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While sub-clustering cell-populations has become popular in single cell-omics,
negative controls for this process are lacking. Popular feature-selection/clus-

tering algorithms fail the null-dataset problem, allowing erroneous subdivi-
sions of homogenous clusters until nearly each cell is called its own cluster.
Using real and synthetic datasets, we find that anti-correlated gene selection
reduces or eliminates erroneous subdivisions, increases marker-gene selection
efficacy, and efficiently scales to millions of cells.

A frequent first task in performing cell-type identification from
scRNAseq is feature selection to identify genes that add structure to
the dataset based on various statistical properties, prior to unsu-
pervised clustering. These algorithms differ from feature-selection
applied in the context of a classifier for cell-type label transfer. Current
approaches to feature selection prior to unsupervised clustering in
single cell -omics include measures of the relationship between a
gene’s mean and variance (i.e., overdispersion)**, a gene’s mean and
dropout rate’, a gene’s deviance from an expected distribution®’, or
degree of zero-inflation’. Conceptually, these algorithms operate
based on examining each individual gene’s expression distribution,
assessing its statistical properties relative to an assumed distribution,
ranking genes by their deviation from this expected distribution. An
open problem however is how algorithms handle the “null-dataset;”
that is, when there is only a single cell-identity present.

Given the popularity of sub-clustering (i.e., iteratively subdividing
the initially identified clusters)®™, it is important to know that these
groups are not being erroneously subdivided, thus producing false
subtypes®. While novel sub-populations of interest should always
be validated via bench-biology methods, an algorithmic assurance that
one is not being misled can save money and years of effort attempting
to validate erroneously discovered “novel sub-populations.” Given the
imperfections in clustering algorithms®, sub-clustering itself can be a
valid practice, because a single round of clustering may be insufficient
to fully divide a dataset into its constituent groups. However, we must

have confidence that such algorithms will correctly identify single
populations, preventing the false discovery of nonexistent sub-
populations. In the case of a single cell population, either (1) a fea-
ture selection algorithm would accurately report that there are no
genes that define sub-populations, or (2) the clustering algorithm
would determine that only a single cluster is present.

In this work, we develop a new feature selection algorithm that (1)
can effectively identify when a single population is present, through
correctly identifying no sub-population specific genes within the
dataset, (2) is highly sensitive to true signal that distinguishes sub-
populations, and (3) can scale to 1-million cells, enabling discovery of
subtly different populations.

Results

The anti-correlation-based feature selection algorithm

We sought to devise an algorithm to identify cell-type marker-genes
that would both identify subpopulations of cell-types with high
accuracy, and simultaneously solve the null-dataset problem. We
thus began from first principles, asking the question: “what is a cell-
type?”. Traditional molecular biology has defined cell-types based
on distinct cellular functions that are concordant with expression of
distinct sets of genes: “marker-genes” (Fig. 1a), that often include
hierarchical mutually exclusive gene expression. For example, in
the pancreas the gene NEURODI is a pan-endocrine marker,
expressed in many different cell-types but should be mutually
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exclusively expressed from exocrine marker-genes". If we accept
this definition of cell-type and -lineage specific genes, we can
algorithmically discover marker-genes from scRNAseq, as these
genes will show a statistical excess of negative correlations with
other genes (Fig. 1b). Given this premise, if only a single cell-identity
is present in a dataset, we would expect an absence of an anti-
correlation pattern since the cells of other cell-identities would not

be present (Fig. 1c). Indeed, looking at known marker-genes from
different cell types in the pancreas (i.e., AMY2A expressed in acinar
cells and SST expressed in delta cells), we see the expected anti-
correlation pattern between AMY2A and SST (Fig. 1d), which dis-
appears when examining subsets comprised of only a single cell
type (Fig. le). Notably, the anti-correlation pattern holds for
lineage-markers as well as cell-type markers (Fig. 1f).
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Fig. 1| Anti-correlation algorithm premise and passage of the null-dataset
problem. a The logical schematic behind anti-correlation-based feature selection.
b As a scatter plot where expression of marker A is plotted against marker B, cells of
type A and B will form an L-shaped anti-correlation pattern, while cell-type C would
express low levels of both marker A and B. ¢ This anti-correlation pattern would
disappear when examining a single population of cells. d The anti-correlation
pattern of marker-genes appears in an example dataset’, where high expression of
AMY2A in acinar cells forms an anti-correlation pattern with SST in delta cells of the
pancreas. e The anti-correlation pattern between AMY2A and SST disappears when
only subset for delta cells. f The anti-correlation pattern is also present in lineage-
marking-genes as shown by the pattern of AMYA2 and NEURODI, which labels all
endocrine cells of the pancreas. g The anti-correlation-based feature selection
algorithm first calculates a null background of Spearman correlations based on
bootstrap shuffled gene-gene pairs to calculate a background. h Next the cutoff

value closest matching the desired false positive rate (FPR) is determined. Dis-
played is a histogram of the bootstrap shuffled null-background of Spearman
correlations less than zero. i Lastly genes which show more significant negative
correlations (x-axis) than expected by chance (black line), given the gene’s number
of total negative correlations (y-axis), are selected: i.e., those to the right of the
cutoff line. These are then used to calculate the False Discovery Rate (FDR) for each
gene (See Methods for details). Heatmaps of selected features, and the total
number of subclusters for each method of feature selection paired with AP clus-
tering, when algorithms were allowed to sub-divide iteratively for homeostatic cell
line scRNAseq: (j) NIH3T3, (k) HEK293T. I Boxplots indicating the total number of
clusters identified by each method of feature selection (box colors) and clustering
(noted in panels). Boxplots show lines that extend to minimum and maximum, with
the box bounds from 25th to 75th percentile, and center denoting the median
(n=20). Source data are provided as a Source Data file.

Using these observations, we constructed an algorithm that
identifies genes with an excess of negative correlations relative to what
would be expected if the gene were un-patterned, as empirically
measured with a bootstrap shuffled null background (Fig. 1g, h). We
then select genes that have an excess of negative correlations, con-
trolling for false positives (FPs) by setting an appropriate false dis-
covery rate (FDR) (Fig. 1i). Overall, this procedure selects the genes
that have significantly more negative correlations with other genes
than would be expected by chance (See Methods for details). While
others have performed small-scale experiments using positive corre-
lations for feature selection, it was deemed infeasible due to compu-
tational run-time®; here we create an open-source, efficient
implementation in python to overcome this barrier, but focus atten-
tion on negative correlation patterns as opposed to positive. Addi-
tionally, our implementation differs from standard methods in
principle; here we identify the information held between genes, in
contrast to the standard approach of measuring single-gene con-
formity to an expected distribution or pattern. Additionally, future
feature selection algorithms may build on the concept of cross-feature
measures (such as measuring cross-feature information or entropy);
however, here we focus on the use of cross-feature correlations.

Given our reasoning that the anti-correlation pattern should go
away when examining data representing only a single cell-type (Fig. 1c),
with preliminary support for our rationale in a single dataset (Fig. 1e),
we hypothesized that anti-correlation-based feature selection would
be sufficient to solve the null-dataset problem, while status quo algo-
rithms may not adequately solve this problem. With the null-dataset,
no “cell-type or cell-state specific genes” should be identified as thisis a
single population of cells. We tested this hypothesis by performing
feature selection and affinity propagation (AP)-based clustering on two
datasets composed of scRNAseq from homeostatic cell line culture
from NIH3T3 (Fig. 1j) or HEK293T cells (Fig. 1k), which we anticipate
would capture the biologically relevant variation in only a single clus-
tering round, and any attempt to further subdivide beyond that should
be algorithmically blocked. Indeed, the anti-correlation algorithm
allowed for only a single round of clustering, while the other algo-
rithms tested allowed for further subdivisions (Fig. 1j, k).

