Table 2 Multivariate analysis using cross-validation lasso

From: Built structures influence patterns of energy demand and CO2 emissions across countries

Models predicting TFC

Lasso path for model A

Estimated coefficients

λ

(A)dded, (R)emoved

CV MPSE

 

Model A

Model B

0.711

GDP(A)

0.703

GDP

0.494

0.572

0.371

BLcap(A)

0.319

DENS

−0.017

−0.039

0.161

HDD(A), RWDtot(A)

0.179

UPOP

  

0.121

RDurb-rur(A)

0.166

HDD

0.021

0.051

0.111

PGAS(A)

0.161

PGAS

−0.352

−0.288

0.101

RDurb(A)

0.155

BLcap

0.184

 

0.076

RWDurb(A)

0.135

BLmono

−0.017

 

0.063

RWDtot(R)

0.125

RDurb

−0.392

 

0.048

DENS(A)

0.115

RLurb-rur

−0.024

 

0.030

BLmono(R)

0.108

RDurb-rur

−0.074

 

0.027

RLurb-rur(A)

0.107

RWDurb

0.045

 

0.017*

(Unchanged)

0.105

Intercept

3.457

2.542

0.016

RWDurb-rur(A)

0.105

   

0.013

BLcomp(A)

0.105

Measures of in-and-out-of-sample fit

0.011

(Unchanged)

0.106

BIC

84.17

100.32

   

r2

0.900

0.851

   

oSr2

0.865

0.833

Models predicting CO2

λ

(A)dded, (R)emoved

CV MPSE

variable

Model A

Model B

0.867

GDP(A)

1.278

GDP

0.449

0.582

0.544

BLcap(A)

0.801

DENS

−0.061

0.023

0.496

UPOP(A)

0.738

UPOP

0.466

0.558

0.452

RWDtot(A)

0.683

HDD

0.055

0.109

0.312

HDD(A)

0.530

PGAS

−0.680

−0.688

0.215

PGAS(A)

0.446

BLfract

0.201

 

0.135

RDurb-rur(A)

0.338

BLcap

0.176

 

0.123

BLfract(A)

0.323

BLcomp

0.489

 

0.085

RWLurb-rur(A)

0.289

RDurb

−0.201

 

0.070

BLfract(R)

0.280

RWDurb

0.130

 

0.048

BLcomp(A)

0.269

RWDrur

0.017

 

0.044

RDurb(A)

0.266

Intercept

−2.723

−4.294

0.037

RWDurb(A)

0.262

   

0.025

BLfract (A)

0.256

Measures of in-and-out-of-sample fit

0.023

DENS(A)

0.255

BIC

178.44

190.82

0.021

RWLurb-rur(R)

0.254

r2

0.873

0.812

0.016

RWDrur(A)

0.251

oSr2

0.817

0.785

0.016

RDurb-rur(R)

0.251

   

0.014

RWDtot(R)

0.250

   

0.012*

(Unchanged)

0.249

   

0.006

(Unchanged)

0.250

   
  1. The leftmost three columns show the lasso path for predicting cross-country patterns of TFC (above) and CO2 (below) using all variables. In the first column, the λ value marked with an asterisk denotes the optimal model (Model A) emerging from the cross-validation. CV MSPE is the cross-validated mean-square prediction error evaluated with tenfolds (for detail, see Methods section). For Model B, only conventional factors are selected. The same folds are used for the assessment of all models. BIC is the Bayesian Information Criterion for model selection. r2 is the goodness of fit within the sample of countries, and oSr2 refers to the (cross-validated) out-of-sample goodness of fit.