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Highly host-linked viromes in the built
environment possess habitat-dependent
diversity and functions for potential
virus-host coevolution
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Viruses in built environments (BEs) raise public health concerns, yet they are
generally less studied than bacteria. To better understand viral dynamics in
BEs, this study assesses viromes from 11 habitats across four types of BEs with
low to high occupancy. The diversity, composition, metabolic functions, and
lifestyles of the viromes are found to be habitat dependent. Caudoviricetes
species are ubiquitous on surface habitats in the BEs, and some of them are
distinct from those present in other environments. Antimicrobial resistance
genes are identified in viruses inhabiting surfaces frequently touched by
occupants and in viruses inhabiting occupants’ skin. Diverse CRISPR/Cas
immunity systems and anti-CRISPR proteins are found in bacterial hosts and
viruses, respectively, consistent with the strongly coupled virus-host links.
Evidence of viruses potentially aiding host adaptation in a specific-habitat
manner is identified through a unique gene insertion. This work illustrates that
virus-host interactions occur frequently in BEs and that viruses are integral
members of BE microbiomes.

M Check for updates

Viruses warrant our attention because they have potentially detri-
mental impacts on human health’ but also play crucial roles in many
ecosystems®™. Built environments (BEs), where people typically spend
most of their lives, harbor a rich diversity of microorganisms®, but
most studies of BEs have largely focused on bacteria and fungi while
overlooking viruses®’. The total concentration of the viruses in BEs is
estimated to be -10° particles/cubic meter®. Although the environ-
mental conditions of most BEs are oligotrophic and considered poorly
suited for microbial life’, a conspicuous diversity of viruses, including
epidemic-associated viruses (e.g., SARS-CoV-2" and yellow fever
virus"), have been found in microbial communities in air and on

surfaces in BEs. A few studies on viromes in public buildings (e.g.,
daycare centers and restrooms) have mainly focused on a small spatial
scale and limited sample types and have not investigated the bacterial
hosts of the viruses ™. A recent global-scale study that applied bulk
metagenomic sequencing without virus enrichment provided evi-
dence that viruses are ubiquitous on public surfaces in BEs®.
Virus-host interactions are central to the ecology and evolution of
microbiomes in diverse ecosystems*'*". Recent advances in bioinfor-
matic tools have enabled accurate prediction of the association
between metagenome-derived viruses and their potential bacterial
hosts, including exact matches of molecular signals (namely clustered
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regularly interspaced short palindromic repeat [CRISPR] spacer, inte-
grated genome, and tRNA) and consistent k-mer frequency. Phages
have evolved diverse lifestyle and transmission strategies, such as
temperate-lytic life cycle switching, transduction, and host gene dis-
ruption, to exploit the hosts’ cellular machinery for reproduction®. In
most marine and soil environments, phages are often highly diverse
and abundant, thereby routinely infecting a significant fraction of their
microbial hosts, which, together with the expression of virus-encoded
auxiliary metabolic genes (AMGs) in host genomes, plays a key role in
global nutrient cycling****. From an ecological perspective, phages in
a microbial community can mediate the competition among bacterial
species by establishing lytic infections through several well-
established ecological models, including the “kill-the-winner” and
“piggyback-the-winner” models?.

While phages can drive rapid genetic and phenotypic changes in
bacteria, bacterial hosts can also readily evolve defense mechanisms to
counter phage attacks through de novo mutation and other molecular
mechanisms?. Recently, various functional CRISPR/CRISPR-associated
(Cas) systems in bacteria have been identified in a body-wide human
metagenomic study**. However, to antagonize the host immune sys-
tem, phages have evolved anti-CRISPR (Acr) proteins to inactivate
bacterial Cas nucleases during infection”. Long-term inactivation of
CRISPR/Cas by inhibitor phages can lead to the loss and even absence
of CRISPR/Cas in some bacterial lineages®.

CRISPR/Cas systems have been reported in surface microbiomes
across urban environments worldwide”; however, the immune
mechanisms of infection and the virus-host interactions (e.g., the
extent of virus-host links, the prevalent viral life cycle, and the novelty
of Acr proteins) that occur in BEs are poorly understood. To fill this
knowledge gap and explore the diversity and ecosystem functions of
viruses in BEs, 738 bulk metagenomes from diverse habitats across
different BEs in Hong Kong (HK) were investigated in this study. The
highly coupled virus-host interactions identified in this study support
the notion that viruses aid the adaptation of bacterial hosts to the
specific environmental conditions of BEs and that the abundance of
most bacterial populations in BEs is strongly correlated with their
resident viruses. This study provides evidence that viruses are integral
members of BE microbiomes.

Results

Habitat-dependent diversity and distribution of the BE viromes
From the 738 bulk metagenomes collected from rural and urban BEs in
HK, including piers, public facilities, residences, and subways (Fig. Sla,
Supplementary Data 1), ~4.5 million assembled contigs were generated
with MetaWRAP (see “Methods”), with lengths mostly between 1 and
3kb were obtained (Fig. Slb). Viral contigs were identified using
Visorter2”” and DeepVirFinder®; the latter showed a better perfor-
mance for shorter contigs (1-3 kb; Fig. Slc). In total, 594,851 unique
viral contigs with lengths >1kb were recovered from all samples
(Fig. 1a). After quality filtering, 1174 viral genomes with completeness
>50% (98 complete, 346 high-quality, and 730 medium-quality gen-
omes) were identified (Fig. S1d, Supplementary Data 2). These gen-
omes were well represented across the four types of BEs (Fig. 1b), with
66% of them detected on surfaces in residences (Fig. 1c). Despite
analyzing the bulk metagenomes, only 28% of the viral genomes
showed evidence of host integration based on an assessment of the
provirus integration sites (i.e., the host region was predicted on both
ends of viral genomes) (Fig. 1c). Of the 471 viral operational taxonomic
units (vOTUs) identified, 355 were found in at least two samples (Fig.
S2a); among the types of BE, the largest number of vOTUs were found
in residences. At a higher taxonomic ranking, the viral genomes were
clustered into 332 and 220 genus- and family-level vOTUs, respectively.
The rarefaction curves of the vOTUs did not reach a plateau, sug-
gesting that additional samples are required to capture the virome
diversity in BEs within a city (Fig. S2a).

