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Single-cell analysis identifies conserved
features of immune dysfunction in
simulated microgravity and spaceflight
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Microgravity is associated with immunological dysfunction, though the
mechanisms are poorly understood. Here, using single-cell analysis of human
peripheral bloodmononuclear cells (PBMCs) exposed to short term (25 hours)
simulated microgravity, we characterize altered genes and pathways at basal
and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-
cell analysis by RNA sequencing and super-resolutionmicroscopy, and against
data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission,
Twins study, and spleens from mice on the International Space Station.
Overall, microgravity alters specific pathways for optimal immunity, including
the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate
inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling),
nuclear receptors, and sirtuin signaling. Microgravity directs monocyte
inflammatory parameters, and impairs T cell and NK cell functionality. Using
machine learning, we identify numerous compounds linking microgravity to
immune cell transcription, and demonstrate that the flavonol, quercetin, can
reversemost abnormal pathways. These results define immune cell alterations
in microgravity, and provide opportunities for countermeasures to maintain
normal immunity in space.

Astronauts in low earth orbit (LEO), such as on the international space
station (ISS), experience immune dysfunction associated with
the microgravity environment. Multiple studies have described
immune dysregulation in short or long-term simulated1–4 or actual
microgravity5–9. For the most part, such studies have described
impaired T-cell responses, coupled with some form of heightened
innate immunity7,10, though some innate immune cells, like natural
killer (NK) cells, also show impaired function11. Consistent with altered
adaptive immunity, potentially due to impaired cytotoxic and Th1 T

cell function, and reduced NK cell function, astronauts develop
increased reactivation of latent viruses, including herpes viruses (EBV,
CMV, VZV)3,7,12–15. In one study, viral shedding after 9–14 days of
spaceflight was linked to changes in serum cytokines, including a
preferential large increase in IL-4 compared to interferon (IFN)γ,
indicating a possible shift away from Th1 immunity towards Th2
immunity16. Consistently, some astronauts report heightened hyper-
sensitivity reactions, such as increased allergic and Th2-like responses
in space7.
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Multiple studies using higher throughput approaches have star-
ted to add insight into pathways impacted by spaceflight. In the Twins
study17, a one-year ISS mission altered innate, adaptive, and NK cell-
mediated immunity across bulk RNA sequencing analysis. In T cells,
increases in DNAmethylationwere seen in the promoters of notch3 for
CD4+ T cells, linked to T cell differentiation, and in scl1a5/asct2, linked
to activation, for CD8+ T cells. A total of 50 of 62 assayed cytokines
were also altered by spaceflight or landing17. During a recent multi-
omic analysis, includingbulkRNAandDNAmethylation sequencing, of
astronauts and mice in space, mouse organs such as the liver and
kidney demonstrated reduced IFN signatures, coupled to altered
methylation patterns of these gene sets, while muscles had increased
IFNγ, IL-1, and TNF10. Serum inflammatory markers from 59 astronauts
in this study (and in a similar companion study) showed increased
VEGF-1, IGF-1, and IL-1 during spaceflight, which resolved upon
returning to Earth4,10. This same study also identified mitochondrial
dysfunction as a major response of different non-hematolymphoid
tissues to spaceflight10. More recently, another study using a NASA-
developed Rotating Wall Vessel, which was employed in our current
work, utilized a 41-parameter mass cytometry approach to show that
short-term (18–22 hours) simulated microgravity can dampen NK cell,
CD4+, and CD8+ T cell responses to Concanavalin A/anti-
CD28 stimulation, but potentiates STAT5 signaling to boost Tregs18.

Despite these important advances, the core fundamental
mechanisms, genes, and pathways that are directly altered by micro-
gravity to adversely impact immunity, including at single-cell resolu-
tion, are largely unknown. Interestingly, mechanical forces are
emerging as critical orchestrators of immune cell function, whereby
mechanotransduction tunes immune cell responsiveness to danger
signals19. Some of these effects occur through environmental mod-
ulation of mechanosensing pathways that alter ion currents in cells,
metabolism, or directly act on the cytoskeleton19. Thus, a spaceflight
environment, which alters forces such as gravity, associated hydro-
static pressure, and shear force20,21 onto immune cells likely directly
contributes to immune system dysfunction.

Here, using a commonground-based analog, theNASAdeveloped
low shear modeled microgravity Rotating Wall Vessel (RWV)2,18,22, we
examine in depth how short-term (25 hours) exposure to simulated
microgravity impacts the human peripheral blood mononuclear
immune system in detail at single-cell resolution. Combining this data
with validation experiments from mice and crewmembers in LEO, as
well as machine learning algorithms, we identify numerous core genes
and pathways in immune cells that are altered by simulated micro-
gravity or spaceflight, and identify numerous potential compounds
that directly map onto immune cell transcriptional signatures in
simulated microgravity.

Results
Simulated microgravity alters the transcriptional landscape of
individual immune cells
To begin understanding how simulated microgravity impacts immune
cell function, we loaded PBMC samples from two young healthy CMV+
donors, one male, and one female, into either RWV simulated micro-
gravity (uG) or normal gravity (1G) static controls for 16 hours of
conditioning. The 16-hour-conditioning time point was chosen based
on prior work that used approximately the same time and tracked
transcriptional or proteomic changes on immune cells to simulated
microgravity1,18. PBMCs were either left unstimulated or stimulated for
an additional 9 hours with R848, a standard TLR7/8 agonist. We chose
TLR7/8 as a putative target since it mimics viral infection, and is
expressed onmost human immune cells, including T cells23. Using this
methodology, we next developed a single-cell atlas of 55,648 human
PBMCs exposed to these conditions.

In the unstimulated state, after 25 hours of simulated micro-
gravity, we identified 28 clusters of immune cells visualized by UMAP

(Uniform Manifold Approximation and Projection), including cell
types such as mucosal associated invariant T cells (MAIT cells), double
negative T cells, γδ T cells, innate lymphoid cells, and plasmacytoid
dendritic cells, which have rarely been studied in simulated micro-
gravity (Fig. 1A). Simulated microgravity altered proportions of
immune cell clusters to a mild extent, with B intermediate cells, and
MAIT cell proportions being most negatively impacted, and CD14+

monocytes, and CD4+ T effector memory (TEM) cells being most
increased based on percent change (Fig. 1B). Across all immune
populations, simulated microgravity altered expression of over 4500
genes with adj P cutoff of <0.05 (Supplementary Data 1). This list was
refined to a core list of ~375 differentially expressed genes (DEGs) with
an additional cutoff of |log2FC|> 0.1. This list was further condensed to
visualize on a Volcano plot with |log2FC|> 0.25 (Fig. 1C), showing only
the very top positively and negatively altered genes. Volcano plots of
DEGs for individual immune cell clusters are shown in Supplementary
Fig. 1. Across all immune cells, some of the most induced genes in
simulatedmicrogravity included acute response genes such as s100a8,
s100a9, s100a12, thbs1, heat-shock genes such hsp90ab1, chemokines
like ccl2, ccl4, iron storage genes (fth1, ftl), and matrix metalloprotei-
nases (mmp9). The most reduced genes in simulated microgravity
included interferon response (stat1) and associated guanylate binding
proteins (gbp1), and cold shock genes (rbm3, cirbp). Expression of the
top DEGs (with mitochondrial encoded genes excluded for visual
simplicity) across 22 populations of immune cells are shown in Fig. 1D.
CD14+ classicalmonocytes, CD16+ nonclassicalmonocytes, and natural
killer (NK) cells exhibited the most pronounced changes across major
gene sets, consistent with short term simulated microgravity’s direct
effect at reprogramming transcriptional changes most prominently in
innate immunity. Consistently, using single-cell trajectory analysis, we
identify numerous trajectories mainly in the innate immune cell clus-
ters, especially the monocyte cluster, in response to simulated
microgravity. Trajectory analysis is used to construct a path that
describes how cells move through different states, and the numerous
states seen in the monocyte cluster in simulated microgravity may
reflect an increased capacity to generate distinct transcriptional states
to simulated microgravity (Fig. 1E).

Ingenuity pathway analysis (IPA) (Fig. 1F, Supplementary Data 2)
generated using our core list of 375 genes from the overall popula-
tions, as well as the DEGs in major immune cell types (Supplementary
Data 3) revealed that monocytes, conventional dendritic cells type 2
(cDC2)s, double negative (dn)T cells and NK cells show the most
notable pathway alterations. Major pathways altered by simulated
microgravity across immune cells included reductions in oxidative
phosphorylation, interferon signaling like protein kinase R (PKR) in
interferon response, nuclear receptor signaling (LXR/RXR, PPAR,
AHR), RHOA and pyroptosis signaling, as well as increases in BAG2
(heat-shock protein 70 interactor) signaling, fibrosis signaling, actin-
based motility, RAC, HIF1 signaling, acute phase response, oxidative
stress and sirtuin signaling, amongst others.

Given that multiple pathways we detected were associated with
inflammatory processes linked to aging (i.e., increased innate immu-
nity coupled to reduced adaptive immunity), we next determined
whether acute exposure to simulated microgravity mimicked inflam-
matory aging processes in immune cells. We mapped the gene
expression signatures of individual immune cells, and overall immune
signatures, against two recently developed inflammatory signatures of
aging, the inflammatory age (iAge) clock24, and the SenMayo list of
senescence associated secretory inflammatory products25. Simulated
microgravity induced a significant enrichment in inflammaging related
genes, consistent with the notion that short term simulated micro-
gravity can induce aging-like inflammatory changes in unstimulated
immune cells (Fig. 2A, B, Supplementary Fig. 2A). Next, because both
spaceflight and aging are associatedwith reactivation of latent viruses,
wemined themeta-transcriptome of our single-cell analysis withmeta-
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Fig. 1 | Simulated microgravity without pattern recognition receptor stimula-
tion alters the single-cell transcriptional landscape of human PBMCs. A UMAP
plot of unstimulated PBMCs single-cell transcriptomes (10X Genomics), pooled
together from a male (36 years old) and a female (25 years old) donor, that
underwent either 1G or simulated microgravity (uG) for 25 hours total. Cells were
resolved into 28 distinct clusters. B Quantification of relative abundance of each
cluster of single PBMCs bypercentage, or log2FoldChange (FC) between simulated
uG and 1G conditions. Source data are provided with this paper. C Volcano plot of
differentially expressed genes (DEGs) across all immune cell types between uG and
1G; DEGs (including log2FC and adj. p) were calculated by the MAST method. The
Benjamini–Hochberg (B-H) method was used for multiple comparison adjust-
ments. Adjusted p value (adj. p) cutoff is 0.05, and log2FC cutoff is 0.25.DDot plot
showing the top DEGs from C and their expression levels across 22 immune cell

populations. DEGs (including log2FC and adj. p) were calculated by the MAST
method. P values were adjusted by the B-H method. Spot color reflects Log2FC of
uG vs 1G, while spot size shows −log10 (adj. p). E UMAP of trajectory analysis of 1G
and simulated uG unstimulated PBMCs. White circles represent the root nodes of
the trajectory. Black circles indicatebranchnodes,wherecells can travel to a variety
of outcomes. Light gray circles designate different trajectory outcomes.
F Canonical pathway enrichment analysis obtained from Ingenuity Pathway Ana-
lysis (IPA) is shown across 19 immune cell clusters. Spot color reflects IPA z-score
enrichment of simulated uG vs 1G, with red meaning predicted activation of the
pathway in uG and blue meaning repression of the pathway in uG. Spot size shows
the level of significance via −log10 (adj. p). Adj. p was calculated by the Fisher’s
Exact Test (right-tailed) followed by B-H adjustment.
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transcriptome detector (MTD) pipeline26. Surprisingly, we saw that as
little as 25 hours of simulated microgravity could induce the tran-
scription of latent retroviruses and mycobacteria within human
immune cells (Fig. 2C, Supplementary Figs. 2B, C and 3), directly
implicating microgravity itself as a contributing trigger for latent
pathogen activation. We confirmed the meta-transcriptome results
with a different alignment tool, and we could still detect increases in
Gammaretrovirus and Mycobacterium canettii transcripts seen with
MTD pipeline (Supplementary Fig. 2B, C).

Finally, as we identified strong changes in gene expression path-
ways linked to innate cells, including thosewith the capacity to present
antigen, we leveraged this knowledge to utilize NicheNet27 algorithms
to generate a comprehensive predicted ligand:receptor interactome
map of human antigen-presenting cells (APCs, plus plasmacytoid
dendritic cells) and T cells in simulated microgravity vs 1G (Fig. 2D–F).
Across APC donors and recipient T cells, we identified numerous sig-
nificantly predicted ligand-receptor interactions to be elevated in
simulated microgravity vs 1G. For instance, monocytes and dendritic
cells induced IL-1 proteins while someB cells provided IL-23A, and IL-7.
All APCs providedunique chemokine signals to T cells.Mmp9, ccl2, and
thbs1were amongst our most significantly induced genes in simulated
microgravity, and the products of these genes show differential pre-
dicted receptor expression (e.g., CD44, CD47, ITGB1, CCR4, CCR5) in
T cells (Supplementary Figs. 4–6) but all show predicted enhanced
target gene expression in T cells. Thus, while simulated microgravity

itself likely induces direct transcriptional changes in immune cells, we
cannot exclude local paracrine effects of secreted products from one
immune cell to another also contributing to our overall gene expres-
sion and pathway changes.

