Fig. 3: Pressure-resilient design of bioinspired deep-sea soft robots.

a As a deep-sea animal with an endoskeleton, the snailfish possesses a low modulus internal skeleton and a distributed skull in its soft tissue. b, c Despite experiencing the same value of hydrostatic pressure, the maximum shear stress on the distributed skulls of the snailfish is significantly lower than that of the stickleback fish from shallow water. d, e The distributed skulls of snailfish serve as inspiration for the design of detaching electronics, which enhances their pressure resilience in the deep sea66. Reproduced with permission from ref. 66, copyright 2021, Springer Nature.