemble the
corresponding EIC peak in LC dimension, and the EIC peak apex was
determined as 190 s. Finally, peak intensity was integrated from the
peak volume. This 4D peak was identified as kynurenic acid with four-
dimensional match (m/z, CCS, RT, and MS/MS) and validation by the
chemical standard (Supplementary Fig. 5).

Performance benchmark
The MS spectrum-oriented bottom-up assembly strategy in Met4DX
enables 4D peakdetectionwith high coverage and sensitivity. Here, we
further employed five different types of biological samples (NIST
human urine, NIST human plasma, mouse brain tissue, mouse liver
tissue, and 293T cells) to evaluate peak detection performance of
Met4DX, including coverage, sensitivity, and peak fidelity. Other
software tools such as MS-DIAL and MetaboScape (Bruker Daltonics,
Bremen, Germany) were used for comparison. Met4DX achieved a
total of 6500–8700 and 4400–6800 features in positive and negative
modes, respectively, for different sample types (Fig. 3a, b, Supple-
mentary Data 1–3). The benchmark analyses demonstrated that
Met4DX significantly improved peak coverage by 2–3 folds compared
to MS-DIAL and MetaboScape. In human urine samples, we demon-
strated that ~70% features reported in MS-DIAL or MetaboScape were
also found inMet4DX (Fig. 3c, d; seeMethods). The similar resultswere
also obtained in other samples (Supplementary Fig. 6). To clarify, we
only counted 4D peaks with MS2 spectra obtained from MS-DIAL and
MetaboScape for benchmark. To demonstrate high sensitivity, we
serially diluted the human urine samples by 10 to 1000 times (10X,

100X, and 1000X), and processed the data with different software
tools (Fig. 3e, f). Met4DX provided significantly higher sensitivity of
peak detection in all diluted samples. In particular, Met4DX enabled to
detect a total of 2951 peaks in 1000X samples. As a comparison, only
~600 peaks were detected from the same samples using MS-DIAL and
MetaboScape (Fig. 3e). Thus, in low abundant samples, Met4DX sig-
nificantly increased the peak detection coverage by ~5 folds. The
similar results were also obtained for negative mode (Fig. 3f).

We further verified the peak fidelity of 4D peaks obtained from
Met4DX through both manual check and the deep learning-
empowered software EVA developed by Huan group26. A 4D peak
with good EIC or EIM peak shapewas recognized as a true 4Dpeak.We
selected the replicate sample with the highest peak intensity for eval-
uating peak fidelity. For NIST human urine samples, we exported and
manually checked 7287 EIC and 7287 EIM peaks in positive mode, and
6889 EIC and 6889 EIMpeaks in negativemode, respectively. For NIST
human urine samples, 97% and 93% of 4D peaks were manually
checked with good peak fidelity in positive and negative modes,
respectively (Fig. 3g). Also, EVA checked the same samples and
reported the similar peak fidelity rates of 96% and 95% in positive and
negative mode, respectively. In addition, 93% and 89% of peak fidelity
evaluations were consistency between manual check and EVA in
positive and negative modes, respectively (Supplementary Fig. 7).
Moreover, EVA was used to evaluate the peak fidelity of all biological
samples, and showed that Met4DX achieved high rates of peak fidelity
(92% ± 5%) in all biological samples (Fig. 3g, Supplementary Data 4).
MS-DIAL and MetaboScape also achieved similarly high rates of peak
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fidelity (97% ± 3% and 96% ± 3%, respectively; Supplementary Fig. 8 and
Supplementary Data 5 and 6). For computational resources compar-
ison, we run these software tools with NIST humanurine data (positive
mode) on a desktop with Intel Core i7-12700 (2.10GHz; 12 CPU cores;
20 logical cores) and 32 GB memory. For computational time, MS-
DIAL, MetaboScape, and Met4DX took 3, 6, and 20min to finish the
data processing. For memory usage, MS-DIAL, MetaboScape, and
Met4DX occupied ~4–6 GB, ~1–1.5 GB, and ~6–9 GB, respectively. In
general, the computing resource required byMet4DX is affordable for
most users. Collectively, we demonstrated that Met4DX enables a
high-coverage 4D peak detection through the bottom-up assembly
strategy, and achieves peak detection with high sensitivity and peak
fidelity.

Quantification precision
To evaluate the quantification precision ofMet4DX,we ran it, aswell as
MS-DIAL and MetaboScape on 6 technical replicates of human urine
samples. The distribution of relative standard deviations (RSDs) of
peak intensities indicates that Met4DX had substantially higher
quantification precision compared to MS-DIAL and MetaboScape
(Fig. 4a–c), with median RSDs of 16.7%, 22.0%, and 17.9%, respectively.
Also, percentages of detected peaks with RSD less 30% were 81%, 61%,
and 67% for Met4DX, MS-DIAL, and MetaboScape, respectively.

Exemplified scatter plots of 4D feature intensities between two repli-
cates were displayed for Met4DX and MS-DIAL (Fig. 4d, e). Met4DX
clearly demonstrated fewer outliers and higher Pearson correlation
than MS-DIAL. All pairwise Pearson correlations between replicates
were demonstrated as a heat map for both Met4DX and MS-DIAL
(Fig. 4f), showing consistently higher correlations forMet4DX (median
0.974) compared to MS-DIAL (median 0.919). The similar results were
also obtained in negative mode data of human urine samples (Sup-
plementary Fig. 9). However, we found that MetaboScape had sig-
nificantly lower pairwise Pearson correlations (median 0.305) due to
the high portions of missing values (Supplementary Fig. 10). Further-
more, we evaluated the quantitation linearity of Met4DX. A mixture of
20 natural products was spiked into NIST human urine samples in a
4-fold dilution series. All of natural products measured by LC–IM–MS
and detected by Met4DX showed good quantitation linearity (see
Methods, Supplementary Fig. 11 and Supplementary Data 7).

Metabolite annotation and isomer differentiation
Met4DX is an end-to-end computational tool for 4D untargeted
metabolomics, which provides metabolite annotation through multi-
dimensionalmatch with themetabolite library. In Met4DX, we curated
a metabolite library of 135,638 metabolites collected from KEGG and
HMDBwith calculatedm/z, CCS, RT, andMS/MS spectra (experimental
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or in silico predicted; see Methods and Supplementary Fig. 12a).
According to the definitions of Metabolomics Standards Initiative
(MSI)27, we classified the confidence levels ofmetabolite annotations in
Met4DX as follows: level 1, 4D match with MS1, CCS, experimental RT,
and experimentalMS2 spectra from in-house chemical standards; level
2, 4D match with MS1, CCS, predicted RT, and experimental
MS2 spectra from public libraries; level 3, 4D match with MS1, CCS,
predicted RT, and predicted MS2 spectra (Fig. 5a and Supplementary
Fig. 12b). With features from Met4DX, we annotated 339 and 219 fea-
tures with level 1 annotations, 163 and 55 features with level 2 anno-
tations, and 1636 and 1309 features with level 3 annotations in mouse
liver samples in positive and negative modes, respectively (Fig. 5b).
The ion mobility-enhanced metabolite annotations of other biological
samples were provided in Supplementary Fig. 13 and Supplemen-
tary Data 8.

