Table 1 Model parameters

From: Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure

Parameter

Value

Units

Description

Ninp

120

Number of neurons in external network

N

120

Number of neurons in hippocampal network

Nact

2

Number of neurons in action network

\({dx}/{dt}\)

1

dv (arb.)

Velocity of agent in maze

L

100

dx (arb.)

Length of maze

σ

5

dx (arb.)

Standard deviation of input Gaussians

τe, τea

10, 20

dt (arb.)

Time constants of eligibility traces

τav

40, 10

dt (arb.)

Time constants of apical compartment, action neurons

σv

N(0,0.75)

Noise, action neuron activity

σp

N(0,5)

Noise, policy selection

ma, mβ

1, 5

Stretch coefficient, activation function

ca, cβ

5, 1.4

Offset, activation function

\({{{t}}}_{{{{{\mathbb{choice}}}}}}\)

60

dt (arb.)

Time of turn choice

prand

10

%

Chance of random turn

ntrials

4000

Number of trials

\({{{{{r}}}}_{{{{0}}}}{{{,}}}{{{r}}}}_{{{{q}}}}\)

0.5,0.6

Reward expectation

\({{{t}}}_{{{\mathbb{plateau}}}}^{{{{i}}}}\)

i

dt (arb.)

Time of induced plateau for neuron i

Mik

δik, U(0,\({1{{{{{\rm{e}}}}}}}^{-4}\)) (S2 only)

Weight matrix, input layer to representation layer. Identity matrix (fixed) for all but Supplementary Fig. 2)

Wij

U(0,\({1{{{{{\rm{e}}}}}}}^{-4}\))

Initial values, recurrent weight matrix, representation layer (before learning). Uniform distribution between 0 and \({1{{{{{\rm{e}}}}}}}^{-4}\)

Qli

U(0,\({1{{{{{\rm{e}}}}}}}^{-4}\))

Initial values, weight matrix, representation layer to action layer (before learning). All initial values the same

Iml

\(\left(\begin{array}{cc}0 & -0.125\\ -0.125 & 0\end{array}\right)\)

Recurrent weight matrix, action layer (fixed)

Mmax

0.75

Upper bound for input weight (Supplementary Fig. 2 only)

Wmax

0.15

Upper bound, recurrent weights

Qmin,Qmax

−0.15, 0.15

Lower and upper bounds, action weights

\({{{{{\eta }}}}}^{{{{{{\boldsymbol{W}}}}}}}\), \({{{{{\eta }}}}}^{{{{{{\boldsymbol{Q}}}}}}}\), \({{{{{\eta }}}}}^{{{{{{\boldsymbol{M}}}}}}}\)

0.0006, 0.0003, 0.15

Learning rates, recurrent weights, state-action weights and input weights (input learning for Supplementary Fig. 2 only)

\({{{{\lambda }}}}_{{{{w}}}}\)

0.025

Decay constant, recurrent weights