Given that the samples were collected from different habitats in
terms of sources (i.e., air and surface) and materials (i.e., concrete,
metal, and wood), the habitat-dependent features of the viromes were
further investigated. Viral genomes were recovered most frequently
from occupants’ skin (21% of all samples) and doorknobs (15%) and
least frequently from air (2%) (Fig. S2b). The virome composition
mostly differed between habitats (analysis of similarity R=0.355,
p<0.001), and permutational multivariate analysis of variance con-
firmed that habitat was the main driver of variation (R*=0.148,
p <0.001) (Fig. 1d). The airborne virome was distinct from the surface-
borne viromes, with a low within-habitat variance according to the
Bray-Curtis dissimilarity distance in the principal coordinate analysis
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Fig. 1| Annotation of the high-quality viral genomes recovered from meta-
genomes collected from built environments. a Boxplots of the contig lengths of
the predicted viral and non-viral contigs >1kb, as determined by Virsorter2 (Vs2)
and DeepVirFinder (DVF) and assessed by CheckV. The number of contigs (n) is
indicated. Boxplots represent the median, the first quartiles and third quartiles with
whiskers drawn within the 1.5 interquartile range value. Points outside the whiskers
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are outliers. b Accumulation curves of the viral genomes in the combined, pier,
public facility, residence, and subway datasets. ¢ Metadata and taxonomy of 1174
viral genomes with >50% completeness. d Principal coordinate analysis of the
Bray-Curtis dissimilarity matrix for all of the samples. The color and shape of the
symbols indicate the built environments and surface materials, respectively.
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Fig. 2 | Phylogenomics of the viral operational taxonomic units (vOTUs) from
the class Caudoviricetes in the built environments (BEs). a A maximum-
likelihood phylogenetic tree of 87 species-level vOTUs derived from BEs. The
branches of the two clusters of Oshimavirus and Bendigovirus are shown in light
green and orange, respectively. The gray and white circles denote the novel
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and the homogeneity of multivariate dispersions (permutational ana-
lysis of multivariate dispersions F=53.29, p<0.001) (Fig. 1d, S2c).
Additionally, the vOTUs on handrails, poles, and ticket kiosks exhib-
ited a significantly lower richness and Shannon diversity index than the
vOTUs on occupants’ skin and frequently touched indoor surfaces
(e.g., doorknobs) (analysis of variance [ANOVA], p <0.05; Fig. S2d,
Supplementary Data 3). The species evenness varied significantly
between habitats (ANOVA, p < 0.05), but the average evenness values
of all habitats were > 0.85 (Fig. S2d), suggesting that no habitat had
dominant vOTUs.

Next, the vOTUs were assigned to taxonomic ranks based on
comparison with known viral sequences from the Integrated Microbial
Genome and Viral (IMG/VR) database”. Most of the vOTUs (92.4%)
could not be taxonomically classified into a known viral genus or
family, similar to the reported rate of novelty for the viromes collected
from other ecosystems>*°, and could only be resolved as unclassified
members of the class Caudoviricetes (Fig. 1c). Among the annotated
vOTUs, 1.7%, 1.7%, 1.3%, and 0.6% belonged to the dsDNA viral genus
Pahexavirus, ssSRNA-RT viral family Metaviridae, ssDNA viral family
Genomoviridae, and ssDNA viral family Inoviridae, respectively (Fig.
S3). Specifically, the members of the family Autographiviridae, an
extensively studied family of virulent phage”, were enriched and
dominant in subway air (Fig. S3, Supplementary Data 4); in contrast,
the members of the genus Pahexavirus were abundant on doorknobs
and skin surfaces (Fig. S3, Supplementary Data 4), which is not sur-
prising because these have been shown to infect skin bacteria (e.g.,
Propionibacterium®). Furthermore, the members of the order Ortho-
polintovirales, an emerging group of viruses known as virophages®,
were also enriched on human skin-associated surfaces (Fig. S3).
Notably, the human-associated papillomaviruses in the family Papil-
lomaviridae, which can be transmitted directly or indirectly via skin
contact™, were mainly found in frequently touched habitats (i.e.,
doorknobs, ticket kiosks, and handrails in public facilities) (Fig. S3a).

vOTUs of specific Caudoviricetes were selected from the BEs
Caudoviricetes, a class of viruses with a helical tail and icosahedral
capsid (tailed bacteriophages), is prevalent in diverse ecosystems>*.
To investigate whether the members of Caudoviricetes that were
present across the BE habitats possess a common evolutionary origin,
a phylogenetic tree containing 87 species-level vOTUs was constructed
using 77 reference protein-coding marker genes (Fig. 2a). The tree
showed that the Caudoviricetes vOTUs that were widely distributed in
different BE habitats but could not be classified through the IMG/VR
database belonged to the genus Bendigovirus, whereas a distinct clade
comprising one unknown vOTU belonged to the genus Oshima-
virus (Fig. 2a).

The phylogeny of the Caudoviricetes members from the HK BEs
was further analyzed against three other datasets of viromes, namely
skin metagenomes primarily from subjects in North America (the
Skin Microbial Genome Collection [SMGC] dataset)*, the Global
Ocean Viromes [GOV] dataset®, and the Metagenomics and Meta-
design of the Subways and Urban Biomes [MetaSUB] dataset®. As
expected, the viral genomes derived from the HK BEs recruited 18.9%
of the sequencing reads from this study, which was significantly
higher than 0.3% and 0% recruited from the SMGC and GOV datasets,
respectively (Fig. S4a). The GOV dataset result (0%) indicates that
viruses in the marine environment are from different lineages than
those in the BEs, which are under strong anthropogenic influences
(Fig. S4a). A phylogenetic tree was further constructed with 599
species-level vOTUs from the four datasets; it showed that the vOTUs
from the HK BEs were phylogenetically closer to those in the SMGC
and MetaSUB datasets than to those in the GOV dataset (Fig. 2b).
Based on the branch lengths, the vOTUs from the HK BEs and marine
water had comparably high phylogenetic diversity (Fig. S4b).
Nevertheless, some of the vOTUs from the HK BEs were clustered
together (Fig. 2b), suggesting that the BE habitats were selective for
certain vOTUs.
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genes. The protein-coding gene cluster that encodes beta-lactamase is highlighted
in red. f The number of viral genes with putative beta-lactamase domains based on
the Pfam and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. g The
number of antimicrobial resistance genes (ARGs) encoding beta-lactamases based
on the Resistance Gene Identifier (RGI) and Resfams databases. The Venn diagram
summarizes the number of identified ARGs in the two databases, and the bar plot
indicates the distribution of ARGs across BE habitats.

Metabolic functions and antibiotic resistance genes (ARGs)
encoded by the viromes
To explore the potential functional roles that viromes play in the BE
microbiomes of HK, 99,084 protein-coding genes identified across the
viromes were annotated using several databases. The results showed
that 38% of the protein-coding genes had no significant database
match, and ~2% were not assigned any biological functions (Fig. 3a, b),
suggesting that little is known regarding the potential functions of
viromes found in BEs. To further identify the shared functions among
the viromes, all protein-coding genes were clustered into 24,145 de
novo protein-coding gene clusters, and 43.1% of these clusters had at
least two genes (Fig. 3c). The accumulation curve of protein-coding
gene clusters was unsaturated, indicating that the collected samples
exhibit a large diversity of functions (Fig. 3d). The largest protein-
coding gene clusters with >50 genes mostly encoded proteins with
functions in membrane transport (i.e., ABC transporter) and direct/
indirect transcriptional regulation to control gene expression, genome
replication, and transmission to other host cells (i.e., response reg-
ulator) (Fig. 3e). Other common viral functions, such as packaging,
assembly, and lysis, were also found in the largest clusters (Fig. 3e).
While studies on gut viromes have shown that phages rarely
encode ARGs**?, it is unclear whether this characteristic is also com-
mon to viruses in BEs. Based on hidden Markov model searches against
the Pfam®® and Kyoto Encyclopedia of Genes and Genomes (KEGG)