Isomericmetabolites are common in biological samples, and tend
to co-elute on chromatography and share similar fragments in MS/MS
spectra3,4. The ion mobility-enhanced untargeted metabolomics is
particularly prominent for differentiating isomeric metabolites. In our
metabolite library, 125,173 out of 135,638 metabolites (92%) have at
least one isomer (with the same formula). A total of 1,648,4071 pairs of
metabolite isomers were generated. We calculated RT and CCS values
for allmetabolites and found that LC could resolve 18% of isomer pairs
(ΔRT ≥ 10 s; Fig. 5c). The addition of IM significantly improved the
resolving power, and 39% of isomer pairs could be fully resolved and
separated on baseline by IM (ΔCCS ≥ 4%; Fig. 5c). Most modern com-
mercial IM-MS instruments provide an IMresolving power (ca. 50–100,
CCS/ΔCCS) that separates metabolite isomers with a half-peak-width
when their ΔCCS was larger than 2%28,29. With this resolution, 62% of
isomer pairs could be differentiated with LC×IM dual separations
(ΔCCS ≥ 2%). For isomeric pairs with 0.5% of ΔCCS, the separation can
only be achieved when the IM resolving power reaches >25030. In this
case, 92% of isomeric pairs could be resolved (Fig. 5c). We also
demonstrated how LC separation differentiated isomeric metabolites

with different resolutions in the metabolite library (Supplementary
Fig. 14). By comparison, LC showed relatively poorer separation than
IM. However, the combination of LC and IM further improved the
differentiation of isomeric metabolites.

We further evaluated whether Met4DX enabled to sensitively
detect and differentiate the isomeric metabolites in real 4D metabo-
lomics data. For example, a total of 6440 4D features were detected by
Met4DX innegativemodeofmouse liver samples. Among them, a total
of 3033 pairs of co-eluted isobaric features were successfully detected
and differentiated byMet4DX (Δm/z ≤ 10 ppm and ΔRT≤ 10 s; Fig. 5d).
As a comparison, MS-DIAL and MetaboScape only detected 827 and
1262 pairs, respectively (Fig. 5d). Similar results were also obtained in
positive mode of mouse liver samples (Supplementary Fig. 15).
Therefore, Met4DX increased the coverage of co-eluted isobaric fea-
tures by 2–4 folds. TheΔCCSdistributionof co-eluted isobaric features
detected by Met4DX were demonstrated in Fig. 5e. Among them, 1654
pairs (54%) had ΔCCS larger than 4%, which were fully separated by IM
at baseline. In addition, 513 and 180 pairs had ΔCCS in the ranges of
2–4% and 1–2%, respectively. An example pair of M206T169C147 and
M206T166C155 discriminated by Met4DX was shown in Fig. 5f. This
pair of co-eluting isobaric feature pairs had ΔCCS of 4.8%, fully sepa-
rated by ion mobility at baseline. The detailed bottom-up assembly
based 4D peak detection was provided in Supplementary Fig. 16. With
a smaller ΔCCS of 2.6% and separation at half-peak-height by IM, fea-
ture pairs of M692T122C236 and M692T122C242 were also dis-
criminated by Met4DX (Fig. 5g and Supplementary Fig. 17). Another
isobaric feature pair with IM separation at half-peak-height and ΔCCS
of 2.3% in positive mode were shown in Fig. 5h and Supplementary
Fig. 18. As bottom-up assembly peak detection avoided dimensionality
reduction, Met4DX enabled to differentiate small CCS difference and
had high sensitivity on isobaric feature discrimination. Therefore,
Met4DX also enabled to discriminate co-eluted pairs of isobaric fea-
tures with ΔCCS as small as 1–2% (Fig. 5i and Supplementary Fig. 19),
which could only be partially separated by IM and better resolved with
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LC×IM dual separation in LC–IM–MS (Supplementary Fig. 20). As
comparison, MS-DIAL and MetaboScape failed to detected these iso-
baric feature pairs in Fig. 5f–i (Supplementary Fig. 21), which proved
the superiority of Met4DX for differentiation of isomeric metabolites.

Interestingly, as many as 686 pairs of isobaric features with ΔCCS
less than 1% were also successfully detected by Met4DX. The marginal
ΔCCS indicated that they could not be resolved by IM. We calculated
ΔRT of these isobaric feature pairs, and demonstrated that they were
resolved by LC×IM dual separations and successfully detected by
Met4DX. For example, the isobaric feature pairs ofM765T377C255 and
M765T383C255 in Supplementary Fig. 22a had the same CCS values.

Met4DX discriminated them in the step of EIC detection during the
bottom-up assembly based 4D peakdetection. Another example of co-
eluted isobaric feature pairs of M1023T495C265 and M1023T497C267
were also shown in Supplementary Fig. 22b. With ΔCCS of 0.7% and
ΔRT of 1.1 s, this pair were also successfully discriminated by Met4DX.

In multidimensional metabolomic analyses using LC–IM–MS, LC
separation also played a vital role in separation of isomericmetabolites
in real biological samples. For example, in the mouse liver samples,
there were 3691 features with at least one IM co-eluting isobaric fea-
ture (Δm/z≤ 10 ppm and ΔCCS ≤ 2%), generating a total of 14,528 IM
co-eluting isobaric feature pairs. Among them, 12,690 pairs (87%) had
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ΔRT larger than 20 s (Supplementary Fig. 23). These results proved the
importance of LC separation in multidimensional metabolomics using
LC–IM–MS.

The detection of co-eluted isobaric feature pairs by Met4DX
facilitated accurate annotation of metabolites, in particular for isomer
metabolites. The co-eluted isobaric features in Fig. 5f, M206T169C147
and M206T166C155 were identified as N-acetyl-L-phenylalanine and 3-
phenylpropionylglycine, respectively, through matching 4D metabo-
lite library by Met4DX (Fig. 5j). The co-eluted isobaric feature pairs
were annotated as the isomeric metabolites of N-acetyl-L-
phenylalanine and 3-phenylpropionylglycine, respectively, with the
sequentialm/z, RT, CCS, and MS2 spectral matches. Among them, the
CCS match successfully differentiated them (Supplementary Fig. 24).
The identifications were further validated by chemical standards
(Fig. 5k, l). As a comparison, the same biological sample was also
acquired on LC–MS, and a chimeric MS2 spectrum was obtained
(Supplementary Fig. 25). Although the chimericMS spectrum included
major fragments from both metabolites, the 3D library match only
generated the identification of 3-phenylpropionylglycine and failed to
identify N-acetyl-L-phenylalanine. AsMS-DIAL andMetaboScape failed
to detect this pair of isobaric features (Supplementary Fig. 21a, e), the
isomers were not identified by them.

