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Ligand-enabled Ni-catalysed enantio-
convergent intermolecular Alkyl-Alkyl cross-
coupling between distinct Alkyl halides

Wen-Tao Zhao 1, Jian-Xin Zhang1, Bi-Hong Chen1 & Wei Shu 1,2

α-Tertiary aliphatic amides are key elements in organic molecules, which are
abundantly present in natural products, pharmaceuticals, agrochemicals, and
functional organic materials. Enantioconvergent alkyl-alkyl bond-forming
process is one of themost straightforward and efficient, yet highly challenging
ways to build such stereogenic carbon centers. Herein, we report an enantio-
selective alkyl-alkyl cross-coupling between twodifferent alkyl electrophiles to
access α-tertiary aliphatic amides. With a newly-developed chiral tridentate
ligand, two distinct alkyl halides were successfully cross-coupled together to
forge an alkyl-alkyl bond enantioselectively under reductive conditions.
Mechanistic investigations reveal that one alkyl halides exclusively undergo
oxidative addition with nickel versus in-situ formation of alkyl zinc reagents
from the other alkyl halides, rendering formal reductive alkyl-alkyl cross-
coupling from easily available alkyl electrophiles without preformation of
organometallic reagents.

α-Tertiary aliphatic amides with a α-saturated stereogenic carbon
center are key structural units in chemistry, functional materials and
many related areas1–5. Thus, the development of versatile and
straightforward methods to access saturated stereogenic centers in a
highly enantioenrichedmanner hasbeen attracting long-term interests
from chemistry community6. Early efforts have been paid to the
employing of chiral auxiliaries to control the desired stereochemistry,
resulting in the use of stoichiometric amount of chiral auxiliaries as
well as additional steps for their installation and removal from the
target molecules7. Over the past decades, studies have been increas-
ingly focused on catalytic approaches to access such stereogenic
centers8,9, including Ni-catalysed enantioconvergent cross-coupling
between analkyl electrophile and an alkyl nucleophile (Fig. 1a)10,11. Over
the past years, significant progress has been achieved in nickel-
catalysed enantioselective cross-coupling of racemic secondary alkyl
electrophileswith organometallic reagents12–20. This reactionmodehas
been well-developed and evolved into an inevitable tool for con-
structing saturated stereogenic carbon centers. Although the sig-
nificant advances, this reactionmode requires stoichiometric, reactive,
and often sensitive organometallic reagents, which usually require

time-consuming preformation. To this end, one alternative is to use
alkenes as masked alkyl nucleophiles in the presence of metal hydride
to undergo enantioselective alkyl-alkyl cross-coupling21–24. Hydro-
metallation of alkenes throughmetal hydride insertion generates alkyl
metallic intermediates in situ as alkyl nucleophiles. In 2019, Fu group
reported a seminal work on Ni-H catalysed enantioselective alkyl-alkyl
cross-couplings of 1-substituted alkenes as a surrogate of carbon
nucleophile to couple with secondary alkyl bromides adjacent to
amides and esters (Fig. 1b)25,26. More recently, secondary alkyl bro-
mides next to phosphates and ethers were successfully involved27–33.
Accordingly, this strategy has evolved into an efficient cross-coupling
of diverse alkenes with alkyl electrophiles to build saturated stereo-
genic carbon centers in the presence of metal hydrides34,35.

However, direct reductive cross-coupling between two distinct
electrophiles is still one of the most straightforward, cost-effective,
thus ideal alternatives to construct saturated stereogenic carbon
centers36–38. Ni-catalysed cross-coupling reactions between organ-
electrophiles under reductive conditions have been extensively
investigated for Csp2-Csp3 bond formation39–44. To date, no example of
non-enzyme-catalysed enantioselective Csp3-Csp3 bond formation was
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reported45. Herein, we report a Ni-catalysed intermolecular cross-
coupling between two different alkyl electrophiles under reductive
conditions (Fig. 1c). The use of newly-developed chiral ligand enables
construction of Csp3-Csp3 bond by selective coupling of two distinct
alkyl electrophiles, without the preformation of organometallic
reagents.