databases®, 53 unique protein-coding gene clusters that contained
putative beta-lactamase-encoding genes were identified (Fig. 3f), and
most of the ARGs were retrieved from viruses inhabiting human skin.
The largest protein-coding gene cluster contained 55 genes encoding
the metallo-beta-lactamases superfamily (PFO0753) and genes encod-
ing the LysR family of transcriptional regulators (K17850) (Fig. 3e). To
further validate the antibiotic resistance capability of the BE viromes, a
homology search against the curated ARG databases was performed
using Resfams'®, NCBI AMRFinderPlus*, and the Resistance Gene
Identifier (RGI)*. Sixty-three beta-lactamase-coding gene clusters were
identified, including 45 from Resfams and 19 from the RGI but none
from AMRFinder, and these clusters were mainly distributed on bol-
lard, doorknob, and skin surfaces (Fig. 3g). The search against Resfams
also identified other potential ARGs, including ermAC, vanABCDHRXZ,
and tetADEHY (Fig. S5), which confer resistance to erythromycin®
vancomycin*, and tetracycline®, respectively.

Highly coupled virus-host links in different habitats

Predicting the cellular hosts of viruses is important for understanding
the dynamics of virus-host interactions and potential coevolution
mechanisms; hence, both in situ and ex situ hosts were identified to
maximize host assignment”. The obtained ex situ virus-host links
covered 122 vOTUs, accounting for 31% of the genomes (Supplemen-
tary Data 5, Fig. S6a). Only bacteria were considered when predicting
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ex situ hosts according to genome-spacer matches; the dominant
hosts were the bacterial genera Corynebacterium, Barrientosiimonas,
Micrococcus, and Kocuria, which are members of the class Actinomy-
cetia (Fig. S6b). To systematically elucidate the interactions between
viruses and their in situ hosts, an extensive assembly of microbial
genomes from the same dataset was performed, which resulted in 58%
of the viral genomes being linked to a set of 860 representative
metagenome-assembled genomes (rMAGs) (Supplementary Data 6,
Fig. S6a). Two other methods—WIsH*® and tRNA matches—were also
used to identify the links between rMAGs and viruses, which resulted in
an additional 17% of the viral genomes being matched to in situ hosts
(Fig. S6a). Altogether, in situ hosts were predicted for 349 vOTUs or
81% of the viral genomes (Supplementary Data 7), which was ~3-fold
higher than the number of vOTUs or the percentage of viral genomes
for which ex situ hosts were predicted, indicating that viruses in the
BEs have a narrow host range. A network for the in situ virus-host links
at the family level was further constructed, and the most frequently
predicted hosts belonged to the family Mycobacteriaceae, followed by
Dermatophilaceae and Micrococcaceae (Fig. 4a).

To further investigate the potential influences of viruses on
microbial ecology in BEs, the viral infection dynamics of specific host
lineages across habitats were assessed based on the lineage-specific
virus-host abundance ratios at the family level of the hosts (Fig. 4b).
Among the different lineages, a range of virus-host abundance ratios
were observed, with the relative abundances of the viruses often being
below those of the hosts, except for the bacterial family Parvularcu-
laceae (Fig. 4b). Most lineage-specific virus-host abundance relation-
ships (31 of 42) differed significantly between the habitats
(Supplementary Data 8). For example, significant correlations with
high Pearson’s coefficients (=0.75) were found between virus and host
abundances for the bacterial families Caulobacteraceae, Derma-
bacteraceae, and Dermatophilaceae on residential surfaces and for the
family Chroococcidiopsidaceae on pier surfaces (Fig. 4b, Supplemen-
tary Data 8). However, the taxonomic distribution of hosts and viruses
varied significantly (ANOVA, p<0.01) across habitats in the piers,
whereas it was relatively homogenous across habitats in the residences
(Fig. 4b). Interestingly, lytic-cycle-related proteins were more pre-
valent in viruses with higher virus-host abundance ratios (Fig. 4b),
suggesting that a potential increase in lytic viral infection reduces host
growth and abundance. Conversely, more viruses with lysogenic cycles
were linked to hosts that were dominant (e.g., Micrococcaceae and
Dermatophilaceae) in most of the habitats (Supplementary Data 2,
Supplementary Data 7), supporting the Piggyback-the-Winner
hypothesis*. Notably, a smaller proportion of viruses with lysogenic
cycles was observed in many of the habitats that experienced harsh
environmental conditions, such as air in subways and floors and
handrails in piers (Fig. S7).

Evidence of CRISPR-Acr interactions in the BE viromes

Highly coupled virus-host links can lead to CRISPR-Acr interactions in
prokaryotes®’. To investigate these interactions, 2,478 CRISPR spacers
were extracted from 25% of the rMAGs and found to be prevalent in
members of the bacterial families Micrococcacea, Mycobacteriaceae,
and Deinococcaceae (Supplementary Data 7). However, only 2% of the
spacers were linked to the viral genomes in the same dataset. In par-
ticular, a complete CRISPR/Cas system was identified in rMAGs with a
provirus integration (Fig. 5a), suggesting that Acr proteins were pre-
valent in the viruses to parry the CRISPR/Cas defense. To validate this,
the Cas-encoding genes in all of the rMAGs were first identified: 34
rMAGs harbored types I and 11l CRISPRs associated with the Casl, Cas2,
and CaslO systems, with type | being the dominant CRISPR type
(Supplementary Data 9). Next, PaCRISPR*® was used to predict Acr
proteins from the 99,084 viral proteins and 6,283 putative proteins
that were found. After filtering out the Acr proteins based on their
adjacent helix-turn-helix (HTH) domain-containing proteins and

alignment against the Protein Data Bank and Conserved Domains
Database®’, 162 protein families were identified as potential Acr pro-
teins, and most of them were found to be carried by Caudoviricetes
viruses (Supplementary Data 10). Overall, several candidate Acr types
were identified (i.e., AcrIB, AcrlF, and AcrllA), with type I Acr proteins
forming the largest Acr cluster due to being prevalent across different
habitats (except air) (Fig. S8). The AcrlA cluster was also consistent
with the major type I Cas cluster found in the MAGs (Supplemen-
tary Data 9).

Based on the spacer-matched virus-host link, we found evidence
of atype I Acr protein involved in type I CRISPR/Cas system inhibition.
A Siphoviridae virus (SL336563_c_18_full) obtained from an occupant’s
palm was found to carry an Acr0001-encoding gene (Fig. 5b), which,
according to a homology search against the Acr curated database*®
and a phylogenetic tree (Fig. 5c), can be used to evade type | CRISPR/
Cas immunity. This result is consistent with the type I-E CRISPR/Cas
systems found in doorknob-borne hosts from the same residence. The
evolution of CRISPR resistance can cause rapid extinction of phages,
especially when the CRISPR/Cas systems feature a high diversity of
spacers®. Interestingly, no integrated phage was found in an rMAG
(SL336752_bin.1_c_05) in which only one contig harbored four CRISPR
loci with 86 unique CRISPR spacers.