After stimulating PBMCs with a TLR7/8 agonist in 1G and simu-
lated microgravity, we characterized 23 clusters of immune cells by
UMAP (Fig. 3A). In contrast to the unstimulated conditions, stimulation
with a TLR7/8 agonist induced a robust preferential expansion of CD4+

centralmemory (TCM) cells (Fig. 3B). Themicrogravity itself impacted
differential response to stimulation. Consistent with previous reports,
simulated microgravity dampened expansion/responses of NK cells,
and CD8+ TEM cells to a lesser extent in the donors examined18, as well
as MAIT cell numbers, a cell type with previously unknown responses
to microgravity. Simulated microgravity drove a preferential increase
in CD14+ monocytes over 1G controls, indicating that this cell type is
especially sensitive to the combination of simulated microgravity and
TLR7/8 activation.

Across all cell types, the combination of simulatedmicrogravity
and TLR7/8 stimulation altered the expression of over 9000 dif-
ferentially expressed genes (DEGs) with adj P cutoff of <0.05
(Supplementary Data 4). As with the unstimulated data, we refined
this list to a core gene list of ~317 DEGs based on |log2FC| of >0.2.
This list was further reduced to visualize on a Volcano plot with |
log2FC|>0.25 (Fig. 3C), showing only the most positively and
negatively altered genes. Some of the most induced genes by

Fig. 2 | Simulated microgravity induces predictive functional alterations in
immunecells. ADifferences in iAge index between all cell types (left) and across 22
individual immune cell types (right) at 1G or simulated uG. Each box spans from the
25th to 75th percentiles (interquartile range, IQR), and features a median value
denoted by a horizontal line. Thewhiskers extend to valueswithin 1.5 times the IQR
range from the 25th and 75thpercentiles. 1Ggroup (n = 11,934cells examinedover 2
independent experiments) is shown in blue and uG group (n = 16,568 cells exam-
ined over 2 independent experiments) is shown in yellow. Themedian for 1G group
is 9.1, with min = −5.8 and max= 22.4. The median for uG group is 12.5, with min =
−1.1 and max= 26.2. Two-tailed Mann–Whitney test (p value < 2.2e-16).
****p ≤0.0001, ***p ≤0.001, **p ≤0.01, *p ≤0.05. Source data are provided with this
paper. B Differences in cellular senescence secretory product score, calculated
from the SenMayo gene set, between all cell types at 1G or simulated uG. 1G group’s
(n = 11,934 cells examined over 2 independent experiments) median is 0.001, with
min= −0.084 and max=0.302; uG group’s (n = 16,568 cells examined over 2

independent experiments) median is 0.006, with min = −0.091 and max =0.569.
Two-tailed Mann–Whitney test (p value < 2.2e-16). ****p ≤0.0001. Source data are
provided with this paper. C Meta-transcriptome detection of mycobacteria, retro-
virus, and total virus abundance in 1G (n = 11,934 cells examinedover 2 independent
experiments) and uG (n = 16,568 cells examined over 2 independent experiments)
conditions. The bar plot shows the mean with an error bar representing the stan-
dard error of themean (SEM). ForMycobacterium canettii (p value <0.0001), mean
of 1G= 2.5e-4 ± 9.0e-6 and uG= 5.5e-4 ± 1.4e-5. For Gammaretrovirus (p value <
0.0001), mean of 1G = 1.4e-6 ± 2.0e-7 and uG = 4.5e-6 ± 3.4e-7. For the total virus (p
value = 0.0421), mean of 1G = 1.3e-5 ± 6.3e-7 and uG = 1.6e-5 ± 6.6e-7. Two-tailed
Mann–Whitney test; *p ≤0.05, ****p ≤0.0001. Source data are provided with this
paper. (D to F) NicheNet predicted significant ligand-receptor interaction between
total T cells (Receiver) and the antigen-presenting cells (Sender) asD B cells, EDCs,
and F monocytes in uG vs 1G condition (i.e., induced in uG over 1G).
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Fig. 3 | Simulated microgravity induces a distinct single-cell transcriptional
landscape of human PBMCs following TLR7/8 stimulation. A UMAP plot of
TLR7/8 agonist stimulated (9 hours stimulation + 16 hours conditioning prior to
stimulation = 25 hours total culture) PBMCs single-cell transcriptomics, pooled
from amale (36 years old) and a female (25 years old) donor, that underwent either
1G or simulated uG. Cells were resolved into 23 distinct clusters.BQuantification of
relative abundance of each cluster of single PBMCs by percentage, or log2FC
between stimulated uG and 1G conditions. Source data are provided with this
paper.C Volcano plot ofDEGs across all immune cell types between TLR7/8 agonist
simulated uG and 1G; DEGs (including log2FC and adj. p) were calculated by the
MAST method. P values were adjusted by the B-H correction. Adj. p cutoff is 0.05,
and log2FC cutoff is 0.25. D Dot plot showing the top DEGs from C and their

expression levels across 19 immune cell populations. DEGs (including log2FC and
adj. p) were calculated by the MAST method; p values were adjusted by the B-H
correction. Spot color reflects log2FC of TLR7/8 agonist simulated uG vs 1G, while
spot size shows−log10(adj.p).EUMAPof trajectory analysis of 1G and simulated uG
TLR7/8 agonist stimulated PBMCs. Filled circle nomenclature was described in
Fig. 1E.FCanonical pathway enrichment analysis obtained from IPA is shownacross
19 immune cell clusters. Spot color reflects IPA z-score enrichment of TLR7/8
agonist-activated simulated uG vs 1G, with red meaning predicted activation of the
pathway in simulated uG and bluemeaning repression of the pathway in simulated
uG. Spot size shows the level of significance via−log10 (adj. p). Adj.pwas calculated
by the Fisher’s Exact Test (right-tailed) followed by B-H adjustment.
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simulated microgravity over 1G in response to TLR7/8 agonist
included cytokines and chemokines, such as ccl8, ccl4, ccl7, cxcl8,
and il1b, and acute response proteins like s100a8, s100a9, s100a11,
and thbs1. Additional genes induced in simulated microgravity were
linked to tryptophan breakdown (ido1), mitochondrial antioxidant
defense (sod2), the cytoskeleton (rhoq), and iron storage genes like
fth1, ftl. The most downregulated genes when comparing simulated
microgravity to 1G during TLR7/8 stimulation, included genes
belonging to guanylate binding proteins (gbp1, gbp2, gbp4, gbp5),
which were the most reduced set of genes by fold change and adj P,
as well as interferon pathway genes, like irf1, stat1, isg20, ifi16, cold
shock genes (rbm3, cirbp), cell killing genes (prf1, gzmb) and T/NK
cell activation markers like cd69. Many of these genes were con-
sistently altered by simulated microgravity alone without stimula-
tion, indicating a conserved response, even in the setting of
additional exogenous stimulation with a TLR ligand. Expression of
top DEGs across 19 populations of immune cells is shown in Fig. 3D.
Volcano plots of DEGs for individual immune cell clusters are shown
in Supplementary Fig. 7. CD14+ monocytes, NK cells, CD8+ TEM, and
CD4+ TCM cells showed themost significant changes in the topmost
altered genes induced by TLR7/8 agonist stimulation in simulated
microgravity. Interestingly, using single-cell trajectory analysis
(Fig. 3E), we identified fewer trajectories in simulated microgravity
stimulated with TLR7/8 compared to the 1G control. These findings
suggest that under simulated microgravity, cells display reduced
differentiation states in response to stimulation.

IPA results (Fig. 3F, Supplementary Data 5) generated using our
core list of approximately 317 genes from the overall populations, as
well as the DEGs in major immune cell types (Supplementary Data 6)
demonstrated that nearly all immune cells show changes across
numerous pathways during microgravity and TLR7/8 induction. Major
pathways reduced acrossmost immune cells in simulatedmicrogravity
included PKR in interferon response (and associated eif2 signaling),
interferon signaling, JAK/STAT signaling, pyroptosis signaling, cyto-
toxic T cell mediated killing of target cells and death receptor signal-
ing. Major pathways induced by short term simulated microgravity
included sirtuin signaling, fibrosis signaling, signaling by RhoGTPases,
BAG2 (heat-shock protein 70 interactor) signaling, HIF1α signaling,
acute phase response and associated HMGB1 signaling, amongst oth-
ers. Thesepathways are consistentwithmicrogravity facilitating innate
like inflammation at the expense of interferon driven adaptive immu-
nity and adaptive immune effector function (e.g., CD8+ T cell killing).
Despite some similarities in pathways altered to simulated micro-
gravity alone (Fig. 1F), we actually detected a lower iAge score globally
across all immune populations in simulated microgravity plus TLR7/8
compared to 1G controls (Fig. 4A). While the reason for this finding is
unclear, it appears to have been driven by a highly significant reduc-
tion in score by naive B cells, naive CD4+ T cells, and reductions in
lesser studied PBMC populations, hematopoietic stem and progenitor
cells (HSPC)s and double negative T cells. Lower iAge also could be
reflective of altered immune activation in simulatedmicrogravity, such
as seen in CD16+ monocytes (Fig. 4A, right panel). Despite a reduction

Fig. 4 | Simulated microgravity induces predictive functional alterations in
immune cells following TLR7/8 stimulation. ADifferences in iAge index between
all cell types (left) and across 19 individual immune cell types (right) after TLR7/8
agonist activation in 1G or simulated uG. Data are presented in the same way as
described in Fig. 2A. 1G group (n = 14,916 cells examined over 2 independent
experiments) is shown in blue and uG group (n = 12,230 cells examined over 2
independent experiments) is shown in yellow. Themedian for 1G group is 16.4, with
min= 2.9 andmax= 25.9. Themedian for uG is 13.2, withmin = −1.7 andmax= 23.9.
Two-tailed Mann–Whitney test (p value < 2.2e-16). ****p ≤0.0001, ***p ≤0.001,
**p ≤0.01, *p ≤0.05. Source data are provided with this paper. B Differences in

cellular senescence secretory product score, calculated from the SenMayo gene
set, between all cell types with TLR7/8 agonist activated 1G or simulated uG. 1G
group’s (n = 14,916 cells examined over 2 independent experiments) median is
−0.008, with min= −0.099 and max =0.588; uG group’s (n = 12,230 cells examined
over 2 independent experiments) median is 0.022, with min = −0.095 and max=
0.551. Two-tailed Mann–Whitney test (p value < 2.2e-16), ****p ≤0.0001. Source
data are provided with this paper. C–E NicheNet predicted significant ligand-
receptor interaction between total T cells (Receiver) and the antigen-presenting
cells (Sender) as C B cells, D DCs, and E monocytes in TLR7/8 agonist activated
simulated uG vs 1G condition (i.e., induced in uG over 1G).
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in iAge, we still observed an increased SenMayo score in simulated
PBMCs (Fig. 4B, Supplementary Fig. 8), illustrating different compo-
sitions of genes in these two gene sets.

NicheNet analysis across major APC types to T cells post TLR7/8
agonist in simulatedmicrogravity vs 1G (Fig. 4C–E, and Supplementary
Figs. 9–11) illustrated some of the significant cytokines, chemokines,
surfacemolecule ligands and receptors used in simulatedmicrogravity
upon TLR7/8 stimulation. Compared to the unstimulated interactome
(Fig. 2D–F), we saw increased production and diversity of inflamma-
tory cytokines and chemokines used. We again noted IL-1 produced in
APCs, but also noted increased TNF superfamily products like TNF,
TNFSF12 (TNF-related weak inducer of apoptosis, TWEAK) and
TNFSF15 (vascular endothelial growth inhibitor, VEGI), and lympho-
toxin (LTA) preferentially produced to modulate T cell function.