Efficacy on the null- and recursion-to-completion problems

While this preliminary evidence suggests that anti-correlation-based
feature selection solves the issue of FPs from sub-clustering homo-
genous populations, real-world datasets do not harbor a “ground-
truth.” We therefore simulated a single cluster using Splatter which
produces negative binomially distributed gene expression matrices'®.
We performed feature selection using the noted algorithms*” and
passed these features to four different clustering algorithms including
Affinity Propagation, K-means + Elbow-rule, K-means + Silhouette, and
locally weighted Louvain modularity (See methods for algorithm
details). In all cases, the anti-correlation-based method for feature

selection detected no valid features within a single population of cells,
thus addressing the null-dataset problem, while all other feature
selection and clustering algorithm combinations failed the null-dataset
problem, selecting noisy features that resulted in at least several
clusters (Fig. 11). Note that most feature selection algorithms fre-
quently require the user to manually set the number of “discoveries” or
selected features, which is likely a key contributor to this failure of the
null-dataset problem when using standard feature selection
approaches.

Without an algorithmic check to prevent erroneous sub-cluster-
ing, one could recursively divide a dataset until it is fully subdivided
(each individual cell representing its own cluster), here dubbed
“recursion-to-completion” (Fig. 2a). In practice, this would indicate
that someone analyzing a scRNAseq dataset could always decide to
sub-cluster a “cluster of interest” and report a “novel subpopulation” of
cells, resulting in false discoveries. We created a pipeline to assess the
robustness of each feature selection algorithm to the recursion-to-
completion problem, by recursively performing feature selection and
clustering on each progressive subdivision, moving from detecting
global structure, towards increasingly local structure (Fig. 2b). This
repeated process of feature selection holds three benefits over main-
taining the original features with altered cluster resolution (1) It allows
use to use an ‘empty’ feature list as an indication that no more clusters
exist (the same method we used for passing the null-test), (2) allows for
dynamic detection and subsequent refinement of compound correla-
tion structures that differ at the global and local scale, and (3) does not
incorporate noise from features enriched in unrelated lineages. For
example, sub-clustering of T-cells, would not be enhanced by con-
tinued inclusion of epithelial cell markers from a prior round of
clustering. Using repeated feature selection at each round of sub-
clustering should enhance the ability to identify additional, previously
unexplored sub-types. However, as with the recursion-to-completion
task, at some point, an algorithm should halt and prevent further sub-
division when no additional meaningful structure exists.

We applied this pipeline (Fig. 2b), assessing performance on the
recursion-to-completion task with four publicly available datasets
from differing species and platforms including droplet-based UMI
approaches (Fig. 2¢) and full-length transcript single-cell and -nucleus
RNAseq (sNucSeq) (Fig. 2d)”. Again, we found that standard feature
selection methods enabled recursion-to-completion, often finding
hundreds to thousands of clusters, while anti-correlation-based fea-
ture selection were robust to this problem (fewer overall clusters:
P<1e-4 for TukeyHSD post-hocs; Fig. 2d, e). This demonstrates that
anti-correlation-based feature selection is robust to differing technol-
ogies, species, and sequencing type, retaining the ability to minimize
false sub-divisions.

To verify these results with known ground-truth, we simulated 4
clusters, and allowed each algorithm to iteratively sub-cluster until
either no features were returned, or only a single cluster was identified.
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Fig. 2 | Recursion-to-completion in real datasets. a A schematic of sub-clustering
is shown in the form of UMAP projections of the original dataset (left panel), and a
sub-clustering iteration of a population found in the first round of feature selection
and clustering (right panel). b, ¢ In real datasets of varying technologies, status quo
algorithms fail the recursion-to-completion problem while the anti-correlation-

based approach prevented recursion-to-completion. Recursive clustering plots

where each point indicates a cluster at a given recursive clustering recursion-depth
as denoted in successive rings and color. d Boxplots of the mean recursion depth

for each of the final sub-clusters for each noted method (1-way ANOVA with 2-sided
TukeyHSD poshoc). e Boxplots of the total number of groups obtained through
iterative sub-clustering (1-way ANOVA with 2-sided TukeyHSD poshoc). Boxplots
show lines that extend to minimum and maximum, with the box bounds from 25th
to 75th percentile, and center denoting the median. (d, e: n =4 datasets). Exact
p-values for all pairwise comparisons are availabe in Source Data file. Source data
are provided as a Source Data file.

Consistent with our findings from real-world datasets, anti-correlation-
based feature selection protected against erroneous sub-clustering,
while other approaches allowed for several rounds of recursive sub-
clustering, yielding hundreds to thousands of final ‘clusters’ (fewer
average rounds of sub-clustering: P=4.5e-11, F=114.1,main-effects
1-way ANOVA; P<1.5e-5 for TukeyHSD post-hocs; fewer total clusters:
P=4.6e-13, F=222.2 main-effects 1-way ANOVA; P<3e-11 for
TukeyHSD post-hocs); Supplementary Fig. 1a. These simulated data
demonstrate that anti-correlated feature selection guards against

erroneously splitting a single population of cells, while the algorithms
tested here enable false discoveries of what appear to be “novel
sub-types.”

Feature-selection accuracy in simulation and real-world data

We next sought to determine the overall accuracy of these feature
selection algorithms, where ground-truth differentially expressed
genes (DEGs) should be selected by feature selection algorithms, and
non-DEGs should not be selected. To this end, we used Splatter to
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simulate datasets comprised of 4, 6, 8, and 10 clusters. Our anti-
correlation algorithm had the best accuracy, Mathew’s Correlation
Coefficient (MCC), False Positive Rate (FPR), FDR, precision, true
negative rate (TNR) compared to other feature selection algorithms
(Supplementary Fig. 1b). However, anti-correlation-based feature
selection had average recall (also called sensitivity or false negative
rate (FNR)); this is explained however, by Splatter’s wide-spread co-
expression of all genes in all clusters (Supplementary Fig. 2a). In other
words, using Splatter, all clusters express the “marker-genes” of all
other clusters, therefore blunting the anti-correlations of marker-genes
seen in practice (Fig. 1), thus reducing the apparent sensitivity. SERGIO
however is a gene regulatory network (GRN) based scRNAseq simula-
tion approach that more accurately represents empirical scRNAseq
datasets'® and does not induce co-expression of all marker genes in all
clusters (Supplementary Fig. 2b). Using this simulation paradigm anti-
correlation-based feature selection outperformed other approaches
by every metric including recall/sensitivity, with the exception of
deviance and zero-inflation, which achieved higher recall through
selecting nearly all genes as shown by a FPR near 1.0, likely as an effect
of Splatter and SERGIO simulations not matching distributional
assumptions of these approaches (Supplementary Fig. 1c).

Using these simulations, we further performed a hyper-parameter
sweep to identify effective values, and the trade-off in sensitivity and
false-positives, among a total of 11 machine learning metrics for clas-
sification problems. We found the anti-correlation algorithm was very
effective at preventing FPs among nearly all functional hyperpara-
meters (Supplementary Fig. 3a). Where there was not great variability
in performance with SERGIO under different FPR and FDR hyper-
parameter choices, Splatter showed a trade-off, but was still extremely
robust with FPR=0.001 and FDR=0.066-0.25 hyperparameter set-
tings (defaults: FPR=0.001 and FDR = 0.066).

