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Light-induced switching between singlet and
triplet superconducting states

Steven Gassner 1 , Clara S. Weber 1,2 & Martin Claassen 1

While the search for topological triplet-pairing superconductivity has
remained a challenge, recent developments in optically stabilizing metastable
superconducting states suggest a new route to realizing this elusive phase.
Here, we devise a testable theory of competing superconducting orders that
permits ultrafast switching to an opposite-parity superconducting phase in
centrosymmetric crystals with strong spin-orbit coupling. Using both micro-
scopic and phenomenological models, we show that dynamical inversion
symmetry breaking with a tailored light pulse can induce odd-parity (spin
triplet) order parameter oscillations in a conventional even-parity (spin sing-
let) superconductor, which when driven strongly can send the system to a
competing minimum in its free energy landscape. Our results provide new
guiding principles for engineering unconventional electronic phases using
light, suggesting a fundamentally non-equilibrium route toward realizing
topological superconductivity.

Topological superconductors are elusive unconventional super-
conducting phases1–3 that can host topologically-protected Majorana
boundary modes and non-Abelian vortex excitations4,5, which are of
fundamental as well as tremendous practical interest as a route
towards fault-tolerant quantum computing6. Spin-triplet super-
conductors with finite angular momentum Cooper pairs7,8 have long
been regarded as particularly promising candidates, with degen-
eracies between nodal order parameters expected to favor a chiral
topological superconducting state9. However, spin-triplet pairing
remains rare in nature and signatures of chiral topological order
remain inconclusive, despite several candidate compounds such as
Sr2RuO4

10–12 or UTe2
13,14 being placed under exceptional experimental

scrutiny.
At the same time, a series of pioneering pump-probe experiments

have established irradiation with light as an alternative and funda-
mentally non-equilibrium tool for interrogating and manipulating
superconducting phases on ultrafast time scales, ranging from time-
resolved probes of Higgs15–18 and Leggett19–22 mode oscillations in
conventional and multi-gap superconductors to the light-induced
enhancement or induction of long-lived superconducting signatures in
the fullerides23–25. With the underlying mechanisms still under sub-
stantial debate, these observations coincide with broader

experimental26–29 and theoretical efforts30–34 in exploring thermal and
non-thermal pathways to suppress or control competing ordered
phases with light.

These results immediately raise the tantalizing question of
whether elusive topological spin-triplet superconducting states can
instead emerge asmetastable phases upon irradiating a conventional
superconductor with light. Consider an inversion-symmetricmaterial
with a conventional s-wave superconducting phase that preempts a
closely competing topological spin-triplet pairing instability in
equilibrium. In addition to the usual Higgs mode, such a systemmust
necessarily retain additional amplitude modes in alternative pairing
channels called Bardasis-Schrieffer (BS) modes35–37, which include
odd-parity amplitude modes corresponding to spin-triplet pairing.
These modes can lie below the gap in the case of closely-competing
orders38 provided that long-range Coulomb interactions do not push
the mode into the pair-breaking continuum39. While this mode
remains decoupled in equilibrium from conventional Higgs oscilla-
tions in centrosymmetric materials, a tailored ultrafast light pulse
can transiently break inversion symmetry and combine with strong
spin-orbit coupling to induce odd-parity amplitude oscillations in a
conventional superconductor. At a moderate fluence, the material
can refuse to relax back to its equilibrium phase, instead becoming
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trapped in a metastable spin-triplet superconducting phase, with
thermalization to the equilibrium spin-singlet phase suppressed due
to restored inversion symmetry after the pulse.

In this work, we illustrate this mechanism as both a new route
towards engineering spin-triplet and topological superconducting
phases out of equilibrium aswell as a generic probe of competing odd-
parity instabilities in conventional superconductors. The protocol is
summarized in Fig. 1. We first identify ultrafast and two-color pulses as
two complementary routes to dynamically break inversion symmetry,
and demonstrate using a minimal model of quasiparticle dynamics
that they can conspire with spin-orbit coupling to transiently induce
odd-parity order parameter oscillations in a system with even-parity
order. We then derive an effective time-dependent Ginzburg-Landau
theory dictated via symmetry and present an explicit switching pro-
tocol for driving the system to settle into a metastable odd-parity
superconducting state. Remarkably, wefind that the coupling between
equilibrium conventional s-wave order and a competing spin-triplet
order parameter necessarily scales linearly with the field strength, in
contrast to ordinary Higgs mode excitations which scale quadratically
with the field. We illustrate the proposedmechanism for light-induced
switching to a triplet superconductor by the example of two different
lattice models, one of which features a metastable chiral topological
superconducting state, and discuss implications for real systems such
as dilute-doped 1T′WTe2. Our results reveal new guiding principles for
engineering metastable unconventional superconducting states
using light.

