Fig. 3: Short-range case: the initial relaxation amplitude σ(t = 10s)/σ0 vs final density \({n}_{{{{{{{{\rm{s}}}}}}}}}^{{{{{{{{\rm{f}}}}}}}}}\) at a low T ≈ 0.2 K.
From: Screening the Coulomb interaction leads to a prethermal regime in two-dimensional bad conductors

The relaxations become observable on the metallic side of the 2D metal-insulator transition (MIT), at \({n}_{{{{{{{{\rm{s}}}}}}}}}^{{{{{{{{\rm{f}}}}}}}}}(1{0}^{11}{{{{{{{{\rm{cm}}}}}}}}}^{-2})\approx 17\) for which σ0 ~ e2/h, i.e. kFl < 1. The relaxation amplitude increases as the density is reduced, and it peaks just before nc, the critical density for the MIT, is reached. Symbol shapes indicate the size of the sample, as shown; open symbols describe the data obtained on another sample with the same dimensions. For all data, \({n}_{{{{{{{{\rm{s}}}}}}}}}^{{{{{{{{\rm{i}}}}}}}}}(1{0}^{11}{{{{{{{{\rm{cm}}}}}}}}}^{-2})=(32.2\pm 0.3)\). The vertical yellow hatched region shows nc. Dashed black line corresponds to the apparent equilibrium value \(\sigma={\sigma }_{0}({n}_{{{{{{{{\rm{s}}}}}}}}}^{{{{{{{{\rm{f}}}}}}}}},T)\). The error bars reflect ± 1 SD of the fluctuations of σ0 with time. Source data are provided as a Source Data file.