Together, we demonstrated that Met4DX enabled to sensitively
detect and differentiate the isomeric metabolites in real 4D metabo-
lomics data and increased the coverage by 2–4 folds. Most impor-
tantly, due to the bottom-up assembly algorithm developed for 4D
peak detection, co-eluted isomeric metabolites even with small dif-
ferences on LC and IM separations could be successfully differentiated
by Met4DX. We have demonstrated that Met4DX is an end-to-end
computational tool for 4D untargeted metabolomics, which provides
IM-enhanced metabolite annotation and is particularly prominent for
differentiating isomeric metabolites.

Versatile data processing in Met4DX
Met4DX is a versatile tool to process various types of IM-based 4D
metabolomics data. In addition to process PASEF-DDA data starting
from MS2 spectra, Met4DX also enables to process data with a user-
inputted list of precursor ions to initiate the bottom-up assembly 4D
peak detection (Supplementary Figs. 26 and 27), which further
increases the coverage of peak detection, in particular for those
without MS2 spectra acquired. To facilitate this workflow, we have
curated a list of precursor ions collected from various biological
samples reported above (N = 72,265 in positive mode; N = 42,553 in
negativemode; Supplementary Data 9). Each ion includesm/z, RT, and
CCS information.With the inputted precursor ion list,Met4DX enables
to perform4Dpeak detection and relateddata processing for different
IM-MS data including PASEF-DDA and PASEF-DIA data from Bruker
TIMS, and IM-AIF data from Agilent DTIM-MS. For example, in NIST
human urine samples acquired by PASEF-DDA,Met4DX detected 11419
features in total. Among them, 8309 features (73%) had MS2 spectra
(Supplementary Fig. 28a, Supplementary Data 10). As a comparison,
MS-DIAL and MetaboScape detected 14440 and 4351 features, and
3741 (26%) and 3927 (90%) features hadMS2 spectra, respectively. The
percentage of 4D features with MS2 spectra in MS-DIAL was sig-
nificantly lower than Met4DX and MetaboScape. Moreover, Met4DX
also showed higher quantification precision with a median RSD of
16.5%. The percentage of detected peaks with RSD less 30%was as high
as 75% in Met4DX (Supplementary Fig. 28b). As a sharp contrast,
althoughMS-DIAL generatedmore4D features,most of themhadpoor
quantification precision (median RSD= 47.8%; Supplementary
Fig. 28c). Moreover, we overlapped 4D features detected by Met4DX
andMS-DIAL (Supplementary Fig. 29a). As a result, 5263 features were
obtained from both software tools, while 6156 and 9711 features were
obtained only from Met4DX and MS-DIAL, respectively. However,
these additional features obtained from MS-DIAL had low

quantification precisionwith amedianRSD of 56.3% and percentage of
peaks with RSD less than 30% was as low as 11% (Supplementary
Fig. 29b). In addition, only 11% of 4D peaks had MS2 spectra acquired
(Supplementary Fig. 29d). These results indicated that additional
peaks detected byMS-DIAL andmissed byMet4DX had low quality. As
a sharp comparison, additional features from Met4DX showed much
higher quantitation precision and MS2 coverage (Supplementary
Fig. 29c, e).

We also demonstrated the capability of Met4DX to process
PASEF-DIA data from Bruker TIMS (Supplementary Fig. 30, Supple-
mentary Data 11) and AIF data from Agilent DTIM-MS instruments
(Supplementary Fig. 31, Supplementary Data 12). In NIST human
urine data acquired by PASEF-DIA from TIMS, Met4DX detected
10021 features. Among them, 7882 features (79%) had MS2 spectra
extracted (Supplementary Fig. 30a). As a comparison, for the same
dataset, MS-DIAL detected 10681 features, but only 104 features had
MS2 spectra extracted (<1%, Supplementary Fig. 30b). MetaboScape
detected 5753 features and did not support MS2 spectral extraction
for DIA data (Supplementary Fig. 30c). Together, these results
demonstrated that Me4DX enabled high-coverage 4D peak detec-
tion and MS2 spectral extraction in PASEF-DIA data compared with
other software tools. Both MS-DIAL and MetaboScape have to
improve MS2 spectral extraction function for PASEF-DIA data. For
IM-AIF data from Agilent DTIM-MS, Met4DX detected 8324 features
in NIST human urine data, and 8318 features had MS2 spectra
extracted (Supplementary Fig. 31). Similarly, MS-DIAL enabled to
detect 9054 features and 9042 features had MS2 spectra extracted.
This indicated bothMet4DX andMS-DIAL enabled to process IM-AIF
data from Agilent instrument. Altogether, we have demonstrated
that Met4DX is a versatile data processing tool for various 4D
metabolomics data with high-coverage and quantification precision
in peak detection.