Results
Dynamical inversion symmetry breaking with light
While conventional centrosymmetric superconductors typically
comprise local spin-singlet Cooper pairs with even parity and net
spin S = 0, spin-triplet superconductivity entails odd-parity pairs with
net spin S = 1 and three allowed values ms = 0, ± 1 for the spin com-
ponent. Spin and parity are linked by necessity; since the combina-
tion of inversion and spin-exchange has the net effect of exchanging
two fermions, even-parity pairs must be singlets while odd-parity
pairs must be triplets. Coupling singlet and triplet orders therefore
immediately requires the breaking of both inversion and SU(2) spin
rotation symmetries. The latter is readily broken in superconductors

with strong spin-orbit coupling such as heavy-fermion compounds.
Most notably, monolayer 1T0 WTe2 has been observed to host
both a quantum spin hall insulating phase40–43 due to strong spin-
orbit coupling and a proximal superconducting phase for dilute
doping42 with a rich array of predicted competing superconducting
states with different pairing symmetries44, rendering it a prime can-
didate to search for an out-of-equilibrium topological super-
conducting phase.

In contrast, inversion-breaking turns out to be more subtle,
requiring careful consideration of the optical driving scheme. A simple
monochromatic light wave is not sufficient, since it preserves a more
general dynamical inversion symmetry defined by a combination of
parity and time translation by half the wave period T,

r ! �r, t ! t � T=2: ð1Þ

This dynamical symmetry can be strongly broken in two ways: (a) via
the envelope of an ultrafast pulse, or (b) via a two-color pulse
EðtÞ= E1 cosðω1tÞ+ E2 cosðω2tÞ if the two constituent frequencies are
not odd harmonics ω1 = pω0,ω2 = qω0 of a common frequency ω0

45–47.
Dynamical symmetries have been extensively studied as a means of
high-harmonic generation in atomic and molecular systems48–50 and
are more recently being used for optically controlling solids51–54.

We first illustrate the ramifications of breaking these two sym-
metries for a minimal mean-field model of a centrosymmetric honey-
comb lattice superconductor
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with effective attractive local (U) and nearest-neighbor (U 0) interac-
tions. Importantly, the inclusion of spin-orbit coupling λ via spin-
dependent next-nearest-neighbor hopping with phases νij= ± 1 for left
or right turns55 reduces spin rotation symmetry to U(1), permitting a
coupling between singlet and ms =0 triplet

pairs ∼ ðĉ�k"ĉk#∓ĉ�k#ĉk"Þ=
ffiffiffi
2

p
.

A standard BCS mean-field decoupling of the interaction in the
Cooper channel introduces the superconducting gap function
ΔαβðkÞ=

P
i f

i
αβðkÞΔi with sublattice indices α, β which can be decom-

posed into pairing channels
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classified in terms of the irreducible representations of the crystal
point group with form factors f iαβðkÞ and channel-projected interac-
tions vi that depend on U,U 0 [see Methods].

Suppose now that a conventional s-wave superconducting phase
in equilibrium is irradiated with a weak but wide pump pulse, which
couples to electrons via the Peierls substitution with a vector
potentialA(t) polarized in the x direction. The pulse is parameterized
via the dimensionless field strength jAj= ea0E0=_ω where E0, ω and
a0 denote the electric field amplitude, frequency, and the lattice
constant, respectively. For numerical expediency, in Fig. 2 we use
effective interactions U =U 0 = � 2 and β = 10, in units of hopping.
Strikingly, the onset of px-wave order parameter oscillations for weak
light pulses is linear in the field strength, shown in Fig. 2a–b for a two-
color pulse, and in stark contrast to ~ A2 scaling for ordinary ampli-
tude mode oscillations. Furthermore, the amplitude of px order
scales linearly with λ, completely vanishing in the SU(2) symmetric
limit λ = 0. To illustrate the role of inversion symmetry breaking,
Fig. 2c and d depict the order parameter response to a two-color