Additionally, we sought to clarify which hyperparameters were
necessary to pass the null-test. Given the ‘detection of a single popu-
lation’ is done indirectly, through returning zero selected features, we
benchmarked the anti-correlation-based feature selection algorithm
across these hyperparameters to identify the number of genes selec-
ted, and whether the algorithm passes the null-test. We observed that
no features were selected (Supplementary Fig. 3b) in our null simula-
tions, uniformly passing the null-test (Supplementary Fig. 3¢), identi-
fying no clusters whenever the FDR parameter was set to values < 0.5.
This result demonstrates strong robustness (good specificity) across
hyperparameter space, ensuring that when following our guidance,
one will be protected from false discoveries.

Feature selection prior to unsupervised clustering is intended to
identify the cluster specific signal within the noise; we therefore sought
to quantify this directly. Re-processing of previously published data-
sets, comparing results with previously published cluster labels often
yields only ~50-70% concordant label results'’; however, simulations
provide a known ground-truth. We therefore benchmarked cluster
results, with differing levels of signal to noise within the simulations,
with and without our feature selection method paired with 8 analysis
pipelines. This included our implementation of locally weighted Lou-
vain, Scanpy’s Louvain, Scanpy’s Leiden, Sc3s, Seurat’s Louvain, scCAN,
scDHA, and SINCERA***%, Indeed, with both SERGIO and Splatter
simulations, the use of anti-correlation-based feature selection
increased clustering accuracy by selecting signal from the noise when
signal was sufficiently low in the original dataset (Supplementary
Fig. 4). We further observed that our implementation of locally
weighted Louvain modularity (See Methods) showed the greatest
clustering efficacy followed by Seurat’s Louvain?, and scCAN®,

To demonstrate efficacy with real-world datasets, we used seven
pancreatic datasets****°, and found that the anti-correlated genes
were either tied for, or had significantly higher p-value significance
rank and precision for pancreatic specific genes based on gProfiler/

Human Protein Atlas tissue enrichment compared to other algorithms
(Supplementary Fig. 1d)**2.

Anti-correlation scalability in 1-million cells

To assess the practical scalability of anti-correlation-based feature
selection, we re-processed and ran a larger dataset (245,389 cells) from
a Tabula Muris data-release®. The full feature selection process took
60.95 min, while calculating the cell-cell correlations, distance, and
clustering were far more computationally intense taking several days
(see Methods for clustering details) (Fig. 3a). These findings show that
anti-correlation-based feature selection should not be a major limiting
factor for large datasets.

We also sought to demonstrate our feature-selection approach’s
utility in safe sub-clustering in practice; to this end, we focused on a
cluster whose marker genes included insulin/amylin (/ns1/2, lapp) and
glucagon (Gcg), the markers for pancreatic beta and alpha cells,
respectively, indicating that this cluster was insufficiently divided in
the first clustering round. We performed sub-clustering with anti-cor-
relation, identifying leukocyte, alpha-, beta-, and delta-cell popula-
tions. We further sub-clustered the insulin high population, and
unexpectedly found the rare** population of pancreatic-polypeptide
(Ppy/Pyy) expressing PP-cells (Fig. 3b), a cluster comprising only 0.01%
of the original dataset. Attempting to further sub-divide PP-cells yiel-
ded no usable features, thus showing that anti-correlation-based fea-
ture selection can facilitate extremely sensitive sub-clustering to
identify rare biologically meaningful populations from large datasets,
while also preventing errant subdivisions.

As seen in the final sub-cluster round, however, while anti-
correlation-based feature-selection is biologically accurate and
answers the question: “Should this cluster be sub-clustered?”, it does
not ensure that downstream algorithms will select the correct number
of clusters; this remains an outstanding problem as previously
reported”. However, passing the first step of successfully identifying a
homogeneous population, through anti-correlation-based feature
selection, provides confidence that meaningful structure existed in the
parent population.

One real-world scenario that can be encountered, however, is
the use of multiple batches or technologies simultaneously.
If appropriate caution is not exercised, such situations can intro-
duce Simpson’s paradox, which can result if technical effects are
layered on top of the biological effects, changing the overall global
correlation structure as a result of mixing two different local cor-
relation structures. Indeed, examining a single donor sample from
the Tabula Sapiens dataset whose cells were assayed in parallel
using two differing technologies (10X Genomics’ Chromium and
SMART-seq2), these technical replicates both showed negative
correlations when assayed independently with respect to the two
technologies employed. However, when analyzed jointly, these
negative correlations became positive, giving rise to Simpson’s
paradox, despite the fact that these were technical replicates
(Supplementary Fig. 5). While common defaults in pipelines will
take the intersection of feature-selection runs performed on each
individual batch, this will only capture the intersection of biological
effects, therefore leaving users at risk of discarding batch con-
founded, but biologically meaningful variation. This highlights the
need to perform feature selection analysis without confounded
technical and biological signal.

Unlike the above situation however, multiplexing within a single
technology provides a possible solution, because only a single batch
effect is applied to all samples simultaneously. To assess performance
under this paradigm, we used our anti-correlation algorithm with a
dataset of 1-million PBMCs from 24 donors: 12 healthy, and 12 with
type-l-diabetes (T1D). Our feature selection algorithm was again not a
limiting factor, taking only 3.3 h (Fig. 3c), with calculating the cell-cell
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Unsupervised discovery of subtly differing sub-populations

Among the B-cells, we observed low abundance BLIMPI1+/XBPI1+
plasma cells (cluster-11)* (Supplementary Fig. 7), that contrasted with
CD268+ mature B-cells (clusters-2, -15, -16). Cluster-15 was char-
acterized by up-regulation of NFKBI. Clusters-2 was CD23+, while
cluster-16 cells were CD23-, but also contained two regions that were
characterized by activated TACH/CD80+/CDS- and non-activated
TACI-/CD80-/CD5+ phenotypes, which may be consistent with Bl
(with Bla/B1b subtypes)**. However, definitive identification and fur-
ther refinement of subsets, is an area of ongoing research”, especially
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Fig. 3 | Application to large real-world datasets. a A heatmap of the top 5 marker
genes per cluster are shown for the primary lineages from the full senescent Tabula
Muris dataset®, with the last cluster representing a mixture of cell-types from the
endocrine pancreas. b When subclustered with anti-correlated feature selection,
mixed-cell-type droplets (x) as well as classically described leukocyte, «, §, B, and
acinar populations were discovered. Subclustering 3 cells discovered mixed-
lineage droplets with 6 and leukocyte cells as well as the rare PP-cell population, but
additional subclustering of PP-cells was prevented by anti-correlation-based fea-
ture selection. ¢ Selected features for clustering 1-million PBMCs. d Subject-level
reverse Percent Maximum Difference (rPMD), shows that Type-1-Diabetes (T1D)
subjects are more similar to each other, while control PBMCs are more diverse by
cluster composition. e A spring embedding of a subset of cells from each cluster,
color-coded by donor, with sub-plots for T1D and control subjects, showing large-

scale uniformity in TID compared to the heterogeneous control samples. Note that
this is for display purposes only, was not used in analysis, and does not represent
cell-cell distances, but rather a display of the graph used for clustering. f A heatmap
of PMD standardized residuals, which correspond to the significance of how dif-
ferent each subject’s relative abundance of all clusters differs from the null
expectation of no-difference between subjects. A matching bar-chart shows the
T-statistic of cluster level significance for each cluster’s differential over-under
abundance shown in the heatmap, comparing T1D to controls. Bars are color-coded
by significance (P < 0.05 after Benjamini-Hochberg). Exact p-values available in
Source Data file. g The spring embedding of the kNN graph is color-coded by
significance of differential abundance for each cluster, and additionally color-
coded by T1D/control status, then again subset for only the significant clusters.
Source data are provided as a Source Data file.

given sensitivity limitations and post-transcriptional regulation in
RNA-only assays.