Discussion
Ion mobility-resolved untargeted metabolomics provides the multi-
dimensional analysis of the complex metabolome with improved
resolving power and peak capacity, and generates four-dimensional
data for accurate metabolite annotation6,17. However, the high
dimensionality and complexity of four-dimensional data presents a
great challenge to data processing, which results in low rates of peak
detection and restricts its widespread applications. Currently, peak
detection in 4D proteomics18,19 and metabolomics22 mostly converted
4D data into 3D data through the top-down-based dimensionality
reduction. This strategy simplifies the data structure, but significantly
reduced the peak detection sensitivity. In our study, we developed a
fundamentally different strategy, which employs a MS spectrum-
orientated bottom-up assembly algorithm for 4Dpeakdetection in ion
mobility-resolved untargeted metabolomics. Our method considers a
MS spectrum as the smallest unit in 4D dataset, and builds its related
elution peaks in IM dimension and LC dimension, respectively. Thus,
the method processes 4D metabolomics data from the precursor
spectrum to IM peak, LC peak, and integration of 4D peak in a reverse
order of multidimensional separation. We refer to this as a reverse
engineering strategy from data acquisition. With this algorithm, we
developed Met4DX, an end-to-end computational tool for peak
detection, quantification, and metabolite annotation in 4D metabo-
lomics. With different biological samples, we demonstrated that
Met4DX enabled high coverage and sensitivity of 4D peak detection,
and achieved >90% of 4D peaks with high fidelity. We thoroughly
benchmarked and validated Met4DX with other existing tools,
including peak coverage, sensitivity and peak fidelity as well as quan-
tification precision. We also demonstrated that Met4DX not only
unleashed in-depth identification of metabolites but also achieved
successful differentiation of co-eluted isomeric metabolites with high
coverage and accuracy.
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Isomeric metabolites commonly exist in metabolome and could
not be fully resolved by conventional LC–MS. They tend to co-elute on
chromatography, co-fragmentation and share similar fragments inMS/
MS spectra, restricting the accurate metabolite identification in
LC–MS-based untargeted metabolomics3,4. Ion mobility-resolved 4D
metabolomics has demonstrated distinct advantages to separate
metabolite isomers and generate four-dimensional data to character-
ize these isomers17. Although LC–IM–MS technology enables to sepa-
rate these isomers, it is highly challenging for data processing software
tools to detect and differentiate them from the complex 4D metabo-
lomics data. In this work, we demonstrated that the bottom-up
assembly based 4Dpeak detection inMet4DXhad superiority andhigh
sensitivity in detecting co-eluted isomeric metabolites (Fig. 5f–i and
Supplementary Figs. 16–19). Small differences on both IM and LC
dimensions were precisely recognized and differentiated. Due to this
technological advancement, Met4DX increased the coverage of co-
eluted isobaric features by 2–4 folds in real 4D metabolomics data of
various biological samples. We also demonstrated that Met4DX
enabled to discriminate co-eluted pairs of isobaric features with ΔCCS
as small as 1%, which could only be partially separated by IM. These co-
eluted isomeric metabolites are often failed to be detected by other
software tools such as MS-DIAL and MetaboScape (Fig. 5f–i and Sup-
plementary Fig. 21). Additionally, the detection of co-eluted isobaric
feature pairs by Met4DX facilitated accurate annotation of metabo-
lites, in particular for isomermetabolites. Notably, the resolving power
of IM has been rapidly improved in the past decade. Some commercial
and prototype IM-MS instruments (e.g., Cyclic IMS31 and SLIMS32)
achieved IM resolving power up to 500–1000. With these advance-
ments, Met4DX will become more effective to discriminate isomeric
metabolites in complex metabolome, which will empower the wide-
spread applications of ion mobility-resolved 4D metabolomics.

Currently, MS/MS spectrum is crucial for metabolite annotation
and structural elucidation in untargeted metabolomics. Deciphering
MS/MS spectral data through tandem spectral match with standard
library, network-based strategies (e.g., GNPS33 and MetDNA34), and in
silico prediction tools (e.g., SIRIUS35 and MS-FINDER36) have readily
facilitatedmetabolite annotation.With the development ofMet4DX, it
become feasible to expand more analytical dimensions to support
multidimensional metabolite annotation including LC separation-
derived RT and IM separation-derived CCS. The combination of LC
and IM separations with MS measurements has been proved to
improve resolving power, selectivity, and sensitivity, thereby benefit-
ing the fidelity of metabolite annotation6,17. We demonstrated that
Met4DX is particularly prominent to achieve high-coverage 4D peak
detection with 4D information (MS1, RT, CCS, and MS/MS) of meta-
bolites, maximizing information coverage to support in-depth meta-
bolite annotation. We believe the integration of Met4DX with state-of-
artmetabolite annotation strategies, such as network-based tools (e.g.,
GNPS and MetDNA) and in silico prediction tools (e.g., SIRIUS) will
further increase the coverage and accuracyofmetabolite annotation in
metabolomics. For 4D metabolomics, in the past decade, many CCS
prediction tools13,37,38 with high accuracy were developed (with CCS
prediction errors of 1–2%). However, the CCS prediction accuracy
highly depended on the coverage of training datasets and training
models. For some compounds lacking similar structures in training
datasets, these tools generated predicted CCS values with relatively
large errors, introducing false positives/negatives during metabolite
annotation. Alternatively, the curation of experimental CCS values
from chemical standards is promising to achieve better performances
in metabolite annotation. Compared with proteomics, error rate esti-
mation (i.e., false discovery rate) is under development in metabo-
lomics. Recently, DIAMetAlyzer39 reported an automated false-
discovery rate-controlled analysis for data-independent acquisition
in metabolomics. More specifically for LC–IM–MS-based lipidomics,
MS-DIAL reported the FDR of lipid annotations during RT and CCS

matches using their validation set22. Sterol4DAnalyzer developed by
our group also reported the FDR of sterols under different CCSmatch
tolerances40. A comprehensive FDR estimation for 4D metabolomics
annotation should include a ground-truth benchmark dataset and
evaluations of all 4-dimensional matches with different tolerances,
which would be an important future plan for 4D metabolomics.

In summary, Met4DX is a mass spectrum-oriented end-to-end
computational tool for 4D untargetedmetabolomics, which deciphers
the complex 4D information ofmetabolites inmetabolomics data, and
substantially advances the discovery of functional metabolites in bio-
logical organisms. Metabolomics software tools with broad utilization
are usually developed with user-friendly graphical user interface (GUI)
and support all-in-one solution from raw data importing tometabolite
annotation, like MS-DIAL, MZmine41, XCMS Online42, and so on. A well-
designed GUI enables users to adjust parameters easily and check the
result with convenience. The current version of Met4DX could only be
run as an R package using command lines. In the future, a GUI with
comprehensive functions would make Met4DX more user-friendly.

Methods
Chemicals
LC–MS grade methanol (MeOH), 2-propanol (IPA), and water (H2O)
were purchased from Honeywell (Muskegon, MI, USA). LC–MS grade
acetonitrile (ACN) was purchased from Merck (Darmstadt, Germany).
Ammonium hydroxide (NH4OH) and ammonium acetate (NH4OAc)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Metabolite
chemical standards were purchased from Sigma-Aldrich (St. Louis,
MO), J&K (Shanghai, China), and Bidepharm (Shanghai, China). The
NIST human urine (SRM 3667) and NIST human plasma (SRM 1950)
sample were purchased from Ango Biotechnology (Shanghai, China).
Chemical standards for 20 natural products were purchased from
TopScience (Shanghai, China).