Next, we assessed the differential responsiveness of immune cells
to TLR7/8 stimulation (Supplementary Fig. 12 and Supplementary
Data 7). Under 1G conditions, stimulation led to amarked induction of
CD4+ TCM, at the expense of CD14+ monocytes and CD4+ naive T cells,
coupled to an expected pronounced inflammatory gene signature,
including marked induction of interferon inducible genes, gbp tran-
scripts, and chemokines across most immune cell populations (Sup-
plementary Fig. 12A–E). Under simulated microgravity, TLR7/
8 stimulation also induced CD4+ TCM, at the expense of naive CD4+

T cells, though proportions of CD14+ monocyte populations did not
reduce as seen in 1G (Supplementary Fig. 12F, G). In simulated micro-
gravity, TLR7/8 stimulation also induced a robust expression of
inflammatory genes, including interferon inducing genes across most
cell types (Supplementary Fig. 12H–J). Next, to determine the sensi-
tivity of individual immune cell populations to TLR7/8 agonist in 1G vs
simulated microgravity, we compared the differences in responsive-
ness to stimulation. We subtracted the fold change induction in 1G
from induction in simulated microgravity to determine sensitivity to
stimulation. Remarkably, across overall immune cells, we see a pattern
of reduced responsiveness to TLR7/8 simulation in simulated micro-
gravity to most of the highest genes induced at 1G (Supplementary
Fig. 13A), with T cells and NK cells showing the most reduced inflam-
matory gene induction. T cells, NK cells, and overall across all cells
exhibited blunting of induction of numerous genes in interferon sig-
naling, and gbp genes in simulatedmicrogravity in response to TLR7/8
agonist. Interestingly, monocytes tended to maintain such responses
better in simulated microgravity, consistent with their predisposition
to some inflammatory pathways in simulated microgravity. Some
chemokines, such as ccl3, ccl4, ccl8, and cxcl10 appeared to be induced
better in simulated uG across overall immune cell populations, though
monocytes actually showed reduced induction of some of these che-
mokines, likely due to their capacity to produce them in simulated
microgravity without stimulation (Fig. 1D). Nonetheless, the overall
effects in sensitivity to stimulation in the “overall” category of immune
cells largely followed the same pattern seen in the total magnitude of
response of stimulated microgravity vs stimulated 1G (Fig. 3D).

Next, we sought to identify genes uniquely altered by simulated
microgravity irrespective of stimulation, as well as genes unique to
microgravity under stimulation. First, to identify unique genes,
regardless of stimulation, altered by simulated microgravity, we plot-
ted out the most significant DEGs by the absolute sum of fold change
under both stimulated and unstimulated conditions (Supplementary
Fig. 13B, Supplementary Data 8). Across overall immune cells, regard-
less of stimulation, we still identified conserved increases in chemo-
kines and acute response factors, coupled to reduced gbp expression
and other interferon genes (e.g., irf1, stat1) imparted by simulated
microgravity. Next, we mapped out the overall overlap of gene sig-
natures and common genes between post-stimulation in 1G vs simu-
lated microgravity (Supplementary Fig. 13C–E and Supplementary
Data 9), and found that microgravity imparts a number of unique
genes to TLR ligation that are not seen in 1G. Overall, these findings

identify core-conserved DEGs specifically sensitive to simulated
microgravity as well as unique signatures to simulated microgravity.

Finally, we assessed if sex plays a role in the magnitude of
response to simulated microgravity. In the unstimulated state, female
cells showed only slightlymore DEGs induced, while themale cells had
slightly more genes reduced (Supplementary Fig. 14A). Male NK cells
and monocytes were more sensitive to microgravity while female B
cells showedmore sensitivity thanmaleB cells.Upon stimulation,male
cells overall were more sensitive to simulated microgravity, especially
in having more downregulated DEGs (Supplementary Fig. 14B). Vol-
cano plots of DEGs across all cell types between the female and male
are shown in Supplementary Fig. 14C–F and SupplementaryData 10. In
both male and female cells, acute phase response and inflammatory
genes like mmp9, ccl2, s100a8, and thbs1 were among the most
induced genes, while reduced interferon regulators like stat1 and
reduced cold shock genes like rbm3 and cirbp were consistently
downregulated in both sexes in simulated microgravity. Upon stimu-
lation, both sexes again show increases in the totalmagnitude of acute
inflammatory, reactive oxygen species (ROS)-related, and acute phase
genes like chemokines, thbs1, mmp9, ncf1, and sod2 in simulated
microgravity coupled to reduced interferon, gbps, cold shock, and
some ribosomal protein genes in simulated microgravity. Many of
these changes are reflected in IPA pathway analysis by sex (Supple-
mentary Fig. 14G) andmany of these core featureswere also conserved
when data from sexes were pooled (Figs. 1F, 3F).

Single-cell validation identifies core features of immune
dysfunction in microgravity and spaceflight
Next, to better validate conservedgenes andpathways fromour single-
cell signatures without TLR7/8 agonist in simulated microgravity, we
compared our core signature of 375 DEGs against additional datasets.
First, we repeated experiments in a validation cohortof freshly isolated
PBMCs from young donors (n = 6, age range 20–46), and spun these
PBMCs for 25 hours, prior to performing bulk RNA-seq analysis. Using
CIBERSORTx28, we first mapped predicted changes in population fre-
quency and were able to confirm increased CD14+ monocyte fre-
quencies in simulatedmicrogravity, consistentwith our single-cell data
(Supplementary Fig. 15, Supplementary Data 11). Between validation
samples spun in simulated microgravity vs 1G controls, we identified
2149 genes differentially expressed (Fig. 5A, Supplementary Data 12).
Despite the variability of data inherent to bulk RNA-seq of different
populations of cells between donors, we still saw a highly significant
correlation in normalized gene counts per specific gene between
datasets both at 1G and in simulated microgravity (Fig. 5B). Moreover,
we identified overlap in over 28% of our core signature genes (same
directionality) across all immune cells from our single-cell analysis
(106/375 = 28.3%) (Fig. 5C). Many of the overlapping genes induced
were consistentwith ourmost robustly altered core pathways from the
single-cell data. For instance, we saw shared overlapping genes
induced in acute immune responses (such as s100a8, s100a12, thbs1,
il1b), chemokines (like cxcl8), heat-shock proteins (hsp90aa1, hspa1a,
hspb1), autophagy (atg7) and the actin cytoskeleton (rhou). Over-
lapping reduced genes in simulatedmicrogravity, like in our single-cell
datasets, included interferon response (stat1, irf1) and associated
guanylate binding proteins (gbp1, gbp2, gbp4, gbp5), and cold shock
genes (rbm3), amongst others. Overall, there was a highly significant
enrichment and over representation of our core single-cell DEGs
across our bulk validation cohort by Fisher’s Exact Test for gene
overlap (Fig. 5C).

We next sought to validate overlapping genes against mice and
people flown in LEO. While multiple stressors exist in LEO, the proxi-
mity to Earth and the presence of the Earth’s magnetic field negates
some effects of galactic cosmic rays, especially at the altitude of the
ISS. Thus, microgravity plays an important role in driving phenotypic
changes in LEO. To accomplish this goal, we first mined data from
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NASA’s GeneLab database for its largest study looking at a major
immune organ, the spleen, in mice flown on the ISS. The GLDS-420
study provides data from the spleens of tenmice housed on the ISS for
33 days compared to ten ground controls. Though this cohort repre-
sents longer exposure to microgravity than our single-cell data’s more
acute exposure, any overlapping genes could represent persistent
microgravity-sensitive immune cell genes across longer duration
exposure. From the GLDS-420 dataset, we identified 1448 significant
DEGs (Fig. 5D), of which 50/375 (13.3%) overlapped in the same direc-
tion as our single-cell core list (Fig. 5E). Interestingly, many of the
overlapping genes were represented as part of altered core pathways
from the single-cell data. For instance, we saw shared induced over-
lapping genes in acute immune responses or complement (such as c3),
autophagy (atg7), heat-shock responses (hsp90ab1, hsp90aa1, hspa1a,
hspa1), and the cytoskeleton (dynll1). Overlapping reduced genes

included interferon response (stat1), and again, cold shock genes
(cirbp, rbm3), amongst others.Overall, we saw a significant enrichment
in our core single-cell DEGs across mouse spleens flown in space by
Fisher’s Exact Test for gene overlap (Fig. 5E). Pathway analysis with IPA
was next performed to identify major canonical pathways altered
across all four complete datasets (single-cell unstimulated, single-cell
stimulatedwith TLR7/8 agonist, Bulk RNA-seq validation unstimulated,
and GLDS-420), including overlapping pathways shared across all
datasets. These pathways are displayed in a heat map for comparison
(see below), and will be described at that point.

To better translate the usefulness of our single-cell atlas to human
spaceflight, we comparedour core list of 375DEGs across single cells in
simulated microgravity to changes across all single cells from the
Inspiration Four (I4) crew members. The I4 mission provides a com-
pelling comparison since crewmembers spent up to three days in LEO,
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a timeline not too different from our 25-hour time point. Moreover, I4
gene lists were also generated by single-cell sequencing, making it a
comparable technology for our analysis. However, it is important to
note that the I4 datasets contain a few important caveats. First, the
altitude flown by I4 crew (585 km/364miles) predispose the astronauts
to higher radiation exposures than what would typically be experi-
enced on the ISS (408 km/254miles altitude). Additionally, the I4
datasets were derived from PBMC gene expression comparisons
between post-flight (1 day after Return/R + 1 in our case) vs preflight
(44 days before launch/L-44 in our case). Since the changes from the I4
single-cell data represent changes encompassing effects of spaceflight,
plus return to the ground, including short-term exposures to hyper-
gravity, and one day of return to 1 g gravity (all which manifest as
increased gravity exposure to inflight conditions), we considered
overlapping immune cell genes in either direction on return to be
gravity sensitive genes. Remarkably, despite these caveats, we found a
very robust overlap of nearly 60% of DEGs in PBMCs in simulated
microgravity (210/375 = 56%) to be also significantly altered across all
immune cells in the I4 mission (Fig. 5F, Supplementary Data 13). Of
these significantly altered genes across I4 data, 122 were altered in the
same direction as I4 data, and 88 in the opposite direction. To gain a
better understanding of the pathways and mechanisms impacted by
gravity and spaceflight in the immune system, we compared pathways
between simulated microgravity and the entire I4 dataset (Fig. 5G,
Supplementary Data 14, and Supplementary Fig. 16A). While we con-
sider all of these pathways to be potentially gravity sensitive, we con-
sidered pathways altered in the opposite directions to be potentially
acutely sensitive to gravity, while those pathways altered in the same
direction likely take longer to normalize from a microgravity envir-
onment upon return.

Both simulated microgravity and the I4 mission pathway results
indicated reduced T-cell effector subset development, reduced oxi-
dative phosphorylation, and increased pathways associated with
innate immunity (e.g., Coronavirus pathogenesis, FcR phagocytosis in
monocytes, cytokine storm, chemokine signaling, ROS production in
macrophages), as well as hypoxia and glycolytic metabolism (HIF1α
signaling) and cell stress (e.g., sirtuin signaling). Interestingly, the
return to gravity seen in the I4 mission reversed reductions in natural
killer cell signaling and reversed pathways linked to poor adaptive
immunity like IL-15 signaling, suggesting these pathways may be sen-
sitive to acute changes in gravity (Fig. 5G, Supplementary Data 14).
From the I4 dataset, we also noticed a consistent reduction in ribo-
somal subunit genes in the I4 data (Fig. 5F), which might be reflective
of a stress response and reduced protein translation upon return to
earth), and only some of these genes were reduced in simulated

microgravity. Consistently, there was a marked reduction in
EIF2 signaling in the provided I4 DEGs. Across all pathways, regardless
of direction, we noticedmany pathways pertaining to the cytoskeleton
or to a mechanical extracellular environment (e.g., fibrosis, RAC, Rho
family GTPases, RHOA, integrin signaling, leukocyte extravasation
signaling, healing signaling etc.) to be altered by simulated micro-
gravity or by spaceflight on immune cells.

Next, to look for overlapping genes relevant to longer exposures
to human spaceflight, we compared our core simulated microgravity
signature of immune cells against available data from the JAXA Cell-
Free Epigenome study in LEO (GLDS-530) and the Twins study17. For
the JAXA mission, we had access to cell-free RNA data, which can
sometimes give insight into changes to PBMCs, amongst other cells29.
During this mission, blood was sampled from 6 astronauts, with data
pooled into a single count, at days 5, 30, 60, 120 post launch. Given
that cell-free RNA is not a fully ideal comparison to RNA-seq from
isolated PBMCs, we focused only on the two early time points, 5 days
and 30 days post launch, because we saw significant overlap between
our single-cell data in both the three-day I4 mission and in the 33-day
GLDS-420 dataset. Thus, we compared 5 days and 30 days in-flight vs
preflight differentially altered cell free RNA signatures for any possible
overlap with our single-cell data in simulated microgravity. While we
did not observe much overlap in our core 375 immune gene signature
at 5 days (less than 10 genes), we did see significant overlap by 30 days
(42/375 = 11.2% overlap in the same direction) (Supplementary
Fig. 16B). Interestingly, it was observed that cell-free RNA levels gen-
erally decreased across most genes in flight. Consequently, we hypo-
thesized that identifying genes exhibiting increased expression could
be particularly important for identifying over-represented processes.
Remarkably, we did note that the most significantly elevated gene at
30 days in-flight vs preflight was cdc42, a key modulator of the cytos-
keleton, aswell asdynll1 a dyneingene thatwas also upregulated in our
single-cell analysis.