Nine of the 162 predicted Acr proteins were considered novel, i.e.,
they did not match a known reference with a BLAST-based hit E-
value < 0.001 (Supplementary Data 10). A phylogenetic tree was con-
structed to further determine the uniqueness of all of the predicted
Acr proteins, which were found to be broadly distributed in different
sub-types (Fig. 5¢). Computational modeling of all of the predicted Acr
proteins revealed diverse structures (48 were considered as having
high confidence [pIDDT > 80]) (Fig. S9). Comparison of the high-
confidence structures of the four novel predicted Acr proteins with
their closest references revealed differences, which may be respon-
sible for the variations in their functions (Fig. 5d). Several predicted Acr
proteins were located in complete circular vOTUs (with lysogenic and
lytic cycles) of unknown families (Fig. S10a-b), suggesting that these
proteins play roles in the evolution of poorly characterized Caudo-
viricetes viruses. Some Acr proteins were located between the inte-
grase and terminase subunits in viruses with lysogenic cycles (Fig.
S10a), while others were close to the terminase subunits in viruses that
make lytic cycles (Fig. S10b), indicating that the Acr-encoding genes
are expressed not only upon initial entry and during lysogeny but also
upon transition to the lytic cycle to prevent the cleavage of progeny
phage genomes by CRISPR/Cas systems, as previously demonstrated
in Listeria phages*®. Additionally, a set of lytic genes, including those
encoding endolysins, the Rz lysis protein, holin, and holin-antiholin,
were carried by specific complete circular vOTUs with lysogenic
cycles (Fig. S10a). Conversely, one complete circular vOTU
(SL336690_c_82_full) that makes lytic cycles still harbored an inte-
grase (Fig. S10b), suggesting that this virus undergoes a transition
from a lysogenic to a lytic cycle if the environmental condition
changes™.

The AMGs of viruses are linked to specific hosts

Studies have reported that viruses in many ecosystems possess AMGs
that participate in hosts’ metabolism to facilitate their adaptation to
the environment>*. The AMGs in the BE viromes were investigated, and
468 putative AMGs were recovered, including 86 with unknown
functions (Supplementary Data 11). Most of the AMGs were found to
play putative roles in the metabolism of cofactors and vitamins (24%),
carbohydrate metabolism (22%), and amino acid metabolism (18%).
Notably, the AMGs carried by viruses in indoor habitats were clearly
distinct from those in outdoor habitats (Fig. 6a). The essential enzyme
dUTPase, which is involved in regulating the cellular levels of dTTP/
dUTP and crucial for the fidelity of DNA repair and recombination®,
was found to be encoded in some viruses of the BEs (Fig. 6a, Fig. S10a,
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Fig. 4 | Virus-host links in the different habitats of built environments

(BEs). a A network diagram illustrating viruses and their predicted bacterial hosts
at the family level. The circles and diamonds indicate the predicted bacterial hosts
and viruses, respectively, and the edges are colored according to the prediction

methods. The frequency of virus-host links occurring in a habitat is shown on the
right. b The relative abundances of hosts and viruses (grouped by predicted host
taxonomy) based on the read mapping of the 614 bulk metagenomes from BEs (left
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highlighted by a gray dashed box. ¢ A schematic that illustrates the insertion of
two AMGs controlling a specific step of sulfate reduction by a virus into a host.
The proviral region is highlighted by a gray dashed box, and the AMGs are
highlighted by a red dashed box. The host genes (black dashed box) and
pathways involved in sulfur metabolism are shown. d A schematic that illus-
trates the insertion of five AMGs encoding the entire preQq biosynthesis
pathway by a virus into a host. The AMGs are highlighted by a red dashed box.

b). However, it is unclear why viruses encode an enzyme that is pre-
valent in eukaryotes and prokaryotes™.

Upon cell infection, some viruses integrate their genomes into the
host chromosome, disrupting the host genes”. Specifically, a provirus
(SL336669_c_04) was found in a host whose genome was highly similar
(83.5% +5.7%) to the reference Paracoccus marcusii (CP041041.1),
except for the region with the viral insertion. The genes inserted by the
provirus encode cold shock proteins, ABC transporters for sugar and
carbohydrate, and proteins that function in arsenic resistance and
energy conversion® (Fig. 6b). The viral insertion had also disrupted the
ftsAWZ genes encoding cell division proteins and the nrdEFHI genes
encoding a ribonucleotide reductase that provides deoxyribonucleo-
tides for DNA synthesis and repair in the host genome. A comparison
of the genomes between the provirus identified here and a known P.
marcusii phage™ revealed no similarity.

In addition to genome insertion, there was evidence of viral
insertion of AMGs into the genomes of two hosts that possibly altered
the hosts’ metabolism and enhanced their adaptability to a habitat. On
the surface of a bollard on a pier, a provirus (SL345587_c_14) was found
to have introduced two AMGs (cysH and ubiE) into the genome of a
host (SL345587_bin.2) that belonged to the family Acetobacteraceae
(Fig. 6¢). CysH encodes a 3’-phospho-adenylylsulfate reductase that
generates sulfite by transformation of sulfate, which is part of the
hydrogen sulfide biosynthesis pathway in sulfur metabolism®. Other
genes responsible for sulfur metabolism were also identified in the
MAG, including cysNCDH that is involved in regulating 3’-phosphoa-
denosine-5-phosphosulfate (PAPS) formation, cysJI that encodes sul-
fite reductase in the assimilatory sulfate reduction pathway, cysQ that

generates an adenosine 5’-phosphosulfate reductase from PAPS, and
other soxABZY genes involved in the sulfur oxidation system (Fig. 6¢).
In addition to synthesizing sulfite, cysH can also control the pool of
cellular PAPS, which is toxic if allowed to accumulate®. Another
indoor-doorknob-borne host belonging to Mycobacteriaceae
(SL345927 bin.2) was linked to a viral genome (SL345921_c_18 full)
derived from the right palm. The AMGs (queCDEF and folE) that
encode enzymes involved in the entire 7-cyano-7-deazaguanine
(preQo) biosynthesis pathway were found to have integrated into the
host genome (Fig. 6d). The genes encoding preQq biosynthesis were
not found in the available Mycobacteriaceae genomes (from NCBI:
txid1762). Taken together, these findings suggest that the metabolism
of hosts in BEs can be influenced by viral infection, which may alter
their adaptability to a specific habitat.

Discussion

Viruses, despite being as numerous as bacteria in BEs®, have received
far less research attention in the literature. A recent global study of
surface microbiomes in urban environments showed that it is feasible
to recover diverse viruses from bulk metagenomic samples from BEs".
In this study, we analyzed in detail the viromes derived from 11 habitats
across four types of BEs in HK.