Sample preparation
The preparation of biological samples followed our published
protocols34,43. ForNISThumanurine samples, 150μLof urinewas taken
and 600μL of MeOH was added for extraction. The mixture was vor-
texed for 30 s and sonicated for 10min at 4 °C in water bath. To
facilitate protein precipitation, samples were then incubated for 1 h at
−20 °C, and centrifuged for 15min at 17,000 × g and 4 °C. The super-
natant was collected and evaporated to dryness at 4 °C. 150μL of ACN/
H2O (1:1, v/v) were added into the dry extracts for reconstitution. The
solution was vortexed for 30 s, sonicated at 4 °C for 10min, and cen-
trifuged at 17,000× g and4 °C. Finally, the supernatantwas transferred
into a vial for LC–IM–MS analysis. To prepare serially diluted urine
samples, the final supernatant was directly diluted with ACN/H2O (1:1,
v/v) by 10, 100, and 1000 folds, respectively. For NIST human plasma
samples, 150μL of plasma was taken and 600μL of MeOH/ACN (1:1, v/
v)was added for extraction. The rest procedureswere kept the same as
described for urine samples. The 293T cell line was obtained from
ATCC with Product No. CRL-2925. The cells were cultured in 6-cm
dishes with Dulbecco modified Eagle’s medium (DMEM) containing
FBS (10%) and penicillin/streptomycin (1%). When growing to
~2,000,000 cells/dish, cells were harvested formetabolomics analysis.
The culture medium was quickly removed and cells were washed with
cold PBS twice. Dishes were placed on dry ice, and 1mLof ACN/MeOH/
H2O (2:2:1, v/v/v) was added for fast quenching and extraction. The
extraction solution was pre-cooled at −80 °C for 1 h prior to the
extraction. Then, dishes were incubated at−80 °C for 40min. The cells
were scraped from dishes and transferred to a 1.5-mL centrifuge tube.
The sampleswere then vortexed for 1min, and centrifugated for 15min
at 17,000× g and 4 °C. The supernatant was collected and evaporated
to dryness at 4 °C. For reconstitution, 100μL of ACN/H2O (1:1, v/v)
were added into the dry extracts. The rest of the procedure was kept
the sample as described for NIST human urine samples. The
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preparation of mouse liver and brain tissues followed our previous
publication34,43. The natural products were dissolved in MeOH with a
concentration of 1mg/mL as the stock solution. To prepare the natural
products spiked-in NIST human urine sample with the highest con-
centration (i.e., 1X dilution), we took 1μL of each stock solution and
spiked into 80μL of reconstituted NIST human urine solution in ACN/
H2O (1:1, v/v). Then, the 1X dilution sample was further diluted with
reconstituted NIST human urine solution by 4, 16, 64, and 256 folds,
respectively (Supplementary Fig. 11).

LC–IM–MS analysis
All metabolomics data were acquired using an UHPLC system
(1290 series, Agilent Technologies, USA) coupled to a timsTOF Pro
equipped with an electrospray ionization (ESI) source (Bruker Dal-
tonics, Bremen, Germany) or DTIM-MS 6560 (Agilent Technologies,
USA). For hydrophilic interaction liquid chromatography (HILIC)
separation, Waters ACQUITY UPLC BEH Amide column (particle size,
1.7μm; 100mm (length) × 2.1mm (i.d.)) was used for the LC separation
and the column temperature was kept at 25 °C. For both positive and
negative modes, mobile phase A of 25mM ammonium hydroxide
(NH4OH) and 25mM ammonium acetate (NH4OAc) in water and
mobile phase Bof ACNwereused, respectively. The gradientwas set as
below: 0–0.5min: 95% B, 0.5–7min: 95% B to 65% B, 7–8min: 65% B to
40% B, 8–9min: 40% B, 9–9.1min: 40% B to 95% B, and 9.1–12min: 95%
B. The flow rate was 0.5mL/min. The injection volume was 3μL. For
reverse phase (RP) separation, Phenomenex Kinetex C18 column
(particle size, 2.6 μm; 100mm (length) × 2.1mm (i.d.)) was used and
the column temperature was kept at 25 °C. For both positive and
negativemodes,mobile phase A of 0.01% acetic acid (v/v) inwater and
mobile phase B of IPA/ACN (1:1, v/v) were used, respectively. The
gradient was set as below: 0–1min: 1% B, 1–8min: 1% B to 99% B,
8–9min: 99% B, 9–9.1min: 99% B to 1% B, 9.1–12min: 1% B. The flow
rate was 0.3mL/min. The injection volume was 3μL. For MS acquisi-
tion, PASEF-DDA scan mode was applied with mass range from 20 to
1300Da and mobility range from 0.45 to 1.45 V·s/cm2. Detailed para-
meters forMSacquisitionwere set as follow: capillary voltageswere set
as +4500V and −3600 V for positive and negative ionization modes,
respectively; nebulizer pressure, 2.2 bar; dry gas, 10.0 L/min; dry
temperature, 220 °C; number of PASEF MS/MS scans, 2; ramping time,
100ms; TIMS stepping enabled; total cycle time, 0.53 s; charge range,
0–1; absolute threshold, 100 cts; active exclusion, checked; former
target ions released after 0.1min; isolation window, 1.2 Da; collision
energy, 30 eV. In PASEF-DIA data acquisition, 7 mass steps with mass
width of 144.3 Da and mass overlap of 5 Da were set in each cycle,
covering the mass ranges of 20–1000Da and mobility range of
0.45–1.45 V·s/cm2. The cycle time is 0.64 s. The data acquisition was
performed using timsControl (version 2.0, Bruker Daltonics, Bremen,
Germany). For IM-AIF data acquisition in Agilent DTIM-MS, the source
parameterswere set as follows: sheath gas temperature, 325 °C; dry gas
temperature, 300 °C; sheath gas flow, 11 L/min; dry gas flow, 8 L/min;
capillary voltage, 4000V; and nebulizer pressure, 20 psi. The TOF
mass range was set as m/z 50–1700 Da. For ion mobility parameters,
nitrogen (N2) was used for the drift gas. Other related IM parameters
were set as follows: entrance and exit voltages of drift tube, 1600 and
250V; trap filling and trap release times, 20,000 and 150 μs. The
pressure of drift tube was set at 3.95 Torr. The MS/MS spectra were
acquired in the “Alternating frames” mode, and the collision energy
wasfixed at 20 V in frame2. TheCCS valueswere calculatedwith single
electric field method. Data acquisitions were carried out using Mas-
sHunter Workstation Data Acquisition Software (Version B.08.00,
Agilent Technologies, USA).

Curation of 4D metabolite library
All metabolites in KEGG (accessed on 7 March, 2017; https://www.
genome.jp/kegg/) and HMDB (accessed on 8 November, 2021; https://

hmdb.ca/) were combined and dereplicatedwith their InChIKey. Then,
metabolites with exact masses larger than 1200Da or less than 60Da
were removed. Compounds without available SMILES were removed.
Finally, a total of 135,638 unique metabolites were generated as the
Met4DX metabolite library (Supplementary Fig. 12a). The 4D infor-
mation for eachmetabolite was generated as follows and organized in
a msp format file.

MS1 dimension. With the formula and adduct information, we calcu-
lated theoretical m/z of metabolite ions, including [M+H]+, [M +Na]+,
[M +NH4]

+ and [M +H-H2O]
+ for positive mode, and [M-H]-, [M +Na-

2H]-, [M +HCOO]- for negative mode.