Results
Optimization of the reaction conditions
To prove the concept, we commenced the investigation using 1a and
2a as the prototype substrates using nickel catalysis to evaluate
the reaction parameters. After extensive preliminary evaluation (See
Supplementary Tables 1–5), we found the use of pyridine-BOX
type ligands gave better results compared to other types of ligands
in the presence of zinc (3.0 equiv) as sacrificing reductant, ferrous
chloride (25mol%), and cesium iodide (3.0 equiv) as additives. Among
the tested known ligands, L1 gave the best result, delivering the
desired cross-electrophile coupling product 3a in 67% yield with 70%
ee (Table 1, entry 1).Modifying the substituents atα-position tooxygen
on the oxazolidine ring of iPr-PyBOX significantly altered the efficiency
of the ligand for this reaction (Table 1, entries 2–7). Linear substituents
at α-position to oxygen of iPr-PyBOX (L2-L4) substantially diminished
the yield and enantioselectivity (Table 1, entries 2–4). Cyclic sub-
stituents slightly increased the enantioselectivity of 3a from 70% to
76% and 71%, respectively (Table 1, entries 5 and 6). Introducing two
phenyl groups onto α-position to oxygen (L7) led to trace amount of
3a (Table 1, entry 7). Next, Bn-PyBOX derived ligands (L8-L12) were
applied to this asymmetric cross-electrophile coupling reaction
(Table 1, entries 8-12). Bn-PyBOX delivered the desired product 3a in
29% yieldwith 60%ee (Table 1, entry 8). Increasing the steric hindrance
at the α-position to oxygen improved the enantiomeric excess of 3a to
84% (Table 1, entry 10). Ligandsderived from iBu-PyBOX (L13-L15) gave
inferior yields and enantioselectivity (Table 1, entries 13-15). When Et-

PyBOX based ligand L16 was used, 3a was obtained in 29% yield with
90% ee (Table 1, entry 16). Then, Me-PyBOX derived ligands (L17-L23)
were tested (Table 1, entries 17-23). The use of propyl Me-PyBOX (L20)
furnished 3a in 21% yield with 94% ee (Table 1, entry 20). Further
evaluation of additive and solvent effect revealed that the addition of
15-crown-5 (10mol%) in a mixture of DMA and diglyme (1:3) afforded
3a in 85% yield with 94% ee (See Supplementary Tables, 7-11). The use
of ferrous chloride may facilitate the cross-coupling of 1a with 2a. In
addition, the addition of 15-crown-5 may serve as an additive to
enhance the solubility of inorganic salts in organic phase.

Scope of the reaction
With the optimized conditions in hand, we turned to test the scope of
this reaction (Figs. 2 and 3). First, we examined the viability of α-bro-
moamides 1 (Fig. 2). Various substituted aniline derived α-bromoa-
mides were good substrates for this enantioselective cross-
electrophile alkyl-alkyl coupling reaction (3b-3r). Electron-donating
group substituted aniline based amides delivered the desired enan-
tioenriched α-alkylated amides in 58%–67% yields with 88–94% ee (3b-
3e). Electron-withdrawing groups were also tolerated in the reaction,
delivering the corresponding α-tertiary amides in 51–73% yields with
93–94% ee (3f-3k). Ketones and esters were compatible under the
reaction conditions, giving the ketone and ester containing α-tertiary
amides in 60% and 71% yields with 93% ee (3g-3h). Halides, such as
fluorine, chlorine, and bromine, were also well-tolerated in this nickel-
catalysed reductive process (3i-3k), leaving halides as a chemical
handle for further elaboration. Notably, free phenol was tolerated in
the catalytic process, furnishing desired enantioenriched amide 3l in
51% yield with 91% ee. Moreover,meta- and ortho-substituted aswell as
2-naphthylamine derived α-bromoamides could be converted to cor-
responding α-alkylated amides in 58–71% yields with 92–94% ee (3m-
3q). Thiophene amine was tolerated in the reaction, giving the desired
product 3r in 67% yield with 94% ee. Aliphatic amines, including the
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linear, branched, and benzylic amine based α-bromoamides were all
good substrates, giving the desired products in synthetic useful yields
with 82–88% ee (3s-3v). α-Bromoamide from chiral amine was con-
verted to α-alkylated amide 3w in 63% yield with 9:1 dr. Impressively,
unprotected α-bromoamides, which are challenging for enantioselec-
tive coupling reactions, could be tolerated to deliver corresponding
reductive cross alkyl-alkyl coupling product 3x in 49% yield with 87%
ee. In addition, α-bromo-N,N-disubstituted amide is applicable in this
reaction, affording the cross-coupling product (3y) in 52% yield with
92% ee. Unfortunately, α-bromo ester failed to deliver the desired
cross-coupling product (3z) under the reaction conditions. Next, we
embarked to test the scope of α-substituent of amides. Diverse alkyl
substituents with different chain length were good substrates, deli-
vering corresponding α-alkylated amides (4a and 4b) in 69% and 65%
yields with 94% ee, respectively. Notably, α-chloroamides successfully
underwent asymmetric alkyl-alkyl cross-coupling with 2a to give 4a in
61% yield with 92% ee. More steric demanding substituents, such as
isopropyl, cyclopentylmethyl were also compatible in the reaction,
giving 4c and 4d in 50% and 63% yields with 89% and 90% ee. Benzyl,