Among T-cells (Supplementary Fig. 8a, b), we identified a BLIMP1+
mixed CD4-memory population (cluster-12,21)**, PECAMI+ naive CD4
(cluster-13,23,25)***°, and memory and naive CD8+ T-cells, based on
the same markers (clusters-9,6 and -0, respectively) (Supplementary
Fig. 8c, d), and FOS+/CD97+* early activated T-cells, which rapidly
downregulate CD4/CDS8 after activation** (cluster-17) (Supplementary
Fig. 8f). Interestingly, a subset of CD4mem cells appeared to show high
expression of the TOX exhaustion marker gene*. To further refine this
population, which was also moderately increased in TID (Fig. 3g;
T-statistic =2.95, P=2.2e-2, BH-corrected ¢ test; Supplementary Data-
sets 3, 4), we subset and re-performed feature selection and clustering,
successfully identifying 3 discrete populations (Supplementary Fig. 9a,
b; Supplementary Datasets 7), with the largest CD4+ effector cluster
existing along a cell-identify marked by a STAT4/RUNX2-to-TSHZ2/ICOS
expression continuum (Supplementary Fig. 9¢)***. A remaining CD4+
memory subcluster was CD25+/FOXP3+/TOX+, which is consistent with
Tregs*® (subcluster-7). The final low-abundance cluster (subcluster-11)
was characterized by PECAMI positivity indicating that these were
likely incorrectly co-clustered naive CD4+T-cells from the prior
clustering-round (Supplementary Fig. 9).

In addition to simply characterizing the many different subsets of
PBMCs, we further sought to investigate their disease relevance.
Notably, we found that the T1D samples were highly similar to each
other based on cluster composition, whereas the healthy controls were
far more diverse as measured by reverse Percent Maximum Difference
(PMD) (1-PMD, Fig. 3d, e; Supplementary Dataset 1). PMD and its
standardized residuals quantifies subject-level similarity based on
cluster composition robustly to differences in subject level sampling
depth*’.

We found several significantly differentially over-abundant clus-
ters, however, the most differentially abundant was a subset of CD14+/
CCR2+/CD115+ classical monocytes (Supplementary Fig. 10a—c; T-sta-
tistic=10.7, P=1.34e-25, BH-corrected ¢ test; Supplementary Data-
sets 3, 4)** appearing uniformly over-abundant in T1D subjects (cluster-
5,8; Fig. 3f, g; Supplementary Datasets 1-8)**~'. When comparing this
population to its most closely related monocyte population (cluster-
10), we found that the TID over-abundant cluster had significantly
higher expression of the activation marker FOSB, and functional
modulators NAMPT*? and HIFIA, which is induced in inflammation,
even in normoxic conditions™* (Supplementary Fig. 10d); DEGs
between these populations are available in Supplementary Datasets 8.
However, further research will be needed to interrogate and inde-
pendently confirm these findings.

Discussion

Overall, our findings demonstrate that anti-correlation-based feature
selection solves the null-dataset and recursion-to-completion pro-
blems, outperforms others in overall feature selection accuracy, and

works with both UMI and full-length sequencing methods. These
properties can prevent wasted time and money for bench-
practitioners attempting to validate novel sub-populations by pro-
viding an algorithmic check to false discoveries in scRNAseq, and can
scale to the size of modern datasets. Lastly, our python package (titled
anticor features) is open-source, pip installable, and compatible with
SCANPY/AnnData® to enable broad adoptability.

Methods

Example of anti-correlation principle on pancreatic dataset

A previously published scRNAseq dataset and annotations were used
for scatter plots of AMY2A for acinar cells, SST for delta cells, and
NEURODI for endocrine cells (Fig. 1d-f)°.

Normalization of scRNAseq datasets to be used for
benchmarking

Due to large variation (often orders of magnitude differences) in total
UMI counts across cells and it's downstream effects on cell-to-cell
distance metrics, we normalized each cell within UMI based datasets
through bootstrapped UMI downsampling as described here: https://
bitbucket.org/scottyler892/pyminer_norm. In brief, a cutoff is selected
for both the number of observed genes in a cell as well as the number
of total UMI observed in a cell. Cells not meeting these criteria are
removed, and all other cells are normalized through UMI down-
sampling. UMI downsampling is done through simulating the tran-
scriptome of a given cell, and randomly selecting N transcripts, where
N is the desired number of total UMI for each cell to have, in this case
95% of the cutoff used for total UMI count. Thus, each cell is randomly
sampled to the same UMI depth.

To normalize full-length sequencing datasets with TPM or
similar units, we created a variant of quantile normalization we call
truncated quantile normalization. First a cutoff (g) is selected for
the number of genes to be expressed in each cell in the final nor-
malized dataset. Next, cells with fewer than g+1 genes expressed
are removed, then for each cell, the transcriptome is subtracted by
the expression value of gene g +1 for that cell, thus setting the g+1
gene’s expression to zero, leaving the remaining top g expressed
genes with >0 expression in all cells. All negative values are then set
to O. For ties at the expression-level of g that would result in dif-
fering number of observed genes, genes are randomly selected to
be preserved or set to zero stochastically. This yields a vector for
each cell for whom the top expressed g genes are kept, but shifted
downwards in a manner that does not introduce an artificially large
gap between the lowest expressed gene (g) and zero. These top
g genes for each cell are then quantile normalized. This process is
implemented in the pyminer_norm pip package, and can be called
from the command-line on tsv files:

python3 -m pyminer_norm.quantile_normalize -i in_file.tsv -o
out file_gNorm.tsv -n 2000 to perform truncated quantile normal-
ization on the top 2000 genes for each cell.
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NIH3T3 and HEK293T cell line datasets

This dataset was downloaded from 10x Genomics’ website at (https://
support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.
2/1k_hgmm_v3). The cells of mouse or human origin were separated
into distinct datasets for our purposes here based on the sum of reads
that mapped to each species’ transcriptome, while doublets were
excluded. In the case of both human and mouse references, cells were
kept that had >3162 counts mapping to hgl9 or mml0 for HEK293T
and NIH3T3 respectively, cells were also only kept if they had >1000
genes observed. The remaining cells were then downsampled to 3003
counts for each dataset to normalize for variable count depth that
otherwise spanned two orders of magnitude.

Affinity propagation

Our implementation of affinity propagation was based on the sklearn
sklearn.cluster.AffinityPropagation function, in which the preference
vector is initialized to the row-wise minimum of the input matrix; in
this case, the negative squared Euclidean distance of the Spearman
correlations across all cells. We observed that as datasets scale, the
original affinity propagation algorithm fragments single populations
into many small populations that were similar to each other. We
therefore follow the original affinity propagation results with an ana-
lysis that calculates the distance (in affinity space) between cluster
centers (also called exemplars). The standard deviation of within-
cluster affinities is then calculated. For each cluster-cluster pair from
the original affinity propagation cluster results, we then determine the
number of combined standard deviations required to traverse half the
Euclidean distance in affinity space between two cluster centers. This
measure is the number of standard deviations needed to reach the
waypoint between two cluster centers. Because these are standard
deviation measures, we can convert these to transition probabilities, as
with a Z-score, using the scipy.stats.norm.sf function. This creates a
cluster x cluster matrix of transition probabilities; this probability
matrix is then subjected to dense weighted Louvain modularity. Final
clusters are determined by the results of this procedure, where AP
clusters that were determined by Louvain modularity to belong to the
same community are merged. All code and cluster for the affinity
propagation with merged procedure can be accessed through running
PyMINEr with the appended arguments: “ -ap_clust -ap_merge” at the
command line or interactively via the pyminer.pyminer.pyminer -
analysis function using the arguments: ap_clust=True, ap_merge=True.