Several vOTUs were identified in each BE habitat, but their
diversity was significantly lower than that of vOTUs previously iden-
tified in global marine water. The material and type of a given surface
is likely to be the key drivers of virome diversity, with concrete, wood,
and skin surfaces harboring a higher diversity than metal and plastic
surfaces, as indicated by our findings. Even on surfaces made of the
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same metal, contact frequency plays a major role in controlling virome
diversity, as indicated by a frequently touched indoor doorknob
exhibiting a higher virome diversity than the sparingly touched out-
door handrails. Unlike marine environments with abundant
resources”, most habitats in BEs have poor nutrient supply and
uncontrolled and harsh environmental conditions comprising intense
ultraviolet light and fluctuating temperature and humidity. These
unfavorable conditions, together with the properties of surface
materials, can drive taxonomic variations and functional shifts in the
bacterial microbiome’. Ecological evidence also supports that envir-
onmental filtering can control the bacterial diversity in indoor
environments®, which may in turn affect the diversity of phages that
have a narrow host range®. Consistent with the differences in diversity
and structure between bacterial communities in air and on surfaces*’,
the airborne and surface-borne viromes in the present study were
distinct. The use of advanced ventilation and filtration systems may
explain the lower virome diversity in subway air than in air from venues
using natural ventilation'. Viruses belonging to the class Caudovir-
icetes, many of which remain unclassified at the family or genus level,
were ubiquitous and dominant across most habitats except air in the
HK BEs, consistent with the findings for other ecosystems®.
Accumulating evidence suggests that viruses can survive in harsh
environments and aid the survival of their bacterial hosts*°. In HK BEs,
highly coupled interactions between phages and bacterial hosts were
observed, and the proportion of host-linked viruses was more than
2-fold higher than that in soil” and the human gut*°, both of which have
a rich nutrient supply. After invading a host, a phage can apply dif-
ferent strategies to drive host adaptation'. One mechanism is the
insertion of large DNA fragments into highly conserved insertion sites
of the bacterial chromosome by phages with lysogenic cycles®, which,
while having deleterious effects on host fitness, can also generate
genetic variations for evolutionary innovation to aid host adaptation to
new environments. Another mechanism is the expression of phage-
encoded AMGs after insertion into the host genome’. The inserted
AMGs vary depending on the environmental conditions to which the
host is exposed®, and this phenomenon was also observed in different
BE habitats. On frequently touched indoor surfaces, the AMGs that
encode dUTPase were prevalent, likely aiding viral replication to allow
them to persist effectively in their hosts®’. On a pole in a pier that
frequently receives splashes of marine water, the AMG cysH, which
participates in sulfur metabolism, was integrated into a host by a phage
with lysogenic cycles. Interestingly, this gene has also been identified
in viral sequences obtained from oxygen-deficient water columns®
and a deep freshwater lake®". CysH potentially assists the host to
overcome a reaction bottleneck in sulfur metabolism by regulating a
specific step of the metabolic pathway. In contrast to the insertion of a
single AMG, genes involved in the regulation of the entire preQq bio-
synthesis pathway for the formation of a diverse class of nucleoside
analogs possessing antibiotic, antineoplastic, or antiviral activities®
were found in a bacterial host on human skin and a ticket kiosk. The
synthesized compounds in this host may aid host adaptation to fre-
quently touched surfaces. Several AMGs of unknown function were
also found in the BEs, and they should be further investigated
experimentally to determine their roles in virus-host interactions.
The viral life strategy of switching between lysogenic and lytic
cycles is a key driver of virus-host evolution™. Generally, the abun-
dance of viruses with lysogenic cycles varies according to environ-
mental conditions, with the abundance being higher under conditions
of lower bacterial density and nutrient levels®®. While both indoor and
outdoor habitats in BEs are expected to favor viruses with lysogenic
cycles, a relatively lower proportion of these viruses was observed in
outdoor habitats. Generally, outdoor habitats are more vulnerable to
external stresses than internal habitats, resulting in the expression of
lytic genes and transition from a lysogenic to lytic cycle under stressful
conditions (i.e., DNA damage)®. Similar to the marine environment?,

the release of organic matter via viral lysis may play a role in nutrient
and resource cycling for the members of microbial communities in
oligotrophic BEs. However, future studies are required to determine
the ecological model viruses use for establishing themselves in the BEs.

Phage-associated ARGs are a concern due to the possibility of
their wide dissemination through hijacking hosts’ genome replication
machinery®”’. Compared with bacteria-associated ARGs, phage-
associated ARGs pose a more serious threat, as their dissemination
routes are challenging to track and predict”. Although phage-
mediated ARG transduction is rare and the ARGs may not be
functional® %, antibiotic resistance conferred by functional beta-
lactamase-encoding genes has been identified in freshwater viromes
and validated experimentally®. In the BEs in our study, most putative
ARGs were found in viruses inhabiting human skin or frequently tou-
ched indoor surfaces. These ARG-carrying viruses may infect bacterial
hosts, and subsequently, the putative ARGs may be horizontally
transferred between bacterial species’. In addition to ARGs that con-
fer resistance to beta-lactam antibiotics, several AGRs that confer
resistance to macrolides, vancomycin, and tetracycline were also
identified in the viruses from the BEs. Thus, the role played by viruses
in the development of antibiotic resistance in bacteria, especially those
present on frequently touched surfaces in BEs, is crucial and warrants
further investigation.

The frequent battle for survival between bacteria and phages has
led to the evolution of defense systems in many bacteria'. Particularly,
how phages inactivate the CRISPR/Cas systems in bacteria via Acr
proteins has received growing attention because CRISPR/Cas systems
are the only adaptive immune system identified in prokaryotes to
date®. In this study, several Acr proteins were predicted in phages
found in the BEs. Given their function in counter-defense, phage-
encoded Acr proteins evolve rapidly and show limited sequence
similarity to experimentally characterized Acr proteins”, making
inference of the type of Acr proteins challenging. Consequently, most
of the Acr proteins identified in this study are not targeted by the
CRISPR/Cas systems of bacterial hosts. However, Acr proteins may not
be as effective as once believed because CRISPR system resistance also
evolves rapidly and may thus cause rapid extinction of phages, espe-
cially if the CRISPR/Cas systems develop a high diversity of spacers,
which is difficult for phages to overcome by point mutations®. This
phenomenon is consistent with our results that no proviruses were
found in an rMAG that contained four CRISPR loci with 86 spacers.