phenylethyl, chloroethyl, and allyl could be tolerated in the reaction,
giving the desired products 4e-4h in 58%-67% yields with 91%-92% ee.
Notably, the enantioenriched amideswith similar steric hindrance atα-
position could be achieved with excellent enantioselectivity (4f). The
absolute configuration of the product was further confirmed by the
X-ray diffraction analysis of 4f.

Next, the scope of the other alkyl electrophile was evaluated
(Fig. 3). Different alkyl bromides were good substrates for this enan-
tioselective cross-electrophile coupling reaction, giving correspond-
ing alkyl-alkyl products (5a-5c) in 47–66% yields with 89–92% ee.Many
functional groups, such as chlorine, nitrile, amide, alkene, alkyne,
acetal, ester, ether containing alkyl bromides could be coupled to
deliver desired products in moderate to good yields with 90–94% ee
(5d-5m). Heterocycles, such as thiophene and furan substituted alkyl
halides were transformed into corresponding products (5n and 5o) in
65% and 62% yields with 90% and 93% ee, respectively. Unfortunately,
secondary unactivated alkyl halides remain unsuccessful for the reac-
tion. In addition, both isomers of 6 were obtained under identical
reaction conditions with the same chiral ligand. In the presence of

Fig. 2 | Scope of α-bromoamides. The reaction was performed on a 0.2mmol scale under the conditions in Table 1, entry 24. 15C5 = 15-crown-5. DME dimethoxyethane,
DMA dimethylacetamide. Note: aα-Chloroamide was used instead of α-bromoamide. b3-Phenyl-1-iodopropane was used instead of 2a.
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(S,S)-L20, the reaction of 1a with 1-iodopropane gave R-6 in 70% yield
with 86% ee, while the reaction of 1bwith ethyl bromide furnished the
other isomer S-6 in 59% yield with 88% ee.

Mechanistic study
In order to gain insight into themechanismof the reaction, we set up a
series of reactions to shed light on the reaction pathways (Fig. 4). First,
the reaction of 1awith 2a in the presence of a radical scavenger TEMPO
under otherwise identical to standard conditions was conducted
(Fig. 4a). The desired intermolecular cross-coupling product 3a was
not formed. Instead, the adduct 7 of TEMPO with 1a was obtained in
85% yield, indicating α-bromoamides underwent a single electron
transfer process in this transformation. Next, the reactions of alkyl
bromides with preformed alkyl zinc reagents under the standard
conditions were tested (Fig. 4b). When alkyl zinc reagent 8 was
used instead of 1a to couple with 2a under standard conditions, no
desired product 3a was detected, and only protonated product 8’was
formed quantitatively, indicating alkyl zinc reagent 8 could not med-
iate the reaction under the standard reaction conditions. In contrast,
the reaction of 1a with alkyl zinc reagent 9 under standard conditions
delivered the desired cross-coupling product 3a in 87% yield with 89%
ee. Further conducting the reaction with slow addition of alkyl zinc
reagent 9 led to the formation of 3a in 83% yield with 94% ee, which is
identical to the standard reaction conditions. These results suggest
slow formation of alkyl zinc intermediate 9 in-situ to serve as inter-
mediate for the reaction. To further prove the formation of alkyl zinc
intermediates during the reaction, a real-time reaction course was

conducted (Fig. 4c). The monitor the reaction process of 1a with 2a
under standard conditions showed that no formation of 3a in the first
30min, although the consumption of 2a was observed, indicating the
induction time to form significant amount of alkyl intermediate to
initiate the coupling reaction to generate 3a.