CCS dimension. The SMILES strings of metabolites were inputted in
our previous developed AllCCS (http://allccs.zhulab.cn/) for calcula-
tion CCS values in different adduct forms13. Specifically, [M +H]+,
[M +Na]+, [M +NH4]

+ and [M+H-H2O]
+ for positive mode, and [M-H]-,

[M +Na-2H]-, [M +HCOO]- for negative mode were calculated,
respectively.

RT dimension. We curated the RT library through experimental mea-
surements and in silico prediction. We experimentally measured 883
and 907 RT values on hydrophilic interaction liquid chromatography
(HILIC) and reverse phase (RP) separations, respectively, covering a
total of 1014metabolites. For other metabolites, we employed a graph
neural network (GNN)-based RT prediction model developed by Lu
group for RT prediction44,45. The GNN-RT models on RP and HILIC
separations were trained with the SMRT dataset from Siuzdak group46

and the Retip dataset from Fiehn group47, respectively. In Met4DX, we
performed the transfer learning of RT predictions using the experi-
mental measured HILIC and RP RTs in our LC conditions, respectively,
and constructed two new GNN-RT prediction models. In transfer
learning, key parameters such as the frozen layers number, learning
rate aswell as the iteration number were optimized during the training
of transfer learning. In the testing of transfer learning, the median
absolute errors were 17.62 and 9.65 s in HILIC and RP separations,
respectively (Supplementary Fig. 32). Finally, the GNN-RT prediction
models were used to predict RTs for metabolites without
experimental RTs.

MS/MS dimension. We first acquired the standard MS/MS spectra for
1064 metabolites with the same IM-MS parameters described in
LC–IM–MS analysis part. In addition, we collected the experimental
MS2 spectra in MoNA (https://mona.fiehnlab.ucdavis.edu/; accessed
on 31 May, 2022) and NIST 20 mass spectral library, and dereplicated
the spectra using InChIKey. A total of 5234 and 2784 metabolites had
experimental MS2 spectra in positive and negative modes, respec-
tively, covering 5506metabolites. To predict MS2 spectra, in Met4DX,
the candidate metabolites after MS1, RT, and CCS matches were fur-
ther inputted into MS-FINDER (version 3.24) for prediction of
MS2 spectra and MS2 spectral match (scoring and ranking).

The workflow of Met4DX
The Met4DX workflow includes four major modules: (1) MS2 spectral
dereplication; (2) the bottom-up assembly algorithm for 4D peak
detection; (3) 4D peak alignment and grouping; (4) multidimensional
match for metabolite identification.
(1) MS2 spectral dereplication

For each data file, MS2 spectral dereplication was performed.
Each MS2 spectrum was first purified by removing ions with
intensities less than 30 and lower than 1%. Then, MS2 spectra
were binned according to their differences of precursor m/z,
RT, and mobility (m/z tolerance, 20 ppm or 0.004Da for m/
z < 200Da; RT tolerance, 20 s; mobility tolerance, 0.030V·s/
cm2). For bins with more than 1 MS2 spectrum, 3D distances of
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all pairwise MS2 spectra were calculated by integrating the
distances of precursor RT, mobility, and MS2 spectral similarity
with Eqs. (1–6). The trapezoidal function was used to calculate
the distances of RT and mobility, while the dot-product
function was used to calculate the distance of MS2 spectra. A
hierarchical cluster analysis (HCA) was applied to cluster
MS2 spectra in the bin. Here, the cutoff of 3D distance was
set as 1. For each MS2 cluster, the most intense MS2 spectrum
(i.e., the unique MS2 spectrum) was selected and outputted to
represent the cluster. The spectral intensity in anMS2 spectrum
is the sum intensity of top 10 fragment ions ranked by their
intensities.

Disti,j =

0, ΔRTorΔmobility≤TOLmin

Δ�TOLminð Þ
TOLmax�TOLmin

, TOLmin<ΔRTorΔmobility≤TOLmax

1, ΔRTorΔmobility >TOLmax

8
>><

>>:

ð1Þ

ΔRTi,j = ∣RTi � RTj ∣ ð2Þ

Δmobilityi,j = ∣mobilityi �mobilityj ∣ ð3Þ

DistMS2i,j
= 1� ΣWiWj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣW 2
i W

2
j

q ð4Þ

W = Intensity1fragment × ½m=z�0fragment ð5Þ

Dist3Di,j
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WRT ×Dist
2
RTi,j

+Wmobility ×Dist
2
mobilityi,j

+WMS2 ×Dist
2
MS2i,j

2

r

ð6Þ

where i and j were the indexes of MS2 spectra in the bin and i ≠ j. The
maximum tolerance (TOLmax) was the acceptable tolerance, while the
minimum tolerance (TOLmin) was the penalty-free tolerance. Here,
TOLmax and TOLmin were set as 10 s and 20 s for RT, and 0.015 and
0.030V·s/cm2 for mobility, respectively. W was the weight in each
dimension, and all weights were set as 1.
(2) The bottom-up assembly algorithm for 4D peak detection

For each MS data file, Met4DX assembled the 4D peaks from its
unique MS2 spectra with a bottom-up assembly strategy. To
access raw data in.d format, the R package opentimsr48 (https://
github.com/cran/opentimsr; version 1.0.13) and Bruker TDF-SDK
(https://www.bruker.com/protected/zh/services/software-
downloads/mass-spectrometry/raw-data-access-libraries.html;
version 2.8.7.1) were used. After querying the raw data and
extracting all MS1 frames, a 5-step 4D peak detection was
implemented as follows:
Step 1: precursor search. For each unique MS2 spectrum,
Met4DX searched its precursor MS1 data point in the m/z-ion
mobility data frame with the precursor m/z, ion mobility, and
frame index recorded in the .mgf file. Step 2: EIM detection. In
the precursor frame, the adjacentMS1 data points within the set
m/z and mobility ranges were retrieved to reconstruct the ion
mobilogram. Specifically, m/z tolerance was 20 ppm or
0.004Da for m/z < 200Da, and the range to reconstruct ion
mobilogram was set as 0.1 V·s/cm2 around the precursor MS1
data point. Then, the locally weighted scatterplot smoothing
(LOESS) was applied for data smoothing. The EIM peak was
detected by finding the local maximum within the peak span.
The default peak span of EIM detection was 13 data points,
converting to 0.013 V·s/cm2 under our instrument parameters.
If multiple apexes found, the EIM peak with a smallest mobility
difference to the precursor mobility was selected. Step 3: EIM
extension. If EIM detection in step 2 was successfully achieved

