Table 2 Named entity recognition and relation extraction scores for three tasks in materials science using models with a JSON output schema
From: Structured information extraction from scientific text with large language models
Task | Relation | E.M. Precision (GPT-3) | E.M. Recall (GPT-3) | E.M. F1 (GPT-3) | E.M. Precision (Llama-2) | E.M. Recall (Llama-2) | E.M. F1 (Llama-2) |
---|---|---|---|---|---|---|---|
Doping | host-dopant | 0.772 | 0.684 | 0.726 | 0.836 | 0.807 | 0.821a |
General | formula-name | 0.507 | 0.429 | 0.456 | 0.462 | 0.417 | 0.367 |
General | formula-acronym | 0.500 | 0.250 | 0.333 | 0.333 | 0.250 | 0.286 |
General | formula-structure/phase | 0.538 | 0.439 | 0.482 | 0.551 | 0.432 | 0.47 |
General | formula-application | 0.542 | 0.543 | 0.537 | 0.545 | 0.496 | 0.516 |
General | formula-description | 0.362 | 0.35 | 0.354 | 0.347 | 0.342 | 0.340 |
MOFs | name-formula | 0.425 | 0.688 | 0.483 | 0.460 | 0.454 | 0.276 |
MOFs | name-guest specie | 0.789 | 0.576 | 0.616 | 0.497 | 0.407 | 0.408 |
MOFs | name-application | 0.657 | 0.518 | 0.573 | 0.507 | 0.562 | 0.531 |
MOFs | name-description | 0.493 | 0.475 | 0.404 | 0.432 | 0.411 | 0.389 |