We next reclustered our single-cell data (Supplementary Data 15)
to compare the DEGs in our equivalent single-cell populations with
those obtained from sorted CD4+ T cells, CD8+ T cells, B cells, and
lymphocyte-depleted immune cells from the NASA Twins study, which
compares in-flight vs ground twin control17. The Twins study provides
intriguing data on the impact of LEO on the immune system, but has
caveats in that exposure to LEO was calculated in only a single indivi-
dual through bulk RNA-seq, and atmultiple time points across one full
year in space, a different duration than our shorter gene sets. None-
theless, compared to our reclustered CD4+, CD8+, and CD19+ gene sets,
we found significant overlap in some genes comparing the effects of
simulated microgravity to spaceflight (Supplementary Fig. 17A–C).

Fig. 5 | Validation of single-cell signatures identifies overlapping features of
immune dysfunction in simulatedmicrogravity and spaceflight. A Volcano plot
of DEGs from simulated uG vs.1G (25 hours) Bulk RNA-seq. Genes that are con-
sistently upregulated across single-cell and bulk sequencing are labeled in red;
genes that are consistently downregulated across the two datasets are labeled in
blue. DEGs (including log2FC andpvalue)werecalculatedby theDESeq2method;p
valuewasdeterminedby two-tailedWald test and adjustedby theB-Hmethod.Data
were obtained fromPBMCs from3male (ages 37, 22, 32 years old) and3 female (age
27, 26, 40 years old) donors.B Spearman correlationof normalized counts between
single-cell and bulk RNA-seq from simulated uG (R =0.82, p < 2.2e-16) and 1G
(R =0.8, p < 2.2e-16) conditions. Two-tailed p value. C Venn diagram summarizing
the overlapping DEGs between single-cell (SC; adj. p <0.05, log2FC > |0.1|) and bulk
RNA-seq (Bulk; p <0.05) simulated uG vs. 1G. DEGs that are upregulated in both
datasets are listed in the red box; DEGs that are downregulated in both datasets are
listed in the blue box. The overlapping p value was calculated by the Fisher’s Exact
Test, right-tailed. D Volcano plot of DEGs from Flight (ISS 33 days, n = 10) vs.
Ground (n = 10) mouse spleen bulk RNA-seq (GLDS-420). Genes that are con-
sistently upregulated across single-cell human PBMCs and bulkmouse spleen RNA-
seq are labeled in red; genes that are consistently downregulated across the twoare
labeled in blue. DEGs (including log2FC and adj. p) were calculated by the DESeq2

method; p value was determined by two-tailed Wald test and adjusted by the B-H
method. E Venn diagram summarizing the overlapping DEGs between human
PBMCs single-cell (SC; adj. p <0.05, log2FC > |0.1|) simulated uG vs. 1G and the
mouse orthologous DEGs from Flight vs. Ground spleen bulk RNA-seq (GLDS-420;
p <0.05). DEGs that are upregulated in both datasets are listed in the red box; DEGs
that are downregulated in both datasets are listed in the blue box. The overlapping
p value (5.4e-14)was calculatedby theFisher’s Exact Test, right-tailed. FHeatmapof
overlapping DEGs between human PBMCs simulated uG vs 1G and the I4 mission
(n = 4) post-flight (R + 1) vs preflight (L-44) dataset. Both datasets are single-cell
RNA-seq with DEGs defined by adj. p value < 0.05 and log2FC > |0.1|. Genes that are
consistently upregulated across single-cell human PBMCs and I4 datasets are
labeled in dark red (left).Genes that are consistently downregulatedacrossdatasets
are labeled indarkblue (right).Genes that significantly overlap, but show reversal in
their expression directions are labeled in gray. The overlapping p value (1e-200)
was calculated by the Fisher’s Exact Test, right-tailed. G Heatmap of IPA canonical
pathways enriched from DEGs between human PBMCs SC (single-cell RNA-seq uG
vs 1G) and I4 (n = 4, R + 1 vs L-44). Enriched pathways have B-H adjusted p
values < 0.05 (−log10(adj. p)>1.3). Red indicates a predicted activation in pathways,
whereas blue indicates a predicted inhibition in pathways.
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Across multiple cell types, we saw changes in genes involved in redox
regulation (e.g., reduced txnip), and in genes involved in interferon
responses (e.g., reduced stat1 and gbp5). Interestingly, we saw sig-
nificantly reduced cold shock gene, cirbp, a similar functioning gene to
rbm3, in B cells in space. In our lymphocyte depleted (i.e., myeloid)
recluster, we saw a large and highly significant overlap of about 163
genes with the Twins lymphocyte-depleted bulk RNA-seq data (Sup-
plementary Fig. 17D). Many of the overlapping genes induced by
simulated microgravity or spaceflight included genes involved in
innate immunity and inflammation (e.g., il1b, s100a12, thbs1 etc.), the
cytoskeleton (rhoq, rhou), and hypoxia signaling (e.g., hif1α). Some
interesting downregulated genes in both datasets in myeloid cells
included again gbp5, cirbp, txnip like seen in T and B cells from the
Twins study. We also noted a number of overlapping downregulated
genes in antigen presentation (e.g., tap1, tap2, hla-e, hla-dp1a, etc). IPA
analysis on this data largely captured the increases in innate immune
inflammatory pathways, including increases in fibrosis signaling, IL-6
signaling, acute phase response, cytokine storm, and HIF1α signaling
seen across some of our previous datasets (Supplementary Fig. 17E,
Supplementary Data 16). Overall, these data enforce the idea of clas-
sically activated basal myeloid inflammatory changes in microgravity
and spaceflight.

Given that many of our altered pathways in simulated micro-
gravity involved predicted mitochondrial dysfunction and/or the
cytoskeleton, we used Airyscan super-resolution confocal microscopy
to characterize immune cell mitochondrial and actin morphological
networks to look for alterations in simulated microgravity compared
to 1G controls. Interestingly, while 25 hours of simulated microgravity
did not alter mean cell area across PBMCs, it did alter actin granularity
parameters, as well as intensity and variance, consistent with cytos-
keletal changes in acute simulated microgravity (Fig. 6A–C), though
these differences are mostly subtle to the naked eye. Using three-
dimensional (3D) super-resolution imaging, 25 hours of simulated
microgravity did not alter cell or nucleus volume, or nucleus shape, but
it increased mean cell surface area and actin spike length, and
decreased sphericity of the cells across PBMCs (Fig. 6A, B, D, Supple-
mentary Fig. 18A, B). Remarkably, 1G immune cells and simulated
microgravity immune cells demonstrate unique spectral changes to
actin rearrangement post TLR stimulation, such that TLR stimulation
resulted in a different pattern of actin granularity spectral change in 1G
compared to stimulation in simulated microgravity (Fig. 6C). The
effect of microgravity on the cytoskeleton in unstimulated immune
cells was similar to the effect of TLR activation in 1G. During TLR sti-
mulation in simulated microgravity, immune cells followed a unique
dynamic actin rearrangement pattern, potentially even reversing the
pattern observed in 1GwithTLR stimulation. These results suggest that
simulated microgravity itself may induce immune cytoskeleton
alterations, which may mimic aspects of TLR ligation on the cytoske-
leton. Short-term exposure to simulated microgravity showed some
increases in the mitochondrial MitoTracker Red staining intensity and
variance in the unstimulated conditions, without changes to fiber
length, size, or volume (Supplementary Fig. 18C).

Sincewe detectedmorphological changes to the actin network, as
well as noting changes in multiple altered cytoskeleton-related path-
ways across multiple datasets, including in the pathways “Signaling by
Rho Family GTPases” or “regulation of actin-basedmotility by Rho”, we
next sought to screen for active GTP-bound Rho GTPases, Rac1, RhoA,
and Cdc42, using G-LISA technology30 across further batches of iso-
lated paired PBMCs. After 25 hours of simulated microgravity,
regardless of stimulation conditions, we saw elevated levels of active
GTP-bound Cdc42, consistent with cytoskeleton mobilization and the
increase in actin spikes (indicative of filopodia)31 observed due to
simulated microgravity (Fig. 6E). Active GTP-Rac1 was not altered at
baseline in simulated microgravity, though showed a trend to induc-
tion with TLR7/8 stimulation (Supplementary Fig. 18D, E). Levels of

active GTP-RhoA were low in our samples, but trended lower in
simulated microgravity without stimulation, and higher under stimu-
lation, analogous to our single-cell data predictions (Supplementary
Fig. 18D, E). Overall, these data suggest that simulated microgravity
changes some Rho GTPase activity consistent with our transcriptional
data, though ultimate impacts on cytoskeleton shape, variance, and
dynamics likely involve additional contributing factors, including
possibly other Rho GTPase family members not assessed.

We next sought to investigate our core signature of reduced IFN
signaling elicited in microgravity across immune cells (Fig. 6F, Sup-
plemental Fig. 19A, B). Specifically, we assessed whether reduced
interferon signaling was due to reduced local production of inter-
ferons. Supernatants from 25 hours unstimulated or 9 hours
R848 simulated (25 hours total culture) PBMCswere assessed by ELISA
for total IFNα (detecting 12 IFNα subtypes), and IFNγ. Simulated
microgravity significantly reduced both IFNα and IFNγ secretion with
TLR7/8 stimulation. At baseline, the levels of these cytokines were low,
and variable, and thus not significantly different between 1G and
simulatedmicrogravity. Thesefindings point to reducedproduction of
IFNs in simulated microgravity, at least under TLR stimulation, as
measured by ELISA, potentially as one contributing mechanism to
reduced interferon signaling observed at the transcriptional level.

Finally, to functionally validate how simulated microgravity
impacts overall immune cell cytokine production, with and without
TLR7/8 stimulation, across many cytokines simultaneously, we per-
formed a 48-plex Luminex assay on cytokines secreted by PBMCs from
12 donors (Supplementary Fig. 19C, D). Consistent with our single-cell
and bulk RNA sequencing data, simulatedmicrogravity was associated
with increased or trending increases in mainly innate/monocyte
immune cell-derived inflammatory cytokines and chemokines (e.g., IL-
6, IL-8, IL-12p40, CCL4), coupled to a reduction in cytokines that
associate with T cell activation or proliferation (e.g., IL-2, IL-7, IL-15).
Concurrently, the Luminex results showed a significant IFNγ and a
trending IFNα2 reduction upon TLR7/8 agonist stimulation in simu-
latedmicrogravity, consistent with our above ELISA data (Fig. 6F). IL-1,
commonly induced in our sequencing data, also appeared elevated in
simulated microgravity, though it exhibited high variability, preclud-
ing significance in the unstimulated state. In the stimulated state, IL-1β
was significantly increased in simulated microgravity by Luminex
analysis. Given the overlapping similarities between cytokines in the
Luminex data and sequencing data for IL-1β, IL-6, and IL-8, we further
assessed these cytokines by ELISA validation. Both IL-6 and IL-8
showed significant or near-significant increases by ELISA in simulated
microgravity, while IL-1β demonstrated a trending increase (Fig. 6G,
Supplementary Fig. 19E). Upon stimulation, simulated microgravity
further facilitated near-significant increases in IL-1β and IL-8 as vali-
dated by ELISA (Supplementary Fig. 19F).

To better understand how certain cell populations respond to
TLR7/8 stimulation in simulatedmicrogravity, we further validated key
cytokines, IL-1β, IL-6, and IFNγ, by intracellular flow cytometry in
monocyte, NK, and T cell subsets exposed to simulated microgravity
compared to 1G conditions (Supplementary Figs. 20, 21). Consistent
with Luminex and ELISA data, we saw increased IL-1β production
across all characterized monocyte populations (Supplementary
Fig. 21A, B). Interestingly, despite no overall differences in IL-6 by
Luminex or ELISA in simulatedmicrogravity to TLR7/8 stimulation, we
still detected significant increases in a subset of monocytes only, as
well as in NK cells (Supplementary Fig. 21C, E). Despite increased
cytokine production, we did not detect increases in the activation
marker, HLA-DR, in monocyte populations (Supplementary Fig. 21D).
NK cells also showed a reduction in the proportion producing IFNγ, as
well as reduced proportions of expression in the activation marker,
CD69, and degranulation marker, LAMP-1, consistent with reduced
functionality and response to stimulation in simulated microgravity
(Supplementary Fig. 21F, G). T cell subsets were less altered, thoughwe
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still detected near significant or significant reductions in the propor-
tions of CD4+ and CD8+ central memory T cells expressing activation
marker, CD69, and in effector memory CD4+ T cells expressing pro-
liferation marker, Ki67 (Supplementary Fig. 21H). Taken together with
our ELISA and Luminex data, these findings demonstrate that simu-
lated microgravity, alone or in the presence of TLR7/8 agonist, can
functionally alter cytokine production across immune cells. In general,
consistent with sequencing data, the features demonstrate monocyte
inflammatory function coupled to impaired T cell and NK cell func-
tionality in simulatedmicrogravity. Thus, changes in cytokine signaling
observed in simulated microgravity may occur at least in part to
changes in upstream cytokine production.