While this study has shed light on viruses in BEs, it has a few
limitations. First, potential biases could occur in our virome analysis
workflow. Owing to the low biomass in the BE samples and the
potential biases associated with the DNA extraction and purification
methods, the diversity of viruses and their hosts could be under-
estimated. Furthermore, the lack of appropriate references in the
bioinformatics tool databases could lead to poorly characterized
sequences’. Second, the results derived from metagenomic sequen-
cing did not differentiate whether the identified viruses and their
associated genes (e.g., ARGs and Acr proteins) were functional or
defective. Future experimental investigations will be required to
identify the functions of the novel Acr proteins. Third, RNA viruses
were not considered; thus, the full virome diversity in the BEs could not
be examined. Fourth, while the applied contig-based tools?*%*°
enabled us to uncover many novel, previously uncultivated viruses,
assembly with other algorithms may reveal other viruses, and a viral
binning method may better address fragmented multi-contig viral
assemblies to enable more precise clustering of both viral and bacterial
populations and direct investigation of virus-host interactions”.
Lastly, future comparisons with other highly-selective, frequently
cleaned, and resource-limited environments, such as hospitals and
medical wards’, could further contextualize the influence of physical
and chemical properties of surfaces on the abundances of viruses and
the virus-host interactions.
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In summary, we believe that this study is the first to show the
diversity, taxonomy, metabolic functions, and lifestyles of viromes
across diverse habitats in BEs. This study highlights the tight coupling
between viruses and bacterial hosts in BEs and illustrates the sig-
nificance of their coevolution through different virus-host interaction
mechanisms for host adaption and virus survival in oligotrophic
BEs. Many novel viruses from the class Caudoviricetes and Acr
proteins were also identified, suggesting that more of these remain to
be discovered in BEs. Overall, viruses are important members of BE
microbial communities, and a greater understanding of their biology
can ultimately facilitate better design of cities and protection of
public health.

Methods

Sample collection and metagenome sequencing

The metagenomic datasets comprised 738 samples collected from 11
habitats across four types of BEs (namely piers, public facilities, resi-
dences, and subways) in Hong Kong. From nine piers with low occu-
pancy, 175 samples’ were collected from the surfaces of four types of
habitats: bollards (n =40), floors (n =45), handrails (n =45), and poles
(n=45). From eight public facilities (i.e., four parks and four subway
exits) with medium occupancy, 134 samples” were collected from the
surfaces of two types of habitats: park handrails (n=69) and subway
exit handrails (n = 65). From four residences each with a single occu-
pant, 268 samples” were collected from the surfaces of three types of
habitats: doorknobs (n = 66), headboards (n = 68), and occupants’ skin
(i.e., left and right palms and forearms; n=134). Written informed
consent to collect skin samples were obtained from the occupants and
the study was approved by the City University of Hong Kong Human
Subjects Ethics Sub-Committee (ref: HO01553). From 84 subway sta-
tions with high occupancy, 161 samples’® were collected from two
types of habitats: surfaces of ticket kiosks (n=381) and air above the
platforms (n = 80). The same sampling method was used to collect all
of the surface” and air’® samples. The materials of the surfaces were
either metal, plastic, or concrete. Detailed information about the
samples is presented in Supplementary Data 1.

The genomic DNAs of all of the surface and air samples were
extracted using the corresponding methods””®. In brief, genomic DNA
was extracted from swabs collected from sampled surfaces using the
ZymoBIOMICS 96 MagBead DNA kit (Zymo Research, CA, USA), fol-
lowing the manufacturer’s instructions. The cells were lysed using a
chemical solution and mechanical bead beating technology. Genomic
DNA was extracted from air sampling filters using a customized
protocol. Cell lysis was performed using NucliSENS Lysis Buffer
(BioMérieux, Marcy-I'Etoile, France) and a multi-enzyme cocktail
(MetaPolyzyme, Sigma-Aldrich, MO, USA), followed by mechanical
bead beating. A ZymoBIOMICS synthetic microbial community stan-
dard (Zymo Research Corporation, CA, USA) was used as the positive
control in the extraction process and sequenced in tandem with the
surface and air samples. Sequencing of all of the genomic DNA samples
was performed on an lllumina HiSeq X Ten System (lllumina Inc., San
Diego, CA) at HudsonAlpha Genome Center (Huntsville, Alabama)®.
Quality control and assembly of reads into contigs were performed as
previously described’. Briefly, adapters were removed from the raw
sequences using AdapterRemoval (v.2.2.2)”. Quality filtering and
trimming were performed using KneadData (v.0.7.6) with default
parameters and the human genome hg38 as the reference to remove
human sequences. The positive controls yielded the expected
sequencing results. Reads in a sample that could be mapped to contigs
in the negative controls were removed using an in-house script, and
any unpaired reads were further removed from the paired-end fastq
files using fastq-pair (v.1.0; https://github.com/linsalrob/fastq-pair). All
of the contaminating species identified by decontam (v.1.12; https://
github.com/benjjneb/decontam) based on the default threshold were
removed. After quality control, ~5.0 million paired-end clean reads per

sample were retained and assembled into ~4.5 million contigs using
MetaWRAP (v.1.2.1)"%

Recovery of viral contigs

The performance of two viral detection tools was first evaluated on a
mock dataset containing 2000 randomly selected genome fragments
1, 3, 5, 10, and 20kb) of bona fide viruses from the RefSeq viral
database (v.209). The average viral recall of the genomic fragments of
different lengths was calculated using VirSorter2” (v.2.2.4; all cate-
gories) with the default cutoff and DeepVirFinder (v.1.0)*® with differ-
ent cut-offs (0.5,0.7, 0.8, and 0.9) (Fig. Slc). Based on the mock dataset
results, VirSorter2 with the default cutoff (all categories) and Deep-
VirFinder with a predicated score >0.5 and a p-value < 0.05, which
resulted in the highest viral recall for each fragment length, were used
in tandem to process the 4.5 million contigs assembled from 738
metagenome samples (Fig. S1b). In total, 594,851 unique putative viral
contigs were obtained from the two tools. CheckV (v.0.8.1; database
v.1.0)”’ was used to assess the quality of the putative viral contigs, and
1174 viral contigs that included complete, high-quality (>90% com-
pleteness), and medium-quality (50-90% completeness) genomes
were retained®® (Supplementary Data 2). For genomes that contained
predicted proviruses, only the proviral regions were retained. PHA-
STER) (https://phaster.ca/)®® and VIBRANT (v.1.2.1)*! were separately
applied to identify proviral sequences according to the following two
criteria, as previously proposed?: (i) the viral contigs were from con-
tigs with non-viral (host) flanking sequences or (ii) the viral contigs
harbored lysogenic marker proteins (i.e., integrase and serine recom-
binase). In total, 332 unique proviruses were identified using the two
aforementioned tools and CheckV, and only those (127) that were
integrated into a bacterial genome had high confidence (the prophage
region’s total score was >90 in PHASTER) and were included in the
downstream analysis.

Viral genome clustering and taxonomic assignment of viral
operational taxonomic units (vOTUs)

All viral genomes with >50% completeness were clustered into species-
level vOTUs on the basis of 95% average nucleotide identity (ANI) of
>85% alignment fraction relative to the shorter sequence based on
centroid-based clustering®. Genus- and family-level vOTUs were gen-
erated using a combination of gene sharing and amino acid identity
(AAI) based on Markov clustering®” as described previously™. Briefly,
viral genomes with <20% AAI or <10% gene sharing and an inflation
factor of 1.2 were clustered into family-level vOTUs, while those with
<50% AAI or <20% gene sharing and an inflation factor of 2.0 were
clustered into genus-level vOTUs.