Clustering - K-means with Elbow and K-means with silhouette
First each dataset (already log transformed) was subset for the genes
selected by the given feature selection algorithm, then genes were min-
max linear normalized between O and 1. K-means clustering was per-
formed using the sklearn.cluster KMeans function. For the elbow rule,
the sum of squared Euclidean distances of samples to their cluster center
was used in conjunction with the given k value. We took the elbow to be
the value of k which yielded the minimum distance to the origin.

For the silhouette method, we calculated the average silhouette
score with the sklearn.metrics silhouette_score function, and sample
level silhouettes calculated with the silhouette_samples function. The
number of clusters was selected by moving from k =1 to k_max, testing
for whether there existed a cluster whose maximum sample level sil-
houette was less than the average silhouette score for the whole
dataset (as determined by the silhouette_score function).

Clustering - Locally weighted Louvain modularity
We created a kNN graph embedding and subjected it to Louvain
modularity as follows:
1. Calculate Spearman correlation of all cells against all other cells
(matrix: S).

2. Calculate the inverse squared Euclidean distance matrix from the
Spearman matrix (matrix: D), divided by the square-root of the
number of cells. In this matrix, cells that are more similar to each
have higher values, and cells that are dissimilar have lower values,
inversely proportional to the squared Euclidean distance.

3. For each cell, i, (i.e.;: row in matrix D) subtract the upper 95th
percentile (or top 200th closest cell, whichever yields fewer
connections) of distance vector (D;), then mask all negative values
to zero, thus creating a weighted local distance matrix (matrix: L).

4. To ensure that all cells are on an equivalent scale, each row in L is
divided by it'’s maximum (L;=L; / max(L,)).

5. The normalized local distance matrix L serves as the weighted
adjacency matrix for building the network for weighted Louvain
modularity.

The locally weighted adjacency matrix was subjected to Louvain
modularity as implemented in the python pip package: python-
louvain.

Sc3s clustering
Sc3s requires user specified k selection (number of clusters), with k
needing to be greater than or equal to 2. The “elbow method” defined
above was also used here to select the “best” clustering result among k
over the full range between 2 andl5 possible clusters using the
following call:
sc3s.tl.consensus(local_adata, n_clusters=[2,3,4,5,6,7,8,9,10,11,12,
13,14,15])

Scanpy’s Leiden and unweighted Louvain
Following scanpy tutorials, we implemented the leiden clustering
algorithm as follows:
sc.pp.neighbors(local_adata, n_neighbors =10, n_pcs = 50)
sc.tl.leiden(local adata)
or for Louvain modularity:
sc.pp.neighbors(local_adata, n_neighbors =10, n_pcs = 50)
sc.tl.louvain(local_adata)

Seurat’s implementation of Louvain Modularity
Counts were scaled and normalized, followed by PCA reduction to
either 50 PCs or the maximum number of valid computable compo-
nents, depending on the dimensions of the matrix after feature
selection.
sce <- Seurat::ScaleData(
Seurat::NormalizeData(
Seurat::CreateSeuratObject(counts)
)
)
sce <- Seurat::RunPCA(sce, features = features, npcs=n_pcs)
sce <- Seurat:FindNeighbors(sce, dims = I:dim(sce@reductions
[[“pca”IDI2])
sce <- Seurat::FindClusters(sce)
cluster labels <- unlist(Seurat::Idents(sce))

scDHA and scCAN implementations
Data were log2(1+counts) transformed and analyzed by scDHA or
scCAN as follows:

scDHA::scDHA(data)$cluster

scCAN::scCAN(data)$cluster

SINCERA implementation

Following the SINCERA demo below:
(https://github.com/xu-lab/SINCERA/blob/master/demo/

humanlIPF.R)
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We processed the data as suggested implementing a log trans-
formation, Z-scores, followed by a PCA reduction, as with previous
methods above:

data <- log2(1+sim@assays$data[[‘counts’]][features,])
sc <- SINCERA::construct(exprmatrix=data.frame(data), sample
vector=colnames(sim))
sc <- SINCERA::normalization.zscore(sc, pergroup=FALSE)
sc <- SINCERA::setGenesForClustering(sc, value=features)
x <- SINCERA::getExpression(
sc, scaled=T, genes=SINCERA::getGenesForClustering(sc))
)
n_pcs < -min(50,dim(x)[1]-1)
pc_res < -prcomp(x)$rotation[,1:n_pcs]
print(dim(pc_res))
This was followed by k-means clustering with the gap statistic:
gapstats <- cluster::clusGap(pc_res,
FUN = hclustForGap,
K.max =15,
B=3)
f <-gapstats$Tabl[,“gap”]
SE.f < -gapstats$Tab[,“SE.sim”]
num_clust <-cluster::maxSE(f, SE.f)
cluster res <- hclustForGap(t(x), k=num_clust)$cluster

Implementation of other feature selection algorithms

Because each feature selection algorithm expects slightly different
processing methods relative to each other (either normalized and log-
transformed, or count data), we followed author guidance in
implementation.

PyMINEr’'s overdispersion pipeline. is contained within the originally
published full PyMINEr pipeline, but is also callable within python as
follows:
feature_table = do_over _dispers_feat_select(ids = cell_ids,
ID_list=gene_ids,
in_mat = exprs)

Seurat’s overdispersion. Per author guidelines, we log-normalized the
input expression matrix and selected features as follows:

obj < - NormalizeData(CreateSeuratObject(exprs))

obj <- FindVariableFeatures(obj)

var feat <- VariableFeatures(obj)

Original Brennecke algorithm. We used the implementation of the
original overdispersion-based feature selection algorithm as imple-
mented in the M3Drop package as follows:
Brennecke HVG <- BrenneckeGetVariableGenes(exprs, fdr =
0.05, minBiolDisp = 0.5)

M3Drop. Unlike other most other feature selection algorithms,
M3Drop allows for either a pre-specified FDR, or a pre-specified per-
centage of the transcriptome to select. In our testing using the FDR
approach (which could theoretically solve that the null-dataset pro-
blem), we found that each dataset required fine tuning of this cutoff to
provide reasonable results, and in the case of full-length transcript
based approaches did not select any genes even in the full datasets,
which are known to be biologically complex. We therefore sought a
more realistic implementation that did not require manual tuning for
each dataset, and therefore implemented the “percentage” approach
within M3Drop so that a standard call yielded meaningful results
regardless of dataset, without necessitating a manual inspection for
hyperparameter selection for all datasets, which could also be seen as
tuning hyperparameters to fit our expectations of the data. The
implementation was as follows:

results  <-
suppress.plot = TRUE)
Using the genes within the results$right section as the genes with
an excess of zeros for the final selected genes.

M3DropGetExtremes(exprs, percent =0.05,

Deviance implementation
We implemented the deviance test in the HIPPO R package, using the
default deviance cutoff of 50:

subdf = preprocess_heterogeneous(counts)

features = hippo_select_features(subdf, “deviance”, 2, 50)

Zero-inflation test
We implemented the zero-inflation test in the HIPPO R package, using
the default zero-inflation cutoff of 2:

subdf = preprocess_heterogeneous(counts)

features = hippo_select_features(subdf, “zero_inflation”, 2, 50)

Details of anti-correlation feature selection algorithm

We aimed to develop an algorithm that identifies genes that have “too
many” negative correlations below a dynamically selected cutoff that
make the selected genes more negatively correlated with other genes
than one would expect from random chance. To this end we began
with a FPR of 0.001, for identifying a cutoff at which correlations
should be counted as a “discovery” (D, where more significant), or
“non-discovery” (ND, where less significant). Using a bootstrap shuf-
fled null background, in which all discoveries (D) are false, because true
positives (TP) are known to be equal to zero:

FP+TP=N(D) @

Where D is all discoveries, more significant that the cutoff.
Therefore because this is measured from a bootstrap shuffled null
background (i.e.,: TP =0):

FP=N(D) )

Using this knowledge, we created the null background of gene-
gene Spearman correlations is generated through randomly sampling
5000 genes, shuffling within-genes, such that a gene-gene correlation
plot would have its x-y pairing shuffled, calculating pairwise Spearman
correlations.