Reversing simulatedmicrogravity effects on the immune system
We have characterized multiple genes and pathways altered by
simulated microgravity in the immune system; however, whether
there are specific drugs or supplements that can directly target
microgravity effects on immune cells is poorly characterized. Thus,
we have utilized an in-house compound-gene interactome machine
learning technology (Gene Compound Enrichment Analysis, GCEA),
building on the HyperFoods model32, for the identification of drugs
and food supplements that significantly map to altered genes in a
dataset. Overall, our pipeline assesses >2 million interactions
between genes, drugs, and foods, across DrugBank, LINCS, and
FoodDB32 (Fig. 7A). Using these algorithms across our core signature

Fig. 6 | Simulated microgravity induces distinct modifications to immune cell
cytoskeletal morphology and cytokine production. A Super-resolution micro-
scopy analysis of actin in 2D for cell area (left), intensity (middle), and texture
as punctate over diffuse index (PDI, variance/mean, right) between 25 hours of 1G
or simulated uG. Dots represent individual PBMCs (n = 159 cells for 1G, and n = 154
cells for uG) from 4 independent donors. Donors were male (25 years old), and
females (35, 38, and 46 years old). One outlier for actin intensity and actin PDI from
each condition is removedbasedonGrubbs’ test. Two-tailedWelch’s t testwasused
for all comparisons. ***p ≤0.001. Data are plotted as mean ± standard error of the
mean (SEM) and source data are provided with this paper. B Representative super-
resolution microscopy images (2D left, 3D right) of PBMCs from 1G and simulated
uG (25 hours) from donor 1 (35 yr F) and donor 2 (25 yrM; 2 of total 4 donors from
A are shown here). 3D images better highlight changes to overall cell shape and
actin protrusions in simulated uG. Scale bar = 2μm and 1μm, respectively.
C Sixteen-channel granularity spectrum measurement of PBMCs stimulated with
TLR7/8 agonist (9 hours stimulation, 16 hours conditioning prior to stimulation)
from 1G (pink line) anduG (brown line)minus the correspondingunstimulated cells
(25 hours total culture). The effect of simulated microgravity on unstimulated
granularity spectrum is plotted in gray. Asterisks compare pink vs brown lines only.
P values generated from unpaired two-tailed t test. n = 3 donors tested from A, 35-
year-old female sample was not used. **p ≤0.01, *p ≤0.05. Data are plotted as
mean ± SEM, and source data are provided with this paper. D Super-resolution

microscopy analysis of 3D actin surface area (left, 1G n = 179 cells and uG n = 194
cells) and actin spike length (right, 1G n = 162 cells and uG n = 165 cells) between
25hours of 1G or simulated uG. Dots represent individual PBMCs from 4 inde-
pendent donors. Donors weremale (25 years old), and females (35, 38, and 46 years
old). Two-tailed Welch’s t test was used to calculate p values. *p ≤0.05, **p ≤0.01.
Data are plotted as mean± SEM and source data are provided with this paper.
EG-LISA levels of activeGTP-boundCdc42 in PBMCseither unstimulated (25 hours)
or treated with TLR7/8 agonist (9 hours + 16 hours conditioning) from 1G and
simulated uG. n = 7, donorsweremale (25 years old), and females (38, 46, 25, 27, 26,
and40years old). Two-tailedpairedparametric t testwasused to calculatep values,
*p ≤0.05, ***p ≤0.001.Data areplotted asmean±SEMand sourcedata are provided
with this paper. F ELISA levels of secreted IFNs by PBMCs treated with TLR7/8
agonist (16 hours conditioning + 9 hours stimulation) from 1G and simulated uG.
n = 9, donorsweremale (36 years old), and females (33, 25, 38, 46, 27, 25, 26, and 40
years old). Two-tailed paired parametric t test was used, *p ≤0.05. Data are plotted
as mean ± SEM, and source data are provided with this paper. G ELISA level of
secreted ILs by PBMCs exposed to 25 hours simulated uG and 1G. n = 10 for IL-8 and
n = 11 for IL-6, donors were females (32, 25, 38, 46, 25, 27, 26, 40 years old) and
males (36, 33, 26 years old); 38-year-old female sample was not used for IL-8. Two-
tailed paired parametric t test was used, *p ≤0.05. Data are plotted as mean ± SEM
and source data are provided with this paper.
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of 375 DEGs altered by simulated microgravity across the immune
system, we identified 115 compounds with adj p < 0.05, and 474
compounds with p < 0.05 that significantly map to our signature
(Fig. 7B and Supplementary Data 17). Figure 7B shows the top 50
most significantly overlapping compounds to enriched DEGs. We
next chose one compound, quercetin, based on its widespread

availability for future travelers to space, and for its prominence as an
anti-aging supplement, to validate whether it can reverse tran-
scriptional insults of microgravity on the immune system. PBMCs
(donors from the Fig. 5A cohort) were subjected to 25 hours in
simulated microgravity, with or without quercetin (50 μM), for bulk
RNA-seq analysis.
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Remarkably, at the gene level, quercetin reversed the direction
of expression of 70% (74/106) of the 106 genes (Fig. 5C) core sig-
nature generated as significantly overlapping genes between single-
cell and bulk RNA-seq validation (Fig. 7C). Reversal of gene
expression was significant by correlation analysis (Fig. 7C) and
demonstrated by GSEA enrichment plot (Fig. 7D). IPA pathway
analysis was then performed to characterize pathways altered by
quercetin, and compared against non-treated bulk RNA-seq con-
trols, as well as pathways altered across our other 3 major datasets,
including single-cell sequencing and GLDS-420 spleens in space.
Overall, pathway analysis across all datasets showed consistent
impacts of simulated and actual microgravity on pathways essential
for optimal immunity (Fig. 7E, Supplementary Data 18). Some of the
most consistently induced pathways in simulatedmicrogravity and/
or space included “coronavirus pathogenesis pathway” (linked to
innate immune activation), acute phase responses, leukocyte
extravasation signaling, IL-6 signaling, BAG2 signaling (linked to
heat-shock proteins and proteostasis), sirtuin signaling, and to a
lesser extent “regulation of actin-based motility by Rho”, RAC sig-
naling, PKA signaling, and oxidative stress response. Major path-
ways attenuated by microgravity were linked to immunity,
including antimicrobial immunity, pyroptosis signaling, as well as
“interferon signaling” (including PKR in IFN induction). Other
reduced pathways across most datasets included reduced nuclear
receptor activation (including LXR/RXR, PPAR, AHR) and reduced T
cell NUR77 (activation) signaling. Interestingly, we noted some
genes were consistently reduced across all datasets, though were
not properly represented in pathway analysis. The most striking of
these genes is rbm3, a cold-shock protein, which was significantly
reduced in all four of the microgravity datasets, as well as in the I4
and JAXA mission (30-day timepoint). Rbm3 was also reduced in the
Twins study inflight data across all sorted immune cells, though not
reaching significance.

Administration of quercetin in simulated microgravity could
reverse many of the altered transcriptional signatures elicited by
simulated microgravity on the immune system (Fig. 7E). Some of the
major pathways it could reverse include “regulation of actin-based
motility by Rho”, leukocyte extravasation signaling, RAC signaling,
LXR/RXR, PPAR signaling, NUR77 signaling in T cells, “coronavirus
pathogenesis” (innate immunity), acute phase response, fibrosis, IL-6
signaling, amongst others. Though quercetin has gained prominence
for its senolytic properties33, our results show that reducing senes-
cence pathways was only one of many (approximately 174) pathway
effects this compound has on immune cells in simulated microgravity
(Supplementary Data 18). Nonetheless, in simulated microgravity,
quercetin could reduce senescence and age-associated inflammatory

geneoutputs, asdemonstratedby reductions in both the SenMayoand
iAge index scores (Fig. 7F). These changes occurred for the most part
by downregulating inflammatory genes.

Despite the marked transcriptional reversal in simulated micro-
gravity observed with one compound, quercetin failed to reverse
reductions in interferon signaling, amajor hallmark ofmicrogravity on
immune system dysfunction from our data. Other studies have also
linked microgravity and spaceflight to mitochondrial dysfunction and
ROS production10,34,35. In this regard, quercetin also showed a robust
capacity to reduce ROS levels after 25 hours of simulatedmicrogravity
(Fig. 7G), though ROS was only marginally increased as a trend by
simulated microgravity itself after 25 hours, likely due to the expres-
sion of endogenous antioxidant systems at this timepoint34. Con-
sistently, we also observed increased oxidative stress responses, such
as NRF2-mediated or sirtuin signaling in many of our transcriptomic
datasets by IPA analysis (Fig. 7E).

Discussion
Immune dysfunction during spaceflight is an important health risk,
and manifests primarily as increased vulnerability to opportunistic
infections, including latent viral reactivation3. Latent viruses can
reactivate on both short- and long-term spaceflights, and commonly
involve herpes viruses (HSV1, EBV, CMV, VZV)12–15. Astronauts also
experience heightened skin sensitivity reactions3,13,36, and this
mechanism was thought to be related to a possible Type 2 immune
bias in space7,16,36. Recent work in simulated microgravity has also
shown reduced JAK/STAT signaling in CD8+ T cells, coupled to
increased pSTAT5 signaling in Tregs. Despite these important advan-
ces, major mechanisms explaining these phenotypes of immune dys-
function, in simulated microgravity have remained unclear.

We have identified numerous core pathways and genes altered
across human immune cells in simulated microgravity, with validation
against datasets of humans in LEO, aswell as spleens frommice flowon
the ISS. Overall, we noted changes consistent with basal innate
immune cell inflammatory changes in simulatedmicrogravity, coupled
with distinct pathways of dysfunction in multiple immune cells. Spe-
cifically, the most consistently reproduced pathways impacted by
simulated microgravity across immune cells in both single-cell and
validation cohorts included changes to pathways and signaling linked
to acute phase response signaling, Coronavirus pathogenesis, IL-6
signaling, the cytoskeleton, interferon response, pyroptosis, heat-
shock, nuclear receptors, and sirtuin biology.

The link between the cytoskeleton and other pathways here may
be especially relevant in immune dysfunction. Cytoskeleton dynamics
are controlledby anumber of factors, but small GTPases, includingRas
homology (Rho) GTPases, are major orchestrators with critical impact

Fig. 7 | Reversing simulated microgravity effects on the immune system with
quercetin. A Pipeline of microgravity and gene interacting compounds from dis-
covery to validation. BHeatmap of top 50 simulated uG altered gene to compound
interaction candidates. Compounds are listed on the right, and the predicted
interacting genes are listed at the bottom. The color indicates the STITCH con-
fidence score for compound-gene interaction. C Quercetin (50μM) reverses the
core gene expression signatures in simulated uG (25 hours). Log2FC levels of 106
core DEGs from simulated uG vs. 1G are plotted side-by-side to quercetin-treated
uG vs. 1G in the heatmap. Red indicates positive log2FC, andblue indicates negative
log2FC. 70% of the genes are reversed after quercetin treatment. The scatter plot
below shows a negative association (Pearson correlation R = −0.35, p <0.001)
between the log2FC levels of the 106 core genes from simulated uG vs. 1G and
quercetin-treated uG vs. 1G. D Gene set enrichment analysis (GSEA) shows the
reversal effect of quercetin on the 106 core DEGs plotted in C heatmap. Quercetin
treatment inverts the enrichment score (ES) in the upregulated core genes (from
0.8 to −0.64) and increases the ES of the downregulated core genes (from −0.75 to
−0.55). All p values are <0.0001. E IPA Canonical pathways altered by quercetin.
Heatmap plots the comparison of quercetin-treated samples against non-treated

bulk RNA-seq controls, single-cell TLR7/8 agonist stimulated and unstimulated
samples, and GLDS-420 mouse spleens in space. Red indicates a predicted activa-
tion in pathways, whereas blue indicates a predicted inhibition in pathways. The
datasets were clustered by quercetin treatment into 2 major groups via complete
linkage hierarchical clustering method. F Quercetin reduces senescence and age-
associated inflammatory gene outputs. Both SenMayo scores and iAge index are
reduced in the quercetin-treated group with p value of 0.0746 and 0.0268
respectively. Compared with the untreated group, quercetin downregulates more
senescence-related and age-associated inflammatory genes (from ↓48.8% to
↓63.2%). n = 6, donorswere 3males (age 37, 22, 32 years old) and 3 females (age 27,
26, 40 years old). Two-tailed paired t test, *p ≤0.05. G Quercetin (25 hours treat-
ment) reduces ROS levels measured by 2’,7’-dichlorofluorescin diacetate (DCFDA)
assay. n = 6 for 1G vs uG, donors were males (32, 37, and 38 years old) and females
(34, 32, 37 years old). 34 yrs and 32 yrs female samples were not treated with
quercetin, resulting inn = 4 for comparisons between 1G vs 1G+Quercetin anduG vs
uG+ Quercetin. Two-tailed paired parametric t test was used, *p ≤0.05. Data are
plotted as mean ± SEM and source data are provided with the paper.
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on immune cell function, migration, gene expression, trafficking,
phagocytosis, proliferation, and antigen recognition31. Of note, Rho
GTPases have been implicated in response to simulated microgravity
in other cell types, but this connection is understudied in immune
cells37. Acrossmost datasets, we saw changes to Rho GTPase signaling,
including individually in RAC, RHOA, or CDC42 signaling, or combined
in a global “regulation of actin-based motility by Rho” pathway in IPA.
While we did notice some variability between our initial unstimulated
vs stimulated single-cell data in these pathways, these pathways ten-
ded to show reduced RHOA signaling without stimulation, coupled
with increasedRAC signaling, analogous towhatweobserved from the
I4 crewmembers upon landing. The JAXA6 dataset also demonstrated
cdc42 to be the most significantly induced cell-free transcript in
astronauts after 30 days in space. Pathways strongly linked to cytos-
keletal remodeling, such as leukocyte extravasation, were also typi-
cally induced in most of our datasets. We also observed changes in
some active Rho GTPases by G-LISA, as well as in F-actin granularity,
variance, 3D surface area, sphericity, actin protrusion length, and
dynamic change to TLR stimulation by super-resolution microscopy,
providing further evidence for changes in actin, including possibly
immune cytoskeleton alteration or dysfunction, in simulated
microgravity.