The open reading frames (ORFs) in the 471 vOTUs were predicted
by Prodigal (v.2.6.3)** using the parameter “-p meta.” The protein-
coding gene sequences of the 471 vOTUs were assigned family-level
taxonomy using the majority-rule approach as previously described™®.
Specifically, the taxonomy based on the International Committee on
Taxonomy of Viruses (ICTV) of the top IMG/VR (v4) database® hit
using DIAMOND (v.0.9.32; options: —query-cover 50 -subject-cover 50
-E-value 1e”5 -max-target-seqs 1000) was transferred to each protein.
In cases where the taxonomy of the top hit was missing, the next hit
was adopted if its bit-score was within 25% of the top hit. Each vOTU
was then assigned to the lowest taxonomic rank of >70% of the
annotated proteins. At the family and genus ranks, a genome must
have a minimum of two annotated proteins with >30% average AAI or
three annotated proteins with >40% average AAl, respectively, aligned
to a reference genome from the IMG/VR database®.

Estimation of viral coverage

The clean reads from all of the 738 metagenomes were mapped to the
viral genomes using Bowtie2 (v.2.4.4) with the default parameters. A
BamM (v.1.7.3; http://ecogenomics.github.io/BamMy/) “filter” function
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was used to screen the reads that were mapped to the genomes to
remove low-quality mappings, and reads that aligned over >90% of
their length at >95% ANI were retained. The viral genomes with >70% of
their length covered by the reads were selected using a Python scriptin
Read2RefMapper (v.1.1.0), and the average per-base-pair coverage of
each contig in each sample was generated using the BamM “parse”
function with the parameter “tpmean” to remove the highest and
lowest 10% coverage regions. Based on the mapping analysis, viral
genomes were detected in 614 metagenomes. The average relative
abundance of the 1174 viral genomes across the 614 metagenomes was
calculated by dividing the average coverage of a viral genome by the
total number of clean reads across all samples and then multiplying by
the average number of all clean reads across the 614 metagenomes to
bring the total number of reads for each sample up or down to the
average”.

Three publicly available virome datasets, namely skin metagen-
omes primarily from subjects in North America (SMGC dataset)*, ocean
metagenomes from temperate and tropical epipelagic and mesopela-
gic ocean (GOV dataset)*, and surface metagenomes from subway
stations of international cities except Hong Kong (MetaSUB dataset)”,
were analyzed together with the virome dataset generated in this study.
The viral genomes retrieved from the public databases were assessed
using CheckV, and only medium- and high-quality viruses were retained
(Fig. S6a). The mapping of reads to our dataset and the three publicly
available virome datasets was performed using the “bowtie2-build”
function by first creating four indexes using only species-level vOTUs
from all of the virome datasets. The clean reads were then aligned to
each genome index using Bowtie2 with the option “~very-sensitive -k
20”, and alignments with mapping ANI < 95% were discarded.

Alpha and beta diversity analyses

Alpha diversity indexes, namely richness, Shannon’s H, and Pielou’s
evenness, were calculated using the R package vegan (v.2.5.7)%
Seventy metagenomes with singleton vOTUs were excluded from the
analysis. The Mann-Whitney U test was performed to test the statis-
tical significance of the difference between two groups, while analysis
of variance was applied to determine the differences between two or
more groups. For beta diversity analysis, a principal coordinate ana-
lysis based on the Bray-Curtis dissimilarity matrix was performed
using the “vegdist” function of the R package vegan. Pairwise analysis
of similarity and permutational multivariate analysis of variance were
performed to test the significance of dissimilarity between groups by
using the “anosim” and “adonis” functions of the R package vegan,
respectively.

Construction of phylogenomic trees for Caudoviricetes

A maximum-likelihood phylogenetic tree comprising Caudoviricetes
vOTUs from this study and the three publicly available virome
datasets (SMGC, GOV, and MetaSUB) was constructed as described
previously**®. Briefly, 77 curated Caudoviricetes markers were sear-
ched against the protein-coding gene sequences of the vOTUs using a
profile hidden Markov model (HMM). The dataset from this study
contained 444 vOTUs with lengths >5kb and 37,775 protein-coding
gene sequences, while the three public datasets contained 2389 vOTUs
with lengths >5kb and 168,256 viral protein-coding gene sequences.
The top HMM hits were individually aligned to the profile HMMs of the
77 markers, as previously recommended, using the “hmmsearch”
function, which retained 40 and 58 markers from this study and the
four datasets combined, respectively. The alignments of individual
markers were then trimmed using trimAl (v.1.4)* to retain positions
with <50% gaps, and gaps were filled where necessary using an in-
house Python script. Only genomes with >5% amino acid representa-
tion in the total alignment length were retained. A concatenated
protein phylogenetic tree was inferred from the multiple sequence
alignment using FastTreeMP (v.2.111) with the auto model”. The

tree was midpoint-rooted and visualized using iToL (v.6; https://itol.
embl.de/).

Functional annotation of viral contigs

The ORFs in the viral genomes were annotated against several protein
family databases, including KEGG*, Pfam®®, TIGRFAM®*, VOGDB
(http://vogdb.org), and the Earth’s Virome database®, using the profile
HMM search method performed using the hmmsearch utility in
HMMER (v.3.1b2) with the default parameters. The annotation of the
top-scoring alignment (bit-score > 60 and an E-value < 1e°) among the
databases was assigned to each ORF.

Annotation of antibiotic resistance genes (ARGs)

The ARGs in the viral genomes were annotated using the Resistance
Gene Identifier tool (v.5.2.0)* with the option “~low_quality,” which
applied the best identity of >60% to the reference sequences in the
CARD database (v.3.0.9)°°, and using the NCBI AMRFinderPlus (v.3.8.4)
tool*, with the default options of 60% coverage and 80% identity, to
the reference sequences in the Resfams database (v.1.2)*. The search
was performed using the hmmsearch utility in the HMMER tool
(v.3.1b2), with an E-value <1e”® and a gathering threshold score >40.
The Resfams annotation with the best score was adopted when an ARG
received different annotations from the databases.

Annotation of auxiliary metabolic genes (AMGs)

AMGs were annotated based on the viral mode of DRAM (v.1.4.0)”,
which uses the output produced by VirSorter2. The 1174 identified viral
contigs were reprocessed by VirSorter2 (--prep-for-dramv) to produce
the “VIRSorter affi-contigs.tab” file and then annotated with the default
databases in DRAM. This process eliminated 573 viral genomes with
low viral scores according to VirSorter2. Putative AMGs in the
remaining 601 viral genomes were identified based on a high auxiliary
score of 1 or 2. The gene descriptions adopted were based on the
distilled annotation of DRAM-v with the default parameters. To sup-
plement the AMG annotations from DRAM, the viral genomes were
also annotated using VIBRANT with the default parameters, and
annotations not found in DRAM were retained.