Definitions. E,: the original expression matrix
rand: an integer vector of the length 5000 for the random samples
within the space of 1..n, where n is the number of genes
E.: The random subset matrix that is permuted as defined below:
For i..N(rand):

E;= permute(Eo,rand[l])

Where E; provides a N(cell) x N(rand) matrix, which is a within-gene
bootstrap shuffled version of a subset of the transcriptome, therefore
unpairing the gene-gene pairs for measuring the null background of
Spearman correlations.

In our testing, using a greater number of randomly selected genes,
N(rand), for the permutation based null-background did alter the null-
distributions, as these distributions were stable at this sampling depth,
and did not notably change the selected cutoffs. Note that the method
of rank transformation for Spearman correlation effects the outcome;
here we perform dense-rank transformation. Non-dense rank trans-
formations frequently result in large gaps within the distributions
because of ties. This is particularly important with count-based data-
sets where ties are frequent.
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The null Spearman background matrix (B) was the symmetric
5000 x 5000 comparison of this sample (5000 choose 2
combinations).

For i =1..N(rand) and j =1..N(rand):

B, = Spearman (E,, »Er, j)

Next, this B background matrix, of null Spearman rho values, is
filtered for only values B;; < O, thus creating a negative correlation null-
background; this is needed because the null background for values
B;;> 0 and values B;; < O follow different distributions (Supplementary
Fig. 2c), indicating the necessity to measure them independently. Self-
comparisons and duplicate comparisons were also removed.

For i=1..N(rand), and j =i+ 1..N(rand).

b= (B, € B[B;; <0li>))

Conceptually, this filtering is also important because the esti-
mated number of FP for a given gene i is dependent on the number of
genes that are actually randomly distributed, or truly correlated. For
example, gene X is co-regulated within a module of 2000 genes, while
gene Y is not genuinely correlated with any other genes. Given that the
number of genes is static and zero sum, this true positive co-regulation
removes those genes from possible FP negatively correlated genes.

This null background vector (b) is used to calculate an the cutoff
(C,,eg) that most closely matches the desired FPR (default=1 in 1000
FPs), with a discovery considered as a Spearman rho value < C,,, in the
gene-gene correlation matrix (S) calculated from the unshuffled ori-
ginal expression matrix (E,), This cutoff is used for the estimated FDR
for the original intact unshuffled dataset.

Given that:
FP
- 3
FPR FP+TN ©)
and
NMb)=FP+TN 4)

Because TP =FN = 0, given that b was generated from a bootstrap
shuffled null. We therefore find that:

FP

FPR= 35

S
and therefore

N(b) « FPR=FP 6)

Therefore, to identify the appropriate cutoff (C,,), that yields the
FPR( = 1e-3 by default), we simply take the Spearman rho value of b that
is located within the sorted background vector that gives the ratio of
FPs to true negatives.

byore =Sort(b) )

Such that for i =1.N(by,.) — 1, Byypp i < Dsore 41

We then calculate the C,,, cutoff, but taking the value at the index
that gives the expected ratio of FPs to true negatives as determined by
the FPR hyperparameter (default = 1e-3)

C

neg = bsart,wzJ (8

Next, we use this empirically determined cutoff (C,,.g), applying it
to classify “discoveries” of negative correlations in the correlation
matrix S as calculated from the original, non-shuffled dataset (E,).

Where a discovery is defined as a Spearman rho value S;; less than the
Cheg cutoff.

Again it is important to note two things: (1) the null distribution of
Spearman correlations, are in fact two separate distributions con-
catenated around zero, for the null distribution of rho values <0, and
the null distribution of rho values > 0 (Supplementary Fig. 2c); and (2)
that variable abundance of True Positives within the positive correla-
tion domain will decrease the total number of comparisons that fall
within the negative correlation domain of these distributions; these
two distributions are therefore in competition with one another,
meaning that they must be quantified independently. For these rea-
sons, when applying the empirically measured cutoff (C,.,) from the
shuffled transcriptome, we must apply it only to the correlations falling
below zero.To apply this cutoff (C,,) to the original expression matrix
(E,), we first calculate the symmetric gene-gene Spearman rho
matrix (S).

Next, the number of total (T) Spearman rhos values < O within S is
tabulated for the application of our cutoff (C,,):

Ti=N(S;; € SIS;;<0) )

For i=1..n, where n is the number of genes.
Note also, that T; sums to the total number of discoveries (D) and
non-discoveries (ND).

T;=N(D;)+N(ND;)=TP+TN+FP+FN (10)
Where:
N(Di):N(S,-,, c 5\siJ<c,,eg) —FP+TP a1
and
N(ND,-)=N<S,-J esls;;<0 siJ>cneg)=FN+ TN 12)

Further, the discoveries are comprised of both FP and true posi-
tives (TP), however, which individual values within the discovery class
is a FP or TP is unknown. Using the FPR however, we can estimate the
number of expected FPs given the total number of comparisons <0 for
the given gene (T;). In other words, if this gene were random in its
negative correlations, then only a specific number of FPs would be
expected (FP;), using Cpeg as a cutoff.

FP,=T,« FPR 13)
Therefore, with FDR defined as:
FP
FDR= (FP+TP) 1)

We can estimate the FDR for each gene, determining if it has an
over abundance of negative correlations compared to what is expec-
ted from the null distribution:

as)

We then select genes that have a > 15x excess in discoveries rela-
tive the expected number of FPs under the null distribution assump-
tion. This corresponds to an estimated FDR=0.066 (1/15). This yields
the set of all excessively negatively correlated genes (A):

A={gene, < genes|FDR;<0.066} (16)

Lastly, given that spurious positivity is still possible and even
expected, we add one last layer of protection against false discoveries.
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The positive/negative status of a single gene likely does not define a
truly “novel subtype” - particularly in a technique such as single-cell
-omics where stochastic dropout from random sampling is expected.
We therefore apply an additional filter from the premise that the genes
whose expression patterns separate meaningful populations should
also be positively correlated with other genes that are following similar
regulatory patterns. To select this population of genes, we find genes
that have greater than 10 positive correlations above the positive
correlation cutoff (C,,), as calculated similarly to (C,,) as described
above.

M= {(gene; c genes|N(S; jIS; j > Cposli #j) > 10} 17)
The final included features are the intersect of A and M:
F=ANM (18)

Overall, this means that genes must contain both an excess of
negative correlations, and be a member of a “module” of at least 10
genes that move in concert.

Recursion benchmarks
An initial run of locally weighted Louvain modularity was performed,
then the given dataset was subset to contain only the cells of a given
cluster in the prior round of clustering. Next, feature selection and
locally weighted Louvain modularity was applied again, recursively
until either each cell was called its own “cell-type”/cluster or produced
“cell-types”/clusters with <5 cells.

Circular recursion graphs were displayed using networkx®, with
layout determined by the graphviz_layout(prog = ‘twopi’) layout®.

In silico recursive clustering benchmark

Four clusters were simulated using Splatter’, and all algorithms were
allowed to recursively select features, which were then subjected to
locally weighted Louvain modularity until one of the following condi-
tions were met: no features were selected, the clustering algorithm
only found a single cluster, or the results of clustering formed groups
of 5 or fewer cells.