Importantly, changes to the actin cytoskeleton are now being
linked to the ability of an immune cell to mount an interferon
response. Indeed, danger-sensing molecules like TLRs utilize Rho
GTPases to facilitate IFN responses38,39, or antiviral sensors can
directly modulate actin rearrangement40. One example is the PKR
antiviral response, which was consistently downregulated by
simulated microgravity in our datasets. In this system, PKR binds
gelsolin to enforce basal innate immune defense, though upon viral
sensing, PKR dissociates from gelsolin, leading to the severing of
actin, and activation of RIG-I-like receptor (RLR)s signaling and
interferon response41. Other antiviral sensors like RIG-I directly bind
F-actin in resting cells, and then relocalize to the mitochondria via
actin rearrangements on viral infection, to induce type 1 IFN42,43. In
single-cell data, reduced interferon signaling without stimulation
was seenmainly inmonocytes, linking it to innate immunity, though
with TLR7/8 stimulation, reduced interferon signaling was seen
across many cells, including most T cell subsets, and NK cells, dis-
playing the broad importance of this pathway across most immune
cells to microgravity. In simulated microgravity, we saw reduced
IFNα production by ELISA with stimulation, so we cannot rule out
the possibility that the reduced IFN signaling seen in simulated
microgravity starts with reduced capacity for IFN production in
some conditions, in addition to potential defects in downstream
signaling itself. While we have focused on type 1 IFN signaling, some
reduced interferon responses are also linked to reduced signaling
from the IFN gamma receptor (IFNGR). Consistently, we also noted
reduced IFNγ production in simulated microgravity upon TLR7/
8 stimulation. Whether the cytoskeleton is needed for IFNGR clus-
tering and signaling remains to be seen44.

Consistent with reduced interferon signaling in simulated micro-
gravity, we noticed a reduction in some IFN-inducible GTPase super-
family genes, namely guanylate binding proteins (GBPs) across our
datasets. Various GBPs (e.g., gbp5) were reduced as well in the Twins
study. Interestingly, GBPs, which are heavily induced by IFNγ signaling,
have been shown to be critical in maintaining responses to myco-
bacterium tuberculosis45,46, and we see reactivation of similar bacteria
(in addition to some retroviruses) in simulated microgravity after as
little as 25 hours of exposure. GBPs and associated IFN responses also
help direct inflammasome activation and pyroptosis (an inflammatory
form of cell death) linked to antimicrobial defense that was con-
sistently down inmonocytes andB cells in simulatedmicrogravity, and
in nearly all immune cells in response to TLR7/8 stimulation in simu-
lated microgravity46,47. Interestingly, pyroptosis and inflammasome

activation can also be directly controlled by Rho GTPases and the
cytoskeleton48,49.

Another pathway found consistently down across datasets inclu-
ded LXR signaling. Interestingly, LXR signaling also can promote
antimicrobial defense mechanisms. Macrophage LXR has been shown
to reduce bacterial infection by reducing intracellular NAD+ in a CD38
manner, with mechanistic impacts on the cytoskeleton50. Whether
NAD+ levels fall in microgravity remains to be seen, though we did see
an interesting increase in sirtuin signaling across datasets, including in
the I4 mission. Sirtuins may be functioning to counter acute oxidative
stress in microgravity34,51. We also saw reduced oxidative phosphor-
ylation transcriptional signatures across all unstimulated immune cells
in simulated microgravity. Altered metabolite levels (and possibly
ROS) from impaired oxidative phosphorylation might also contribute
to HIF1α stabilization52 as observed in some of our simulated micro-
gravity and spaceflight datasets. Reduced oxidative phosphorylation
can be associated with increased glycolysis in immune cells53, fueling
“M1-like” pro-inflammatory changes in macrophages, potentiating NF-
κb signaling, acute responses and IL-6 or IL-1 release, cytokines fre-
quently induced in microgravity. Consistently, we did notice a pre-
ferential enrichment of predicted “macrophage classical activation”
signatures across our gene sets in the Twins study.

Interestingly, we noted frequent increases in heat-shock genes,
coupled to increased associated BAG signaling pathways across
antigen-presenting cells (monocytes, B cells, and DCs), as well as in
double negative T cells. Heat-shock expression may be reflective of
altered proteostasis in simulated microgravity10, and may be required
for adaptation to mechanical unloading in some cells34, though this
may also be linked to higher temperatures. Across all gene sets, we
noticed a reduction in the cold shock gene, rbm3, which was reduced
in nearly all immune cells in our single-cell data. Increased heat-shock
coupled with reduced cold shock genes raises the possibility of higher
intracellular temperatures directly induced by microgravity, but whe-
ther microgravity, or associated increase in cytokines or binding
partners such as IL-1ra, directly induce the observed “space fever” in
astronauts requires further insight54. Interestingly, we did notice a
number of significant IL-1 ligands in innate cell to T cell interactions in
ourmicrogravity Interactome, highlighting the possible importance of
this cytokine family and downstream interacting molecules.

Pertaining the aforementioned skin lesions in astronauts, it has
been postulated that persistent skin hypersensitivity reactions in some
crewmembersmay be linked to allergic responses7,16. While analysis of
our datasets cannot rule out this possibility, we did not observe
increased Th2 signatures across our simulated microgravity systems,
or with our specific gene sets validated across the I4 mission. We also
saw inconsistent changes to IL-23 and IL-17 signaling across our data-
sets, though these cytokines are known contributors to skin disease55.
While the root causes of such lesions cannot be inferred from our data
analysis, it likely involves changes in the crosstalk with the skin
microbiome, in addition to intrinsic immune cell abnormalities.
Interestingly, we did see reduced aryl hydrocarbon receptor (AHR)
signaling in most of our datasets, especially in CD14 monocytes and
conventional type 2 dendritic cells, raising the idea of reduced AHR
signaling in space to contribute to skin lesions56,57. However, we saw
AHR signaling was enriched in the Twins study gene set result and so
more experimentation is needed to tease out a possible role for the
AHR in astronaut skin lesions.

Using in house machine learning algorithms, we identified
numerous compounds mapping to microgravity’s transcriptional
response to the immune system. This algorithm focuses on the
strength of interaction and does not specify direction. However, we
tested one of the most significantly interacting compounds, the fla-
vonol, quercetin, for its ability to reverse transcriptional changes to
simulatedmicrogravity on the immune system, and found that it could
reverse approximately 70% of altered core genes. Of note, quercetin
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reversed numerous pathways, including core pathways such as
reduced nuclear receptor activation, sirtuin signaling, Coronavirus
pathogenesis pathway, associated acute phase responses and IL-6
signaling. Quercetin also showed impact on the cytoskeleton, favoring
a freezing of pathways linked to its mobility in microgravity, by redu-
cing genes associated with Rho GTPase signaling (e.g., reducing RAC,
RHOA and CDC42 signaling), and boosting RHOGDI signaling. Despite
these changes, quercetin was unable to revert the core immunosup-
pression pathway of reduced interferon responses. However, since
actin skeleton mobility is needed to induce an IFN response in many
instances40, too much interference could contribute to a persistent
lack of IFN signaling here, andmight represent a furthermechanism of
immune suppressionmediated by quercetin that requires more study.
Interestingly, after 25 hours in simulatedmicrogravity, we saw variable
results on the induction of senescence pathways, though quercetin
markedly reduced senescence associated transcripts in our data. Thus,
while quercetin acts in part through its senotherapeuticmechanisms32,
the large breadth of additional other pathways suggests multiple
beneficial modes of activity for immune modulation in microgravity.

Our data support a hypothetical model where microgravity alters
forces sensed by immune cells, leading to changes in the actin cytos-
keleton, and nuclear receptor signaling, coupled to changes in core
pathways in space such as mitochondrial dysfunction and oxidative
stress. Recent work in other cells, such as endothelial cells, has iden-
tified cytoskeletal abnormalities as a key feature of simulated micro-
gravity that drives autophagy and a reduction in mitochondrial mass
after 72 hours of exposure35. Our datasets would support some of
these findings. Combined, these pathways would contribute to
reduced oxidative phosphorylation and associated basal inflammatory
processes, as well as reduced viral sensing pathways, associated
reduced interferon responses and altered pyroptosis capability.
Reduced interferon responses and signaling, impact both innate cells
like monocytes and NK cells, as well as adaptive cells like T cells. Such
changes could cumulate in viral or mycobacterial reactivation in
microgravity. These processes would also be complemented by the
psychological and physiological stresses of spaceflight, which alsomay
independently associate with viral reactivation12,14,58.

Thus, an important future direction of research is to address
whether altered cytoskeleton, or associated reductions in interferon
related gene products, including GBPs, are actively driving the reacti-
vation of mycobacteria and latent viruses that we see in simulated
microgravity. Another related important avenue of future research is
to better understand how changes to force action on immune cells link
to themitochondria dysfunctionhallmarkof spaceflight andmetabolic
alterations, and to map such changes to immune cell metabolism as
has been done to other mechanical forces19,59. Moreover, the immune
system in spaceflight is also under the influence of changing pressure
gradients, such as increased pressures in parts of the upper body60,
coupled to lower central venous pressure and potentially altered shear
force61–63. These changes may also contribute to altered immune
function, including the increased IL-1 and IL-6, two cytokines sensitive
to external force cues, seen in spaceflight, with potential for inter-
secting signaling nodes across mechanotransduction and other path-
ways such as mitochondrial dysfunction within immune cells19. More
work is needed to understand how these additional changes in force
impact innate and adaptive immunity during spaceflight and how they
interact with the effects of microgravity.

Finally, despite themultiple proposedmechanisms resulting from
this study, much of it was produced using simulated microgravity as a
model system,which has its own caveats18, thoughwe did identify core
reproduced pathways from spleens in mice on the ISS and some
overlap with the I4 mission and Twins study. Further studies applying
single cell-omic technologies to immune cells during in-flight missions
will no doubt provide answers to refine the proposed mechanisms of
immune dysfunction in space. As well, integrating more in-depth

chromatin and analytical approaches, such as ATAC-seq, can help
detail the regulatory changes that might be underlying these immune
phenotypes64. Overall, our current work provides a resource to better
understand “astroimmunology”, in particular how and why the
immune system changes in simulated microgravity and spaceflight.
These results also provide opportunities to develop countermeasures
that will help normalize immune cell function in microgravity and
spaceflight.

Methods
Studies were conducted under the supervision and in accordancewith
ethical guidelines of the Buck Institute for Research on Aging. In par-
ticular, protocols for the purchasing of human blood products from
Stanford University are described in the next section below.

Human blood sample and cell culture
De-identified peripheral blood buffy coat samples were obtained from
the Stanford University Blood Center under official signed contract
agreements with the Buck Institute for Research on Aging, following
the Stanford Blood Center’s Certification of Human Subjects Approval
for minimal risk research-related activities (IRB eProtocol# 13942).

A total of 27 healthy human buffy coats between the ages of 20
and 46 were purchased from the Stanford University Blood Center.
PBMCs were isolated using a Ficoll gradient method. PBMCs were
counted and resuspended in complete media at 1 × 106 cells/ml (RPMI
1640, 10% Fetal Bovine Serum, 2mM L-glutamine, 1% penicillin/strep-
tomycin, 0.1mM non-essential Amino acid,1mM sodium pyruvate,
50μM 2-mercaptoethanol,10mM HEPES). To generate simulated
microgravity, the cell suspension was loaded into 10ml disposable
high aspect ratio vessels (Synthecon, Houston, TX) and rotated at
15 rpm for 25 hours. For the 1G control, the cell suspension was plated
in standard 6-well culture plates, as standard static culture plates or
culture flasks have been shown to be comparable to static high aspect
ratio vessels by others in major immunological assays2. 1G and simu-
lated microgravity cultures were simultaneously placed in the same
37C, 5% CO2 incubator. To stimulate PBMCs, samplesweremixedwith
1μM R848 (TLR7/8 agonist, Invivogen, San Diego, CA) after 16 hours,
for 9 hours of stimulation. At the end of each experiment, the cell
suspension was quickly collected, spun down at 500 × g, washed with
phosphate-buffered saline, and used for downstream analysis. For
super-resolution imaging cells were fixed before centrifuging.