1
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Optical pulse

Free energy

Equilibrium state

Metastable state

Fig. 1 | Light-inducedmetastable triplet superconductors. (1) The system starts
in a superconducting phase that is even-parity (singlet-pairing) in equilibrium. (2)
An optical pulse dynamically breaks inversion symmetry, driving the system
toward a local minimum in its free energy landscape that comprises multiple
competing order parameters. (3) The system relaxes into a metastable super-
conducting state that is odd-parity (triplet-pairing). (4) Since inversion symmetry
is restored after the pulse, equilibration back to the opposite-parity state is
suppressed.
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pulse with 2: 1 and 3: 1 frequency ratio, respectively. A 3: 1 frequency
ratio preserves a dynamical inversion symmetry [Eq. (1)] with time
translation t→ t + π/ω; p-wave order oscillations are consequently
dramatically suppressed at short times. Conversely, broken dyna-
mical inversion symmetry efficiently excites odd-parity order already
for short times [Fig. 2c]. Note that, due to the nonlinear nature of the
quasiparticle equations of motion, these heuristics only apply for
time scales of only a few cycles of the pump pulse. Central to efficient
switching to triplet order, Fig. 2e reveals a BS mode resonance for
subdominant p-wave order parameter oscillations that crucially lies
below the ordinary Higgs mode and pair-breaking excitations.
Spectroscopic observation of this mode would immediately provide
an experimentally accessible handle to probe the existence of a
subdominant pairing channel, and would importantly suggest that
stronger ultrafast excitation of this mode can potentially nudge the
system well beyond linear order parameter oscillations and into a
metastable competing phase with triplet pairing.

Optical switching to a metastable state
Insight into whether strongly driving a triplet BS mode can allow for
light-induced switching to a metastable odd-parity superconductor
can be readily gleaned from an effective time-dependent Ginzburg-
Landau (TDGL) description, which encodes the coupling of multiple
order parameters to light and importantly accounts for relaxation. In
this picture, a suitably tailored pulse liberates the superconducting
order parameter from its global free energy minimum and brings it
close enough to a proximal local minimum that it relaxes into a
metastable opposite-parity phase. A minimal Lagrangian that
describes this process reads

L= � Δi Γð2Þij ∂2t + Γ
ð1Þ
ij ∂t

� �
Δj � βF ðΔi,∇Δi,βÞ: ð4Þ

and includes a kinetic contribution with damping coefficients Γð1Þij and
inertial coefficients Γð2Þij . The equilibrium free energy F is taken to
generalize the usual Ginzburg-Landau action to N order parameters
that crucially include subdominant orders not stabilized in

equilibrium, and formally reads

βF =AijΔiΔj +
1
2
BijmnΔiΔjΔmΔn

+ CμijΔi∇
μΔj +Dμν

ij ∇
μΔi∇

νΔj :
ð5Þ

Here, the bar denotes complex conjugation, and summation over
repeated indices is implied. Coefficients Aij , Bijmn, and Dμν

ij are ten-

sorial generalizations of the usual Ginzburg-Landau coefficients for
quadratic, quartic, and gradient contributions. We use subscript Latin
indices (i, j,m, n = 1,…,N) to index different order parameters, and
superscript Greek indices (μ, ν) to index spatial directions. The theory
accurately represents amulti-dimensional free energy landscape in the
vicinity of the critical temperature Tc for the equilibrium even-parity
instability. Finally, we couple the superconductor to light by introdu-
cing minimal coupling to a gauge field in velocity gauge,
∇μ�!∇μ + i 2e_ A

μðtÞ, where − e <0 is the electron charge. We discard
subsequent gradient terms by considering only spatially homoge-
neous irradiation and order parameters (∇Δi =0). From this, one can

derive Euler-Lagrange equations of motion ∂L
∂Δi

� ∂t
∂L

∂ð∂tΔiÞ
=0

� �
that

describe light-induced dynamics of competing orders.