Real-world recursive clustering benchmark

The above described recursion procedure was applied to the pre-
viously released mouse heart scRNAseq dataset”, and human PBMC
dataset®® for UMI based technologies, and mouse hippocampus single
nucleus RNAseq"” and human dendritic cell/monocyte*® datasets were
used for full length transcript sequencing based approaches. Each
dataset was normalized as described above and is available in the
repository site containing this benchmark: https://bitbucket.org/
scottyler892/anti_correlation_vs_overdispersion in the data folder.
The same recursive clustering procedure was followed as described for
the in silico recursion benchmark above.

Feature selection accuracy based on Splatter and Sergio
simulations

For both simulation paradigms, we simulated 4, 6, 8, and 10 clusters.
2500 cells were simulated with 10,000 genes, of which 2000 were
intended to be differentially regulated across clusters. Once simula-
tions were completed, the datasets were downsampled down to 95% of
the cell with the lowest total counts in the given dataset, using the
pyminer_norm python package"’.

Splatter simulations were generated using the bin/simulate_data.R
with the above described clusters, cells, and gene parameters. SERGIO
simulations were generated from the bin/generate_sergio_sim.py
script, which was called from the bin/simulate_data.R file. For each
cluster, a single “master-regulator” gene was used to induce high
expression of its child nodes in the GRN. The non-differentially

regulated genes were random negative binomial distributions added
to the network with the np.random.negative_binomial function.

Similar to performing pathway analyses, a proper background list
of genes is necessary for quantifying enrichment. For example there
may be a simulated low-expression gene that was “differentially
expressed” in ground-truth, however, was only expressed in two cells
after simulation of the low expressed gene. In this situation, this gene it
would not be realistically possible to “detect” this gene as differentially
expressed even if ground truth clusters were known. Therefore to
generate a background of detectably DEGs, were performed differ-
ential expression analysis by 1-way ANOVA (aov function) using the
known ground truth cluster labels. This gives us a list of detectably
DEGs to use as the ground truth desired genes for feature selection,
while non-detectably differentially expressed were all treated as not
desired for selection. This parallels pathway analysis in that, if a gene is
not detectably expressed, it should not be included in the custom
background.

Anti-correlation-based feature selection performance across
various hyperparameters

To assess performance using different selections of the anti-
correlation algorithm’s FPR and FDR hyperparameters, we assayed
three FPRs: 0.1, 0.01, 0.001 (0.001 default) and 6 FDRs: (0.99, 0.5, 0.25,
0.066, 0.1, 0.01) (0.066 is the default). Benchmarking in this context
requires a ground truth, leading us to use the Splatter and SERGIO
simulations described above, again testing for selection of detectably
DEGs between clusters as the desired features.

The metrics used to quantify clustering efficacy of feature selec-
tion algorithm were: FPR, TNR, true positive rate, FNR, precision, FDR,
false omission rate, accuracy (ACC), balanced accuracy (BA), F1-score,
and MCC. These were implemented within the bin/fdr_sweep.py script
within the benchmarking repository.

This hyperparameter sweep was also applied to the Splatter
simulated null datasets (n = 20; 1 cluster). We quantified the number of
selected genes, as well as classifying whether the algorithm “passed”
the null-test by returning zero genes; these script for this benchmark is
located in bin/param_on_null.py file with, results shown in Supple-
mentary Fig. 3b, c.

Pancreatic datasets for feature selection

The seven pancreatic datasets®*>° used for feature selection efficacy
benchmarking were processed as previously described’; the available
post-processing datasets were used as-is. These datasets are also now
re-packaged in the data zip contained within the benchmark reposi-
tory. To assess efficacy, three primary metrics were used via gProfiler
analysis using the human protein atlas “HPA” pathways which indicates
genes are enriched for certain tissues and sub-tissue niches**?. For
each dataset, a custom background was used, comprised of the genes
expressed in the given dataset. For each analysis, the HPA results were
filtered to include only the pancreatic tissues and niches, the pan-
creatic HPA pathway that was the most significant was counted as a
method’s best pancreatic match. The -loglO(p-values), precision, and
recall for this best match was used for comparisons. To adjust for the
wide range and skewed distributions in significance across datasets
and methods, we rank transformed the -loglO(p-values); precision and
recall however are all on a scale between 0 and 1, and were therefore
analyzed directly. Significance was determined with the aov and
TukeyHSD functions to measure the main effects and post-hocs
respectively. The aov function was called with the formula: metric ~
method + dataset.

Tabula Muris dataset

The senescent Tabula Muris dataset® was used to demonstrate the
scalability of our analytic pipeline. This dataset was previously filtered
to contain only cells with >2500 UMI counts. We therefore
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downsampled the dataset such that all cells contained 2500 UMI, and

log2 transformed it for analysis. The downsampling process was per-

formed using the bio-pyminer-norm package that is pip installable:
python3 -m pip install bio-pyminer-norm

The process of downsampling is reported in detail at the reposi-
tory website: https://bitbucket.org/scottyler892/pyminer_norm

Subclustering rounds were first feature selected with the anti-
correlation package that we released here, using default parameters:

from anticor _features.anticor _features import

anti_cor table = get_anti_cor_genes(exprs, feature_ids, species =
“mmusculus”)

Locally weighted Louvain modularity was used for clustering as
described above. Note that while the default functionality of our fea-
ture selection package automatically removes ribosomal, mitochon-
drial, and hemoglobin related genes, for fair comparison with other
methods, these genes were left in for possible selection when com-
paring to other algorithms. This can be customized using the pre_-
remove_pathways argument. The default removal list are genes
contained in the following pathways (all related to ribosomal, mito-
chondrial, and hemoglobin):

“G0:0044429”,“G0:00063907,“G0O:0005739”,“GO:0005743"
G0:0070125”,“G0:0070126",“G0O:0005759”,“G0:0032543" -
G0:0044455”,“G0O:0005761”,“G0O:0005840”,“G0O:0003735”,“-
G0:0022626”,“G0:0044391”,“G0O:0006614”,“GO:0006613",
G0:0045047”,“G0O:0000184",“G0:0043043",“G0O:0006413”,“-
G0:0022613”,“G0O:0043604”,“G0:0015934”,“G0O:0006415”,
“G0:0015935”, “G0:0072599”,“G0:0071826",“G0:0042254” “GO:
00422737,“G0O:0042274”,“G0O:0006364”,“G0:0022618”,“-
G0:0005730”,“G0O:0005791”,“G0:0098554”,“G0:0019843",“GO:
0030492”

Alternatively, if the user whishes to exclude specific features,
these can be included in the pre_remove_features list argument; how-
ever, this was left empty for all of the work presented here.

Tabula Sapiens dataset demonstrating Simpson’s paradox

The muscle samples from the Tabula Sapiens were subset for only
donor TSP2 as this sample was analyzed by 10X Genomics’ Chromium
and Smart-seq2, thus providing technical replicates, therefore remov-
ing the possibility of biologically meaningful differences between
samples, leaving only the effect of technological differences as a
confound to demonstrate that this effect interferes with detection of
correlation structures. We next applied our anti-correlation-based
feature selection approach (with default parameters), to the subset of
cells from each technology alone, quantifying all cross-feature corre-
lations within a technology. Then we performed the same procedure in
the combined dataset. We selected candidate Simpson’s paradox
gene-pairs as those with negative Spearman rho correlations in both
datasets when assayed separately, but with a positive correlation when
assayed jointly. As an example, we show the scatterplots of TPT1 and
HSPA1A (Supplementary Fig. 4).