in the precursor frame, this step further extended EIM detec-
tion in 30 adjacent MS1 frames around precursor frames. Step
4: EIC detection. The EIM peaks in each frame were summed up
to generate the frame intensities, which were further projected
to the LC dimension. Thus, the ion chromatogram on LC
dimension was assembled. After LOESS smoothing, the EIC
peak was also detected by finding the localmaximumwithin the
peak span. The default peak span of EIC detection was 11 data
points, converting to ~5.3 s in our experimental conditions. If
multiple apexes found, the EIC with a smallest RT difference to
the precursor RT was selected. Step 5: 4D integration. With the
EIM peaks detected in step 2 and the EIC peak detected in step
4, the 4D peak was constructed. Met4DX integrated the ion
intensities around the apexes. Specifically, the MS1 data points
in 5 frames nearest to the EIC apex and within mobility differ-
ences of 0.015 V·s/cm2 to the EIM apexes were integrated. The
m/z value of the 4D peak was re-weighted with the integrated
MS1 data points’ m/z values and intensities.
In 4D peak detection, a series of criteria were implemented to
ensure the peak fidelity. During the EIM and EIC peak detection,
the apexes should be the local maximum within the set span in
accordance with the peak width at half height under our
LC–IM–MS parameters. The detected apex should be within the
tolerances of the precursor RT or mobility, respectively. Speci-
fically, 10 s and 0.015 V·s/cm2 were used, respectively. Addition-
ally, there should be continuous signals near the apex. The signal-
to-noise ratios (S/N) were also calculated to filter those signals
with S/N lower than 3. Furthermore, noisy signals with high
fluctuation (normalized standard noise ≥0.35) were also filtered,
which followed our previous publication49.
After the completion of the 4D peak detection, a 4D peak table
was generated for each MS file. In this table, Met4DX calculated
theCCS value of each feature from its experimentalmobilitywith
Eq. (7):

CCS= convertor*
z
K0

ffiffiffiffiffiffiffiffi
1

TM

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
M +m
m

r

ð7Þ

where z was the ion charge and 1/K0 was the mobility. T is the tem-
perature, 305 K. M and m are exact masses of the analyst ion and N2,
respectively50.
(3) 4D peak alignment and grouping

We used a landmark-based strategy for RT alignment. The
detected 4D peaks between one specific reference sample and
other samples werematched with 4D information (m/z, RT, CCS,
and MS2 spectra). The reference sample was user-defined. We
recommended using one of the pooled quality control (QC)
samples or the middle sample in the injection order as the
reference sample. Then, aRTcorrectionmodelwasbuiltwith RTs
of landmarks using a LOESS-based strategy. The RTs in samples
were corrected and aligned to the reference sample. After that, a
density-based peak grouping strategy51 was implemented for
feature grouping. 4D features across samples were binned
together according to their m/z and mobility values. The bin
sizes were set as 0.015 Da and 0.015 V·s/cm2. The density on RTs
was profiled to generate the final 4D peak group. The bandwidth
of gaussian smoothing was set as 5 s. The MS2 spectral
stochasticity is common in DDA-based data acquisition. Met4DX
re-performed the 4D peak detection in samples with missing
peaks. The medium values of m/z and mobility among peaks in
the peak group were used as the precursor information to
perform the targeted 4D peak detection in samples with missing
peaks. The MS1 frame with the smallest RT difference to the
median of RTs in the peak groups was regarded as the precursor
frame. The re-assembled 4D peaks should also meet the criteria
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of peak fidelity. Peak groups those met the requirement of
minimal fraction (min. frac.; 0.5 by default) were kept. Gap filling
was applied for missing values in the peak table through the
mandatory integration, which integrated the signals in 5 frames,
20 ppm, and 0.015 V·s/cm2 in mobility near the RT, m/z, and
mobility values of the 4D peak. Met4DX finally outputs the 4D
peak tablewith the qualitative information ofm/z, RT, andCCS as
well as peak intensities in a.csv table, named “features_filled.csv”.
MS2 spectra for features were also exported in a .msp file, named
“spectra.msp”.

(4) Multidimensional match for metabolite identification
Met4DX performed multidimensional match between each fea-
ture and the 4D metabolite library. First, Met4DX searched can-
didate metabolites in the library by sequentially matching MS1,
RT, and CCS values. Them/z tolerance was set as 20 ppm in MS1
match. RTs in the metabolite library were first recalibrated into
the experimental condition according to the protocol in our
previous publication43,52, thenmatched to experimental values of
4D features. Finally, CCS match was performed. In RT and CCS
matches, the minimum and maximum tolerances of trapezoidal
function were set as 30 s and 90 s in RTmatch, and 3% and 6% in
CCS match, respectively (Eqs. 8–10). The CCS match tolerances
were set according to the CCS prediction accuracy of AllCCS13.
The results showed that 72% of predicted CCS values had relative
error less than 3% while 93% of predicted CCS values had relative
error less than 6% (Supplementary Fig. 33). The CCS match tol-
erances were user-defined. If the user inputs a library with CCS
values with high accuracy, the tolerances could be reduced. Only
metabolite candidates within the maximum tolerance were
remained and scored.

Score = 1�
1, ΔRTorΔCCS≤TOLmin

Δ�TOLminð Þ
TOLmax�TOLmin

, TOLmin<ΔRTorΔCCS≤TOLmax

0, ΔRTorΔCCS>TOLmax

8
><

>:
ð8Þ

ΔRT= ∣RTexperiment � RTlibrary∣ ð9Þ

ΔCCS=
∣CCSexperiment � CCSlibrary∣

CCSlibrary
× 100% ð10Þ

For candidate metabolites having experimental MS2 spectra in
library, MS2 spectral match was scored with the dot-product
function (Eqs. (11) and (5)). The cutoff value was set as 0.8. For
matched candidate metabolites, the match scores in RT match,
CCSmatch, andMS2 spectral matchwere integrated to calculate
the final combined score using a linear weighting function (Eq.
(12)). The weighs of RT match, CCS match, and MS2 spectral
matchwere set as 0.2, 0.4, and 0.4, respectively. The cutoff value
of the combined score was set as 0.6.

ScoreMS2 =
ΣW experimentW library
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣW 2
experimentW

2
library

q ð11Þ

Score =WRT × ScoreRT +WCCS × ScoreCCS +WMS2 × ScoreMS2

ð12Þ
For candidate metabolites without experimental MS2 spectra in
the metabolite library, Met4DX exported the feature and its
experimental MS2 spectrum into MS-FINDER for structural
scoring and ranking. InMet4DX, it only kept the top 3 candidates
in [M +H]+ or [M-H]- adduct forms outputted by MS-FINDER.
Finally, all metabolite annotation results outputted in a table
named “ScoreCombine.csv”.