Prediction of anti-CRISPR (Acr) proteins

Candidate Acr proteins were first predicted using PaCRISPR*® with a
default cut-off threshold, and further filtering of the candidate Acr
proteins was performed as previously described based on HTH
domain-containing proteins that must be located within five genes
upstream or downstream®?. The filtered candidate Acr proteins were
subsequently clustered using MMseq2 (v.13.45111)** with the para-
meters “--min-seq-id 0.5 -¢c 0.7 --cov-mode 2 --cluster-mode 0”. The
representative Acr proteins that did not produce a hit with an HHpred
probability >0.9 to any Protein Data Bank and Conserved Domains
Database sequence were regarded as predicted Acr proteins and
retained for downstream analysis*. The types of predicted repre-
sentative Acr proteins were estimated using a PSI-BLAST search with
the default parameters against the Acr curated database PaCRISPR*.
Multiple sequence alignment between the predicted Acr proteins and
the 339 reference Acr proteins obtained from the curated PaCRISPR
database was generated using FAMSA (v.1.5.12)°* and trimmed using
trimAl (v.1.4)%¢ to retain positions with <50% gaps. A maximum-
likelihood phylogenetic tree was constructed with the aligned
sequences using FastTreeMP (v.2.1.11) with the auto model and was
visualized using iTOL. The structures of the Acr proteins were pre-
dicted using the AlphaFold2 tool with the default settings’°.

Metagenome-assembled genomes (MAGs) and coverage
estimation

MAGs (Supplementary Data 5) were reconstructed from all of the
sampled metagenomes as described previously’. Briefly, the clean
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reads of each sample were assembled into contigs, and those with
lengths >1000 bp were binned into MAGs using MetaWRAP (v.1.2.1)"%,
The resulting MAGs were further refined using the “bin_refinement”
function of MetaWRAP”® and dereplicated using the “dRep dereplicate”
function of dRep (v.3.2.2)”". In total, 860 bacterial rMAGs with con-
tamination <10% and completeness >50% were generated. The ORFs in
the contigs of rMAGs were predicted using Prokka (v.1.14.6)*%, and the
functions were annotated using EggNOG-mapper (v.2.0.1)*.

To calculate the relative abundance of each rMAG in all of the
samples, the clean reads from each metagenome were mapped to each
genome using the BamM “make” function. Low-quality read mappings
(<75% aligned length of each read and <95% ANI) were removed using
the BamM “filter” function, and the coverage of each genome, which
was represented as the mean of the number of reads aligned to each
position in the contigs after removing the highest and lowest 10%
coverage regions, was calculated using the BamM “parse” function in
the “tpmean” mode. The relative abundance of each rMAG was then
calculated as the average of the coverages of all of its contigs,
weighting each contig by its length in base pairs.

Determination of virus-host links

Both the in situ and ex situ hosts of the viral genomes were identified as
previously described”. Two host databases were used to establish the
virus-host link, in which 203,065 complete bacterial and archaeal
genomes representing 146,464 prokaryotic species from RefSeq
(downloaded from the NCBI database on November 2021) were used
for identifying ex situ hosts, while 860 bacterial rMAGs that were
taxonomically annotated using GTDB-Tk (v.1.5.1)'°° were used for
identifying in situ hosts. CRISPR spacers were extracted from the two
host databases using a custom Python script, and CRISPR-associated
protein (Cas)-encoding genes were detected using CRISPRCasFinder
(v.4.2.20)",

Microbial hosts for the 1174 viral genomes were predicted using a
combination of bioinformatic methods that included viral exact mat-
ches (or close similarity) to (i) host CRISPR spacers, (ii) integrated viral
fragments in host genomes, (iii) host tRNA genes, and (iv) host k-mer
signatures. The methods (i) and (ii) were only used for ex situ host
prediction. For method (i), BLASTn from blast+ (v.2.9.0)'* was used to
compare CRISPR spacer sequences with the viral genomes, and mat-
ches with < 1 mismatch and an E-value <1e™ were retained. For any
CRISPR spacer that had a match in a viral genome, the repeat sequence
from the same assembled CRISPR region was compared with all bac-
terial and archaeal genomes via BLASTn (E-value < 1e, 100% nucleo-
tide identity, and 95% coverage) to link that CRISPR region (and any
viruses harboring spacers in that CRISPR region) to a host. For method
(i), a bit-score threshold of 50 with an E-value <1e™ and a >96% ANI
were used for identifying shared genomic regions via BLASTn, and only
hits >1000 bp were considered, as these criteria have been shown to
yield the most confident host prediction®. For method (jii), viral and
host tRNA genes were predicted by tRNA-scan SE-2.0 using the general
and bacterial/archaeal models, respectively, and BLASTn comparison
was then performed between the predicted viral and bacterial tRNA
genes. The tRNA matches between the viruses and hosts in the dataset
were then scored such that an exact match would score higher (high
score) than a host tRNA with a single base difference (intermediate
score) and a host tRNA with a two-base difference (low score). For
method (iv), WIsH (v.1.1)** was used for host prediction after masking
tRNA sequences on the viral genomes to improve performance. Sub-
sequently, 3,024 viral genomes (downloaded from the NCBI Virus
portal in January 2022) whose hosts are invertebrates were used as a
decoy database after conservatively excluding viruses known to infect
a host genus under prediction. For each viral genome, the WIsH-
predicted host with the lowest p-value (<le™) was retained to be con-
servative with family-level host assignments. Both CRISPR spacer and
genome matches were retained for in situ host assignment and were

given a higher priority than the WIsH and tRNA results. The average
lineage-specific virus-host coverage ratios were calculated by dividing
the relative abundance of rMAGs by that of the viral genomes. The
network of virus-host links was visualized using Cytoscape (v.3.9.0)'%,
and subsampling was performed before constructing a network to
eliminate potential biases due to an uneven number of metagenomes
sampled across the BE habitats.

Data availability

The raw DNA-sequencing data used in this study have been deposited
in the NCBI Sequence Read Archive under BioProject accession
numbers  PRJNA671748, PRJNA722771, PRJNA561080, and
PRJNA881785. The SRA accession number of each sample is indicated
in Supplementary Data 1. Publicly available databases used in this
study were Resfams (http://www.dantaslab.org/resfams), CARD
(https://card.mcmaster.ca/), Pfam (https://www.ebi.ac.uk/interpro/
download/Pfam/), IMG/VR (https://genome.jgi.doe.gov/portal/IMG_
VR/), VOG (http://vogdb.org), TIGRFAM (https://www.ncbi.nlm.nih.
gov/genome/annotation_prok/tigrfams/), = KEGG  (https://www.
genome.jp/kegg/), and NCBI virus/bacteria/refseq (https://www.
ncbi.nlm.nih.gov/refseq/). The datasets analyzed including the
Earth’s Virome (http://portal.nersc.gov/dna/microbial/prokpubs/
EarthVirome_DP/), SMGC (https://www.ncbi.nlm.nih.gov/sra/?term=
SRP002480), GOV (https://bitbucket.org/MAVERICLab/), and Meta-
SUB (https://github.com/dscdorothy/HK_BE_viromic) are available
online. The high-confidence structures of the predicted Acr proteins
are provided at https://github.com/dscdorothy/HK_BE_viromic.

Code availability
The supporting code is provided at https://github.com/dscdorothy/
HK_BE_viromic.
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