1-million PBMCs
A dataset of 1-million PBMCs was downloaded in mtx format from
Parse Biosciences as suggested by the company’s website®:

https://support.parsebiosciences.com/hc/en-us/articles/
7704577188500-How-to-analyze-a-1-million-cell-data-set-using-
Scanpy-and-Harmony

We then performed QC measuring the total counts, total mito-
chondrial counts, total counts mapping to MALATI and NEATI (both
nuclear long non-coding RNAs). Cells retained were those which had
In(total-counts)>6.8 and <9.25, percent mitochondrial counts >0.05
and <8.0, and percent nuclear IncRNAs >1.75 and <8.0. These cutoffs
were selected interactively with plotting, such that any outlier popu-
lations were removed, keeping only cells in the central distribution of
these parameters, in a manner similar to selecting populations in flow

cytometry. This process was performed using the bin/pbmcs/
do_qc.py, bin/pbmcs/plot_qc.py, and bin/pbmcs/do filter.py scripts in
this repository. Included cells were normalized using the previously
described relative log expression method®, making use of TMM scal-
ing factors®, as implemented in the bin/pbmcs/do_rle.py script in this
repository.

Anti-correlation based feature selection was performed using
default parameters, similar to the above described Tabula Muris
dataset analysis. Genes were then scaled and clipped using the scanpy
functions sc.pp.scale(adata, max=10) (default suggestion by scanpy
authors). The first 50 principal components (PCs) were taken using the
scanpy sc.tl.pca(adata, svd_solver="arpack”, n_.comps=50). This PC
matrix was then saved as an hdf5; the Euclidean distance on these PCs
were taken using the bio-pyminer package’® with the following com-
mand line call:

python3 -m pyminer.mat_to_adj_list -euclidean_dist -hdf5 out
-transpose -skip_spearman -hdf5 -i clustering/PCA.hdf5 -ids clustering/
pc_names.txt -col_ids clustering/columns.txt -block_size 40000

Clustering was then performed using locally weighted Louvain
modularity as described above within the bin/pbmcs/do_louvain.py
script, using the pyminer_clust_funcs.do_louvain_primary_clustering
function, feeding in the Euclidean distance matrix above.

Coarse grain cluster name identification was facilitated by com-
parison of average transcriptome signatures with the average tran-
scriptome signatures of a reference PBMC dataset™. This was
performed by performing Spearman correlations on the subsets of the
mean transcriptomes, only including the features that were selected in
our original analysis of the 1-million PBMC datasets. The displayed
heatmap shows a linear-normalized (between zero and one) for each
cluster in question from the 1-million PBMC dataset, thus highlighting
the populations for which the average signature was most correlated
to within the reference. This analysis is contained in the bin/pbmcs/
get refs.py file of the benchmark repository. Additional labeling of
clusters was performed manually based on known marker genes of the
noted populations. The code for these exploratory analyses are loca-
ted in the bin/pbmcs/additional_sub_clust.py, bin/pbmcs/pbmc_a-
bundance.py, and bin/pbmcs/more_plots.py, files within the
benchmark repository.

In several cases however, particularly with the classical mono-
cytes, there were more than one cluster from the 1-million PBMC
dataset that mapped to a single reference, thus requiring greater
investigation of marker genes to identify the biological signal differ-
entiating these clusters. Manual inspection of Wilcoxon differential
expression between several clusters showed that in some cases, clus-
ters were split primarily based on sequencing depth; this was deter-
mined by one cluster not showing any (or few such as MALATI)
significant up-regulated genes compared to the other. These clusters
were then manually merged into single populations: (5,8), (6,9), (12,21),
and (13,23,25). These analyses are contained in the bin/pbmcs/mor-
e_plots.py script. Wilcoxon DEG analysis was performed in scanpy via
the sc.tl.rank_genes function®.

Calculating subject pairwise PMD, and residuals
PMD was calculated using the “pmd” function in the pypercent_max_-
diff python package®’, with source-code available below:

https://bitbucket.org/scottyler892/pypercent_max_diff/src/
master/

The PMD calculation call was as follows:

pmd_res = pmd(cluster_by_subject_contingency_table)

in which the cluster by _subject_contingency_table contains the
clusters in rows and subjects in columns.

The pairwise PMD results comparing all subjects (Fig. 3d) to each
other is contained in the pmd_res.post_hoc data frame.

The standardized residuals (Fig. 3f) was contained in the
pmd_res.z_scores data frame. These values were used for differential
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abundance testing as described in the Statistics and Reproducibility
section.

Spring embedding displays

Given that many low dimensional projections can introduce inac-
curacies when depicting cell-cell distances®, we chose to utilize spring
embeddings are only intended to represent the undlerying kNN used
for clustering, rather than the global or local distances between cells. A
10% subset of million cells were selected for display for computational
efficiency. Within each cluster, the top 10% of cells were used as ranked
by highest page-rank®, as these are the most central to the cluster.
Page rank was calculated using the networkx “pagerank” function®.
Spring embedding plots were generated by the pyminer.pymi-
ner_cell_graph_plotting.get_pos call as follows:

G =get_pos(G_sub,pos_iters =1)

Simulations for clustering accuracy

Simulations were performed with both SERGIO and Splatter with the
full sweep of clusters and iterations as described above. To system-
atically vary the degree of signal to noise, we either included all true
DEGs (100% signal), or randomly excluded 50% or 80% of true DEGs,
leaving a total of 20%, 50%, or 100% of genes contributing to signal,
while in all cases, non-DEGs (noise) were all included. To assess cluster
performance, we compared cluster results with the ground truth
cluster annotations from the simulation. Benchmarking was per-
formed using adjusted Rand index and normalized mutual information
as implemented in scikit-learn package®, while purity and reverse
purity functions are contained in the bin/pbmcs/pbmc_abudance.py
script in the main repository for this work.

Statistics and reproducibility

T1D over/under abundance. A general linear model was used to test
significance on the PMD standardized residuals, comparing T1D to
control groups for differing residual z-scores between disease groups,
using total counts as a covariate using the statsmodels package with
the statsmodels.formula.api function, with R-style formatting:

smf.OLS(function ="clust_abudnace_Z ~ disease _status + total_counts”)

All p-values were all FDR corrected using the Benjamini-Hochberg
correction, from the statsmodels package®® with the statsmodels.-
stats.multitest.fdrcorrection function.

Simulations for accuracy. For displaying metric values, we regressed
out the effects of non-displayed variables using the statsmodels ols
function as described above, using the fit.resid_pearson residuals for
display. For calculating final statistics however, a joint model of all
variables was used as shown below:

<cluster_metric> ~ num_clust + sim + percent_signal
+ cluster_method + fs_method

Resultant p-values were all Benjamini-Hochberg corrected for
multiple comparisons using the statsmodels statsmodels.-
stats.multitest.fdrcorrection FDR funcion®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The TID and health control scRNAseq re-analysis dataset, and the
scripts used to generate them are available at figshare https://doi.org/

10.6084/m9.figshare.22651825. The Tabula Muris Senis dataset is
available under the accession GSM4505404. The original dataset is
available from the original publication®® and the Parse Bioscience
website [https://support.parsebiosciences.com/hc/en-us/articles/
7704577188500-How-to-analyze-a-1-million-cell-data-set-using-

Scanpy-and-Harmony]. All other datasets are distributed within the
data.zip file within the primary repository: https://bitbucket.org/
scottyler892/anti_correlation_vs_overdispersion/. All additional dis-
played processed data in this study are provided in the Supplementary
Information/Source Data file. Source data are provided with this paper.

Code availability

All code used for implementing the anti-correlation-based feature
selection approach is available as a stand-alone package: https://
bitbucket.org/scottyler892/anticor features and is also pip installable:
python3 -m pip install anticor_features. All code for running simula-
tions and comparisons used in this study are available at: https://
bitbucket.org/scottyler892/anti_correlation_vs_overdispersion/. This
benchmarking code is also availble on figshare® https://doi.org/10.
6084/m9.figshare.23571921.
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