Single-cell RNA sequencing
1 × 104 PBMCs from each condition were counted and loaded on the
10X Genomics Chromium Controller and the libraries were prepared
using Chromium Next GEM Single-Cell 5’ Reagent Kit v2 according to
the manufacturer’s protocol (10X Genomics, Pleasanton, CA). The
quality of libraries was assessed using Agilent TapeStation 4200 (Santa
Clara, CA), and test-sequenced on Illumina NextSeq 550 (San Diego,
CA). The full sequencing was performed on an Illumina NovaSeq 6000
by SeqMatic (Fremont, CA).

Processing of single-cell RNA-seq data
Data processing was performed using 10x Genomics Cell Ranger v6.1.2
and MTD26 pipelines. The “cellranger count” was used to perform
transcriptome alignment, filtering, and UMI counting from the FASTQ
(raw data) files. Alignment was done against the human genome
GRCh38-2020-A. Cell numbers after processing were: 1G unstimulated
13,304 cells, uG unstimulated 21,709 cells, 1G stimulated 16,397 cells,
and uG stimulated 14,913 cells. TheMTDpipeline was used to generate
the single-cell microbiome count matrix from the FASTQ files.

Downstream analyses were performed in R (version 4.2.0), pri-
marily using the Seurat R package (version 4.1.1)65,66 and custom ana-
lysis scripts. First, we executed a quality control step that removed the
cells containing >10% mitochondrial RNA and ≤250 genes/features.
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The doublet cells were identified and removed from the downstream
analysis by using the DoubletFinder R package (version 2.0.3)67 with
parameters PCs = 1:30, pN =0.25, and nExp = 7.5%. To avoid the influ-
ence of hemoglobin transcripts on the analysis, we filtered out the
putative red blood cells (defined by the method below) before the
following process. A total of 55,648 cells remained for subsequent
analysis. RawRNA counts were first normalized and stabilized with the
SCTransform v2 function (SCT), then followed by the CCA integration
workflow for joint analysis of single-cell datasets. In doing so, the top
3000 highly variable genes/features among the datasets were used to
run SCT; and then 3000 highly variable genes/features and the 30 top
principal components (PCs) with k.anchor = 5 were used to find
“anchors” for integration. The clustering step was executed by using
the 30 top PCs summarizing the RNA expression of each cell with a
resolution parameter of 0.8.

To identify putative cell types, Azimuth (version 0.3.2)65 pipeline
was used with the reference dataset of Human–PBMC celltype.l2. Cell
type annotation results from Azimuth were validated by checking the
markers of each cell type (Supplementary Data 3). Gene differential
expression analyses were done by Seurat PrepSCTFindMarkers then
FindAllMarkers/FindMarkers functions with MAST68 algorithm. The
pseudo-bulk analysis was conducted to find overall DEGs of uG against
1G in either unstimulated or stimulated PBMCs, using the FindMarker
function with parameter min.pct = 0.005 and logFC =0.1. To compare
the stimulated and unstimulated PBMCs under uG and 1G conditions,
we subtracted log2FC values of their DEGs (uG−1G). The top 50 most
upregulatedDEGsbetween stimulated andunstimulated PBMCsunder
1G were used for comparison. FindConservedMarkers function was
used to find DEGs that are conserved between the groups with the
same parameter settings as FinderMarkers. The top 50 conserved
DEGs specifically sensitive to uGwere selectedbasedon the rank of the
absolute sum of log2FC values, derived separately from the sum of
positive log2FC values and the sum of negative log2FC values. Rank-
Rank Hypergeometric Overlap (RRHO) analysis69,70 was performed by
using RRHO2 R package (version 1.0) to compare the differential
expression patterns between 1G and uG of stimulated vs unstimulated
PBMCs. The ranks of the genes in the two gene lists were determined
by calculating −log10(adj.pvalue)*log2FC.

Pathway analysis
Following differential expression, Ingenuity Pathway Analysis (IPA,
Qiagen) was used to discover changes in enriched pathways in each
comparison. DEGs with p values < 0.05 and |Log2FC|> 0.1 were incor-
porated into the IPA canonical pathway analysis.

Trajectory analysis
To study the inferred trajectoryof PBMCdifferentiation, cell trajectory
analysis was performed by using the Monocle 3 R package (version
1.2.9)71,72. We first subsetted Seurat data to uG and 1G groups then run
the functions as.cell_data_set(), cluster_cells(), and learn_graph(). Then,
we ran order_cells() with the selection of cell types representing early
development stages (CD4naive, Bnaive, plasmablast, andHSPC) as the
roots of the trajectory.

Calculating cell scores of inflammatory aging and cellular
senescence
The inflammatory aging (iAge)24 indexwas calculated by the sumof the
cell scores that count bymultiplyingnormalized and transformedgene
expression with the corresponding coefficient of the gene in the iAge
gene set. Cellular senescence was scored using Seurat AddModule-
Score function65,73 on the SenMayo gene set25.

Viral and microbial abundance analysis
The output reads counts fromMTDpipeline were then combined with
the host reads and analyzed in R with Seurat package and other

customized scripts. The relative abundance (frequency) of a virus or
microbe was determined by dividing its reads count by the total reads
count (host and non-host) in that sample. The classification results
were further validated using a different method Magic-BLAST74.

APCs to T cell intercellular communication
To study the difference in intercellular communication from APCs to
T cells between uG and 1G, we used nichenetr R packages (version
1.1.0)27 to analyze cells in the dataset belonging toAPCs (Bcells, DCs, or
monocytes) and T cell types. The “Differential NicheNet”workflowwas
implemented. The expressed genes in sender cells—APCs were selec-
ted if they were expressed in at least 10% of that APC cell population.
The gene set of interest in receiver cells—T cells was defined by
adjusted p value ≤0.05 and Log2FC ≥0.25 in the DEGs. Top 30 ligands
that were further used to predict activated target genes and construct
an activated ligand-receptor network. Default settingswereused for all
other parameters.

Bulk RNA sequencing
Total RNA was extracted using RNeasy Plus Mini Kit (Cat# 74134,
Qiagen) as per the manufacturer’s instructions. RNA quantity check,
preparation of RNA library, andmRNA sequencing were conducted by
NovogeneCo., LTD (CA, US). About 20millionpaired-end 150bp reads
per sample were generated from Illumina NovaSeq 6000 Sequencing
System. FASTQ raw reads were analyzed using the MTD pipeline26.
Differential gene expression analysis between groups was done by
DESeq2 R package (version 1.36.0)75 with control for the subject effect.
Genes with adjusted p value < 0.05 were considered as differentially
expressed. DEGs with p values < 0.05 and |Log2FC|>0.5 were used for
the IPA canonical pathway analysis. Different from single-cell (SC), to
calculate the iAge index for bulk RNA-seq, normalized and trans-
formed gene expression was multiplied with the gene’s coefficient in
the iAge gene set, then summed for each sample. Cellular senescence
was scored using the ssGSEA76 method on the SenMayo gene set. Cell
Type Frequency Changes within PBMCs were predicted by CIBER-
SORTxDocker image–FractionsMode version 1.0. Our single-cell RNA-
seq data fromPBMCswas used to build the SignatureMatrix File as the
reference to predict the cell proportion in the bulk RNA-seq data.

Mouse spleen bulk RNA-seq analysis
Mouse spleen Bulk RNA-seq raw data was acquired from NASA Gene-
Lab Data Repository with the accession ID: GLDS-420. Ten mice in
space flight and ten mice in ground control (GC) were used in the
experiment. The detailed study description and experiment protocols
are on the data repository https://genelab-data.ndc.nasa.gov/genelab/
accession/GLDS-420. MTD pipeline was used to process the FASTQ
raw data, generate the count matrix, and then analyze differentially
expressed genes between Flight and Ground groups.

Gene set overlapping analysis
The p value of gene overlapping between two datasets was calculated
by Fisher’s Exact Test in GeneOverlap R package [Shen L, Sinai ISoMaM
(2022)]. GeneOverlap: Test and visualize gene overlaps. R package ver-
sion 1.32.0 [http://shenlab-sinai.github.io/shenlab-sinai/]. The 375DEGs
in uG vs. 1G from unstimulated PBMCs single-cell RNA-seq results were
used to match with the genes from PBMC bulk RNA-seq, I4, or JAXA
studies. For themouse genes in GLDS-420, we first convert them to the
human orthologous before the analysis. In the matched genes, those
expressions that were in the same log2FC direction as 375 DEGs as well
as with p value < 0.05, were considered overlapping (except for I4,
where either direction was considered overlapping). Complete linkage
hierarchical clustering was used to analyze dissimilarities in genes or
pathways between datasets, and the results were visualized by the
ComplexHeatmap R package (version 2.12.0)77. Moreover, the IPA
canonical pathway analysis was performed on thematched genes of I4
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and Twins studies. The 106 core gene set was constituted by DEGs that
consistently change their log2FC directions in both SC and bulk data of
PBMCs. The alteration of the core gene set by the compound was
measured by Gene Set Enrichment Analysis (GSEA)76,78 and Pearson
correlation test.

Compound analysis
FDA-approved drugs (n = 1692) are selected from the DrugBank data-
base and food compounds (n = 7962) are selected from the FoodDB
database as previously described32. LINCS compounds (n = 5414) are
obtained from the LINCS L1000 project. ‘Compound’ is used as a
general term for ‘drug’, ‘food compound’ and ‘LINCS compound’
throughout the document.

Compound-protein interactions are extracted from the STITCH
database v5.079 by matching the InChI keys of drugs/food/LINCS
compounds. STITCH collects information from multiple sources and
individual scores from each source are combined into an overall con-
fidence score. After processing, three datasets are obtained: (i) drug-
gene interaction dataset containing 1890 drugs and 16,654 genes with
542,577 interactions (ii) food compound-gene interaction dataset
containing 7654 compounds and 116,375 genes and 818,737 interac-
tions (iii) LINCS compound-gene interaction dataset containing 5414
compounds and 16,794 genes and 692,152 interactions.

Statistical significance for the overlap between compound genes
and the DEGs from the uG vs 1G of the unstimulated PBMCs single-cell
RNA-seq is calculated using Fisher’s Exact Test. The universal gene set
contains all genes that interact with at least one compound. The
compound with a low p value interacts with a higher proportion of the
DEGs than that expected by chance. Statistically significant com-
pounds were then obtained after the Bonferroni adjustment of p
values. The pipeline for this compound analysis is implemented in the
R script GCEA.

Cell staining and imaging (super-resolution microscopy)
Live PBMCs were stained with 60 nM MitoTracker Red-CMX-Ros
(ThermoFisher, Waltham, MA) either in 6-well plates or in the micro-
gravity chambers for the last 2 hr of themicrogravity simulation. At the
end of the microgravity simulation cells were immediately fixed by 1:1
mixing the cell suspensionswith 2× concentrated fixative (10% Sucrose
(w/v) 120mM KCl, 1% (w/v) glutaraldehyde, 8% (w/v) PFA pH 7.4) and
incubated for 15minutes at room temperature followed by 15minutes
on ice. Fixed cells were washed and stored in PBS until further staining
for up to a week at 4 °C. 1 million fixed cells were resuspended in 1mL
of permeabilization solution (0.1% TritonX-100 in PBS) for 5minutes.
After twice washing in PBS, pellets were resuspended in 0.5mL 1% BSA
PBS containing Phalloidin-iFluor-488 (cat# ab176753, Abcam plc.,
Cambridge, UK) at the manufacturer’s recommended dilution, and
were incubated for 90minutes with gentle agitation. After washing in
PBS, cells were stained with Hoechst 33342 (1 µg/mL in PBS) for
10minutes. Thefixed-stained cellswere immobilized at 3 × 105 cells per
well density in glass-bottom 96-well microplates (Greiner Bio-One,
Monroe, NC),whichwere pre-coatedwith polyethyleneimine (1:15,000
(w/v)) for 16 hours in a 37 °C incubator, and washed twice with PBS.
Microplateswith the cell suspensionswere centrifuged in a swing plate
rotor centrifuge (Eppendorf 5810 R) at 400× g and for 10min and then
fixed on the surface by adding an equal volume of 8% (w/v) PFA for
5min. Finally, the fixative was replaced with 100 µL of antifade reagent
(Vector Prolong Gold (ThermoFisher)). Samples were imaged imme-
diately after this procedure.