On the basis of experimental results and literature
precedence46–48, a plausiblemechanism is depicted in Fig. 5. First, Ni(II)
was reduced by zinc to generate the ligated nickel (I) species (Int-A) in
the presence of chiral ligand (L), which could undergo single electron
transfer to 1 to give alkyl radical intermediate Int-B and Ni (II) inter-
mediate Int-C. In the meantime, alkyl zinc reagent Int-D could be
formed from 2 and zinc in the assistance with iodide, which could
undergo transmetalation with Int-C to generate alkyl Ni(II) species Int-
E. The rebound of intermediates Int-B and Int-E could form dialkyl Ni
(III) intermediate Int-F, which would facilitate reductive elimination to
furnish the final product 3 and regenerate Ni (I) species.

Discussion
In summary, an intermolecular enantioselective alkyl-alkyl cross-
coupling between two alkyl electrophiles has been developed
enabled by the efficient and selective cross-coupling reaction
between two distinct alkyl halides under reductive conditions,
representing an alternative for the construction of chiral Csp3-Csp3

bonds. One alkyl halides in-situ formed alkyl nucleophiles with
reducing metal to cross-couple with the other alkyl halides in a
chemo- and enantioselectivemanner, circumventing the tedious and
time-consuming preformation of alkyl metal species. We anticipate
this will inspire enantioselective in-situ cross-coupling between alkyl
electrophiles under reductive conditions to be evolved into one of
the major strategies to build saturated carbon centers via enantio-
selective Csp3-Csp3 bond-formation.

Fig. 3 | Scope of alkyl halides. The reaction was performed on 0.2mmol scale
under the conditions in Table 1, entry 24. 15C5 = 15-crown-5.DMEdimethoxyethane,
DMA dimethylacetamide.

Fig. 4 | Control experiments andmechanistic investigations. aQuenchof radical
intermediates. TEMPO tetramethylpiperidine oxide. b Reactions with alkyl zinc
reagents. c Time course for 2a and 3a under standard conditions.
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Methods
General procedure for Ni-catalysed enantioconvergent inter-
molecular alkyl-alkyl cross-coupling
In a nitrogen-filled glovebox, NiCl2·glyme (0.016mmol, 8mol%), chiral
ligandL20 (0.016mmol, 8mol%) anddiglyme (1.0mL)wereadded to a
10-mL vial equipped with a stir bar. Themixture was allowed to stir for
1 h, after which it was an orange solution. Then, FeCl2 (0.05mmol,
25mol%), 15C5 (0.02mmol, 10mol%), CsI (0.6mmol, 300mol%), Zn
(0.4mmol, 200mol%), 1 (0.2mmol), 2 (0.6mmol, 300mol%), DMA
(0.5mL) and diglyme (0.5mL) were added. The reaction mixture was
transferred out of the glovebox and stirred (~1400 rpm) at room
temperature for 24h. Next, ethyl acetate (20.0mL) was added, and the
mixture was washed with water (10.0mL) and brine (10.0mL), dried
over Na2SO4, filtered, and concentrated under vacuum. The residue
was purified by flash chromatography on silica gel to afford the
enantioselective alkyl-alkyl cross-coupling product.

Data availability
The X-ray crystallographic coordinates for structures that support the
findings of this study have been deposited at the Cambridge Crystal-
lographic Data Center (CCDC) with the accession code CCDC 2089117
(4f) and CCDC 2239323 (7) (www.ccdc.cam.ac.uk/data_request/cif).
The authors declare that all other data supporting the findings of this
study are available within the article and Supplementary Information
files, and also are available from the corresponding author upon
request.
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