Data processing with Met4DX
For PASEF-DDA data, MS2 spectra in each raw MS file were first con-
verted into the .mgf files using DataAnalysis (Bruker Daltonics, Bre-
men, Germany, version 5.2). The raw MS data files and MS2 spectra in
mgffileswere organized intoone folder and imported intoMet4DX for
data processing. If MS2 spectral files were not provided, Met4DX
enabled to generate MS2 spectra directly from the raw data files using
the “GenerateMS2” function. Our data showed that Met4DX showed
high consistency in peak detection using MS2 spectra converted from
DataAnalysis and generated by the “GenerateMS2” function (Supple-
mentary Fig. 34). The demo code to use the “GenerateMS2” function
was provided in GitHub (https://github.com/ZhuMetLab/Met4DX).
Detailed parameters were provided in Supplementary Table 1.Met4DX
finally outputted the 4D peak table with the qualitative information of
m/z, RT, and CCS as well as peak intensities in a .csv table, named as
“features_filled.csv”. MS2 spectra for 4D features were exported in a
.msp file, named as “spectra.msp”. If metabolite annotation was per-
formed, the multidimensional match result was outputted as a “Scor-
eCombine.csv” file. Met4DX also supported metabolite annotation
with a user-defined metabolite library, and the instruction was pro-
vided in Supplementary Note 1.

For PASEF-DDA data, Met4DX also supports the input of a pre-
cursor ion list as seeds to initiate 4D peak detection. In Met4DX, we
have curated a list of precursor ions collected from various biological
samples (N = 72,265 in positive mode; N = 42,553 in negative mode;
Supplementary Data 9) for this workflow. Each ion included m/z, RT,
and CCS information. First, Met4DX converted CCS values in the ion
list into mobility values. For each of the inputted precursor ions, the
bottom-up assembly algorithm was performed for 4D peak detection
(see the workflow of Met4DX for details). Then, Met4DX generated a
4D peak table after peak grouping which was further filtered with a
minimal fraction (min. frac.) of 0.5. To assign MS2 spectra for each
feature, Met4DX matched the precursor ion information (m/z, rt, and
mobility) of anMS2 spectrum to those of 4D features, and selected the
most intense MS2 spectrum. Finally, the gap-filling was performed in
samples with missing values. Detailed parameters were provided in
Supplementary Table 2.

For PASEF-DIA data, Met4DX also employs the user inputted
precursor ion list to initiate 4D peak detection. The detailed workflow
is similar to the processing of PASEF-DDA data. Themajor difference is
the assignment ofMS2 spectra. For each 4Dpeak,Met4DX selected the
sample with the highest peak intensity. Then, the MS2 frame at the
retention time apexof the 4Dpeakwas retrieved in the specific sample.
In this m/z-mobility frame for MS2 spectra, fragment ions at mobility
apexwere extracted and evaluatedwhether theywere true signals with
continuous data points along mobility axis and similar m/z values.
Finally, an MS2 spectrum was generated at the apex of retention time
and mobility and assigned to the 4D peak. Detailed parameters were
provided in Supplementary Table 3.

For Agilent IM-AIF data, raw data files (.d format) were first con-
verted into .mzML format with ProteoWizard (version 3.0.20360).
Then, Met4DX converted CCS values in the precursor ion list into drift
times with CCS calibration coefficients (tfix and β). For each precursor
ion, the bottom-up assembly algorithm was performed for 4D peak
detection (see theworkflowofMet4DX for details).Met4DXgenerated
a 4D peak table after peak grouping, which was further filtered with a
minimal fraction (min. frac.) of 0.5. The extraction of MS2 spectra at
apex of retention time and drift time was also performed to assign
MS2 spectra to each 4D peak. Finally, the gap-filling was performed in
samples with missing values. Detailed parameters were provided in
Supplementary Table 4.

Data processing using MS-DIAL and MetaboScape
For MS-DIAL (version 4.60 for Bruker PASEF-DDA and version 4.90 for
Bruker PASEF-DIA and Agilent IM-AIF data processing), raw data files
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were first converted into .ibf format with IbfConverter.exe. Then, MS-
DIAL performed peak detection, alignment, gap filling, and
MS2 spectral assignment with the converted data files. Detailed para-
meterswereprovided inSupplementary Table 5. The feature tablewith
representative MS2 spectra was outputted as a .txt file. After removing
features with −1 in the “Average mobility” column, the rest features
were counted as the 4D features. The 4D features with MS2 spectra in
the “MS/MS spectrum” column were regarded as the complete 4D
features in MS-DIAL. These 4D features were used for benchmark in
our study. For MetaboScape (for PASEF-DDA and PASEF-DIA data
processing; Bruker Daltonics, Bremen, Germany; version 2022b), raw
data files were imported for peak detection, alignment, and
MS2 spectral assignment. Detailed parameters were provided in Sup-
plementary Table 6. All 4D features were selected and exported to a
.csv table. 4D features with TRUE in the “MS/MS” column were regar-
ded as complete 4D features assigned with MS2 spectra. These 4D
features were used for benchmark in our study. For feature over-
lapping comparison in different software tools,m/z tolerance, RT, and
CCS tolerances were set as 20 ppm, 10 s, and 2%, respectively.

Evaluation of peak fidelity using EVA
For each 4D feature with MS2 spectra from Met4DX, MS-DIAL, and
MetaboScape, we selected the replicate sample with the highest
intensity, and then assembled the 4D peak in this replicate sample to
obtain the EIC and EIM peaks and evaluate the peak fidelity of the
feature. For EIC peaks, the IM dimension was removed, while for EIM
peaks, the LC dimension was removed. The EIC and EIM peak shapes
were inputted into the EVA software for peak fidelity evaluation26.
Specifically, in MS-DIAL and MetaboScape, we used the feature infor-
mation from their feature tables to re-extract the 4D features for peak
fidelity evaluation. The peak fidelity rates were calculated with these
re-extracted 4D features (Supplementary Fig. 8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data files of biological samples acquired by TIMS with PASEF-
DDA can be assessed by National Omics Data Encyclopedia under
Project ID OEP003701 and Zenodo [https://doi.org/10.5281/zenodo.
7215544]53. Raw data files of NIST human urine sample acquired by
TIMS with PASEF-DIA and DTIM-MS with IM-AIF can be assessed by
National Omics Data Encyclopedia under Project ID: OEP003846.
KEGG database (https://www.genome.jp/kegg/) was accessed on 7
March, 2017. HMDB database (https://hmdb.ca/) was accessed on 8
November, 2021. Source data are provided with this paper.

Code availability
The source code of Met4DX was provided in GitHub (https://github.
com/ZhuMetLab/Met4DX) and Zenodo (https://doi.org/10.5281/
zenodo.7701165)54.
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