Table 1 The comparison results of hardware implementation for neural network applications using memristive crossbar arrays

From: Purely self-rectifying memristor-based passive crossbar array for artificial neural network accelerators

 

This work

Ref. 57.

Ref. 36.

Ref. 30.

Ref. 31.

Ref. 56.

Array configuration

1 R (SRC)

1S-1R

1T-1R

1T-1R

1T-1R

1T-1R

Array density

32 × 32 (1 kb)

9 × 9 (<1 kb)

128 × 64 (8 kb)

54 × 108 (~5 kb)

128 × 16 (2 kb)

128 × 64 (8 kb)

Array yield (%)

100

100

98.9

Not available

99

Not available

Energy efficiency (TOPS/W)

4.35

Not available

115

1.37

11

77.4

Application

MNIST classification

Pattern classification

MNIST classification

Pattern classification

MNIST classification

MNIST classification

Accuracy

100

100

89.9

94.6

96.19

92.3

Integrated device stack

Ru/HfSiOy/

Al2O3/HfSiOx/TiN

Pt/Ru

/TiO2

/RuO2/Pt

/HfO2

/TiN

Ta/HfOx

/Pd

Pd/

WOx/Au

TiN/TaOx

/HfOx

/TiN

Pt/TaOx

/Ta