Image acquisition
Immobilized fixed-stained PBMCs were imaged on a Zeiss LSM980
Airyscan2 laser scanning confocal microscope (Carl Zeiss Microscopy,
White Plains, NY). Single PBMCs were manually selected for recording
based on low-resolution preview scans showing only nuclei. All singlet

cells were selected in a small neighborhood to avoid biases. In each
microscopy session, 24-40 cells were selected for recording in onewell
for each condition. This was performed in an interleaved manner,
capturing 6-8 cells at a time, and thenmoving to the next well and then
repeating this multiple times using the Experiment Designer module
for automation. Super-resolution volumes of (358 × 358 × 70 pixels,
0.035 ×0.035 × 0.13 µm/voxel resolution) were recorded in the above-
determined positions using Definite Focus autofocusing. A Plan-
Apochromat 63 × 1.40 Oil lens, Airyscan2 SR (super-resolution) mode
with optimal sampling and frame switching between 3 fluorescence
channels to minimize spectral cross-bleed were used. MitoTracker
Red, iFluor488, and Hoechs33342 were excited with 561, 488, and
405 nm solid-state lasers, respectively, using the optimal emission fil-
ter for each channel. 3D Airyscan2 processing was performed with
standard filtering settings. With PBMCs from four donors, in six
staining andmicroscopy sessions total of 930 valid volumes have been
recorded, and are available at https://doi.org/10.5281/zenodo.8415196.

2-dimensional image analyses
Staining intensities, mitochondrial size, and punctate over diffuse
index (defined as variance over mean) were determined in
Image Analyst MKII 4.1.14 (Image Analyst Software, Novato, CA) in
maximum intensity projection images using a custom pipe-
line available at https://github.com/gerencserlab/Superresolution-
actin-and-mitochondria-analysis. Cellpose 2.0 with the “cyto2” neural
network was used for finding cells in the images based on nuclear and
actin staining80. Protruding actin bundles were analyzed by first
binarizing projection images of actin using the trainable LABKIT
segmentation81, and thiswas followedby separationof protrusions and
measurement of theirmaximal distance from the bulk of the cell using
morphological erosion and distance image functions in Image Analyst
MKII. Rescaled projection images were saved and further analyzed in
CellProfiler 4.2.482, where images were segmented for nuclei and these
segments were extended to the cell boundaries based on the phalloi-
din staining. These profiles were used formeasuring shape, granularity
spectrum, and texture in actin, mitochondria, and nuclei. For actin
granularity spectrum measurement the following parameters were
used in CellProfiler MeasureGranularity function: “Subsampling factor
for granularity measurements” = 1, “Subsampling factor for back-
ground reduction = 0.125”, “Radius of structuring element” = 12,
“Range of granular spectrum” = 16. Similar results were obtained using
a set of discrete Fourier transformation-based Butterworth bandpass
filters in Image Analyst MKII for analysis of actin granularity spectrum
changes in simulated microgravity and TLR stimulation. Here a series
of 16 adjacent 4-pixels wide (in Fourier space of a 512 × 512 pixels
image), 300-order bandpass filters with “Corrected Integral” normal-
ization and absolute value calculation83 were used starting at 1 pixel,
and mean pixel intensities over whole cells in the filtered images were
normalized to the unfiltered image. We have previously shown that
this technique is primarily sensitive to sub-resolution changes in
thickness of underlying filamentous structures84, such as actin bundles
in this case. We found no changes in granularity spectra measured by
CellProfiler or Image Analyst MKII when analyzing mitochondria or
nuclei of the same cells, excluding optical biases.

3-dimensional image analyses
Mitochondria:cell volume fraction was measured using a modification
of the “Mitochondria:cell volume fractionator (basic)” pipeline in
Image Analyst MKII85, using the hole-filled actin image as cell marker
andMitoTracker Red asmitochondrialmarker, and all image planes to
measure areas of mitochondrial and cell profiles. Cell and nucleus
volumes and surface areas were measured using Imaris 9.9 (Oxford
Instruments, Concord, MA) using the Cell and Batch modules.

For 2D and 3D image analyses, tabular data generated by Image
Analyst MKII, CellProfiler, and Imaris were matched to conditions in
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Microsoft Excel and in Mathematica 13 (Wolfram Research, Cham-
paign, IL) and visualized in Prism 9 (GraphPad, La Jolla, CA) for statis-
tical analysis. Two-tailed Welch’s t test is used for all comparisons.

Cdc42, Rac1, and RhoA G-LISA activation assay
PBMCs from different conditions were collected and 7 × 106 cells were
lysed and snap-frozen immediately in liquid nitrogen. Cell lysate pro-
tein concentrations were measured using Precision Red Advanced
Protein Assay Reagent (cat# ADV02, Cytoskeleton Inc., Denver, CO)
and equalized. The GTP-bound Cdc42, Rac1, and RhoA levels were
performed according to the manufacturer’s protocol (cat# BK127-S,
BK128-S, and BK124-S respectively, Cytoskeleton Inc.) and measured
with a spectrophotometer at 490nm.

ROS detection
The abundance of ROS was measured via 2’,7’-dichlorodihydro-
fluorescein diacetate (DCFDA). Collected cells (100,000 cells per well)
from each condition were incubated with 10μM DCFDA Staining Buf-
fer in dark at 37 °C for 30minutes as per the manufacturer’s sugges-
tions (cat# 601520; Cayman Chemical, Ann Arbor, MI). The
fluorescence was measured with a Pherastar FSx (BMG Labtech Inc.,
Cary, NC)microplate reader with the excitation wavelength at 495 nm,
and emission at 530 nm.

Luminex bead array
Cell culture media (supernatant) from all experimental conditions
were separately collected and snap-frozen. Samples were sent to the
Stanford Human Immune Monitoring Center and MILLIPLEX 48 Plex
Premixed Magnetic Bead Panel (MilliporeSigma, Burlington, MA) was
performed per the manufacturers’ instructions.

IFN ELISA level measurement
Cell culture media (supernatant) from microgravity and 1G ±R848
were separately collected at each experiment and snap-frozen. The
samples were then thawed and used to detect the levels of IFNγ (cat#
430104; Biolegend Inc., San Diego, CA), IFNα all subtypes (cat# 41135;
Pestka Biomedical Laboratories, Inc., Piscataway, NJ) per the manu-
facturers’ instructions.

IL ELISA level measurement
Cell culture media (supernatant) from microgravity and 1G were
separately collected at each experiment and snap-frozen. The samples
were then thawed and used to detect the levels of IL-8 (cat# 431504;
Biolegend Inc., San Diego, CA), IL-6 (cat# 430504; Biolegend Inc., San
Diego, CA), IL-1β (cat# 437004; Biolegend Inc., San Diego, CA) per the
manufacturers’ instructions.

Flow cytometry
Single-cell suspensions from different donors and conditions were
stained with LIVE/DEAD Fixable Blue Dead Cell Stain kit (cat# L34962;
Invitrogen) for viability followed by Fc-blocking with human IgG (cat#
AG714, Sigma-Aldrich) at room temperature for 10mins. For staining
of intracellular cytokines, single-cell suspension was stimulated with
1μM R848 in the presence of 2.5ug/ml Brefeldin A (cat# 420601; Bio-
legend) for 9 hours prior to surface staining. The cells were further
stained with fluorophore-conjugated surface antibodies for 20min at
4 °C and intracellular antibodies for 30min at room temperature fol-
lowing fixation and permeabilization using Foxp3 staining buffer set
(cat# 00-5523-00; eBioscience). The surface and intracellular antibody
panel are listed in Supplementary Data 19. Cell phenotyping was ana-
lyzed on a Cytek Aurora instrument and analyzed using FlowJo.

JAXA transcriptomic data
JAXA cell-free RNA differential expression data was shared by Dr.
Masafumi Muratani at the University of Tsukuba. Briefly, blood

samples were collected from six astronauts before, during, and after
the spaceflight on the ISS. For this mission, we specifically made use of
data from the samples of six astronauts, pooled into a single count, at
day 5 and also at day 30, post-launch (i.e., in-flight), compared to pre-
launch. In this study, humanblood fromastronautswas collectedusing
Vacutainer EDTA-plasma separate gel collection tubes and centrifuged
for 30min at 3800 rpm (1239 × g, ISS) or 1600× g (ground) before
freezing at −95 °C (ISS) or −80 °C (ground). Cell-free RNA was purified
from plasma samples through a TRIzol/chloroform method,
sequenced (SMART-seq Stranded Kit, Takara Bio), and analyzed by the
team leading the JAXA collaboration. Data was provided in csv format
as normalized mean counts and normalized SEM of each gene at pre-
flight and inflight time points. DEGs between 30 days in-flight and
preflight time points were calculated by log2FC with p value < 0.05.
The overlapping DEGs that are consistent in their log2FC directions
with SC 375 gene signature are shown in Supplementary Fig. 16B.

Inspiration4 mission data
Four astronauts’ transcriptomic data from the Inspiration4 (I4)mission
was collected by Dr. Christopher E. Mason and his team at Cornell
University. Blood samples were collected before (preflight L-92, L-44,
and L-3), during, and after (R + 1) the 3-day spaceflight in the SpaceX
Dragon capsule. For this mission, we made use of data provided to us
from the samples of the four astronauts comparing post-flight (R + 1)
vs preflight (L-44)DEGs. Referring to the analysis workflowused by the
I4 Cornell team, a list of fold change and p values based on post flight
vs preflightfindingswas generated. The Seurat FindMarker parameters
used to calculate I4 DEGs were the same as those used for our 375
DEGs. Next, the DEGs and pathway overlap from I4 single-cell analysis
were calculated by using the methods described above in the section
on Gene set overlapping analysis.

NASA Twins study data
Gene expression data from the NASA Twins study17 was provided by
Cem Meydan in the Mason Lab in csv format and organized by Dr.
Afshin Beheshti as normalized mean counts for four immune cell
types. In brief, one astronaut was monitored before, during, and
after a 1-year mission onboard the ISS, and his identical twin sibling
was also monitored at the same time serving as a genetically mat-
ched ground control for this study. The NASA Twins study team
provided DEGs in their four immune cell types with a list of fold
change and p values based on inflight vs preflight findings. We
reclustered our identified cell populations and computed DEGs
accordingly. Next, the DEGs and pathway overlap from the Twins
analysis were calculated by using the methods described above in
the section on Gene set overlapping analysis.

ROS reduction compound
Quercetin (Sigma-Aldrich, St Louis, MO) stock solution was prepared
with DMSO at 1000×. In the cell culture experiments utilizing quer-
cetin, the concentration of quercetin was decided based on existing
literature86–89. After incubationwith quercetin, cells were countedwith
a Cellometer Auto 2000 Cell Viability Counter (Nexcelom, San Diego,
CA), which utilizes Acridine Orange and Propidium iodide dual-
staining systems to accurately distinguish live vs dead cells. After
25 hours of 50μMquercetin treatment, the cell viability across PBMCs
in both 1G and simulated microgravity conditions were at least 93%.
There were no statistical differences in viability observed between the
groups with and without quercetin treatment.

Statistical analyses
In addition to the methods described above, the Wilcoxon Rank Sum
Test was used to assess whether the distributions of data from cell
score or microbial abundance were significantly different between the
1G and uG cell populations from single-cell data. The association
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between single-cell and bulk RNA-seq in gene expressions was tested
by Spearman’s correlation. Mann–Whitney test was performed on ROS
reduction by quercetin. Unpaired parametric two-tailed t tests were
performed on single-cell iAge, SenMayo, and imaging analyses for
statistics. G-LISA, ELISA, Luminex, andDCFDA results were assessed by
paired parametric two-tailed t test. However, given our existing tran-
scriptomic and cytokine data showed decreased interferon coupled to
increased IL-1β, IL-6, and IL-8 production inmicrogravity, for validation
the flow cytometry results were assessed by one-tail paired parametric
t test. In PBMCs bulk RNA-seq results, the difference in iAge and Sen-
Mayo scores of samples with or without compound treatment was
evaluated by two-tailed paired parametric t test. R (version 4.2.0) and
GraphPad Prism 9 were used to conduct the statistical analyses. Sig-
nificance was set at 0.05. Outliers in datasets were assessed using
Grubbs’ test (alpha =0.01) and specified in figure legends if any were
removed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw single-cell and bulk RNA-seq data generated in this study are
deposited in the Gene Expression Omnibus (GEO) database under
accession code GSE218937. Mouse spleen Bulk RNA-seq raw data was
acquired from NASA GeneLab Data Repository with the accession ID:
GLDS-420. All other data are available in the article and its Supple-
mentary files or from the corresponding author upon request. Source
data including cell proportion, gene set score, GLISA, ELISA, Luminex,
and flow results are provided as a Source Data file. Source data are
provided with this paper.

Code availability
The codeused for the analysis of sequencing data is available atGitHub
and Zenodo repository [https://github.com/FEI38750/Immune_
Dysfunction_in_Microgravity; https://zenodo.org/record/8247816]90.
Code for GCEA is available upon request from the corresponding
author.
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