The structure of the TDGL action is dictated solely by parity and
angular momentum conservation, and importantly permits a coupling
between even- and odd-parity order parameters already to linear order
in Aμ(t). If the lattice has Cn rotational symmetry with n ≥ 2, order
parameters for s-, p-, d-wave instabilities can be enumerated by their
angular momentum eigenvalues ei2πl/n, with l =0, l = ± 1, l = ± 2 (modulo
n) respectively. An appealing selection rule permits light-induced
coupling Cμij between superconducting orders i, j with Δl = ± 1 at linear
order in the field. Notably, this dictates that the Lagrangian couples an
equilibrium s-wave order parameter to odd-parity p-wave order
already at linear order in Aμ(t), in agreement with the quasiparticle
dynamics of Fig. 2a. Conversely, second order in Aμ(t) contributions
couple same-parity order parameters with Δl = 0 or Δl = ± 2, capturing
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Fig. 2 | Dynamical inversion symmetry breaking and odd-parity Bardasis-
Schrieffer (BS) modes. a, b Demonstration of a linear-in-∣A∣ and linear-in-λ (spin-
orbit parameter) coupling between an equilibrium order parameter Δs and a px-
wave order parameter Δpx

. A two-color x-polarized pulse that breaks dynamical
inversion symmetry is appliedwith various smallmagnitudes ∣A∣, and example time-
plots of the resulting fluctuations in jΔpx

ðtÞj are plotted in (b). Themaxima of these
fluctuations are plotted versus ∣A∣ in (a), for five different magnitudes of the spin-
orbit coupling strength λ in units of hopping. cTimedynamics resulting froma two-
color pulse that breaks dynamical inversion symmetry (with a 2: 1 frequency ratio).

d Time dynamics resulting from a two-color pulse that preserves dynamical
inversion symmetry (with a 3: 1 frequency ratio). Both (c) and (d) start from purely
even superconducting order (indicated by blue curves), and the onset of odd
orders (indicated by red and pink curves) is suppressed when dynamical inversion
symmetry is unbroken (see legend in bottom right).e Short-timedeviations in the s-
wave and px-wave order parameters for weak driving with x-polarized light as a
function of frequencyΩ, revealing a BSmode for the px-wave order parameter that
is sub-gap (indicated by the unshaded region).
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the excitation of the conventional amplitude mode. This observation
has intriguing consequences for Higgs mode experiments (see Sum-
mary and outlook).

To address the existence of a metastable triplet superconductor
as a local minimum of the free energy landscape, we explicitly com-
pute the multi-component Ginzburg-Landau coefficients for micro-
scopic Hamiltonians, thus connecting the top-down
phenomenological approach to the bottom-up microscopic approach
of the previous section. Starting fromagenericmultibandHamiltonian
with effective attractive pairing interactions, the generalizedGinzburg-

Landau coefficients can be computed diagrammatically as

Aij = � 1
vðiÞ

δij +Π
ð2Þ
ij ð0Þ, Bijmn =

1
2
Πð4Þ

ijmn, ð6Þ

with correlation functions

Πð2Þ
ij ðqÞ= Tr f yi,kG

"
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2
f j,kG

#
k+ q
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n o
, ð7Þ

Πð4Þ
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y
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"
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#
k

n o
, ð8Þ

depicted in Fig. 3, and Matsubara Green’s functions for particles and
holes given by

G"
kðiωnÞ=

1
iωn � hk"

, G#
kðiωnÞ=

1

iωn +h
>
�k#

: ð9Þ

In the above equations, Tr � 1
βLd
P

k,ωn
tr , indicating a sum over

momenta, orbital indices, and Matsubara frequencies. The gradient

terms Cμij andDμν
ij are calculated from expandingΠð2Þ

ij ðqÞ in powers of q.

We first demonstrate key qualitative features by example of the
conceptually simplest single-band model on a rectangular lattice
(Fig. 4a) that captures the essential physics for switching tometastable
odd-parity superconductor. We choose a hopping anisotropy δt = 0.2,
chemical potential μ = −0.1, and interaction parameters vs = − 1.75,
vpx

= vpy
= �2:5, in units of hopping. As spin-orbit interactions in cen-

trosymmetric crystals require at least a two-orbital unit cell, we break
SU(2) via a small Zeemanmagnetic field ΔZeeman = 0.1 [see “Methods”].
The free energy parameters are computed from the microscopic
model, and the phenomenological inertial/damping coefficients are
set to γ = 1.0, η =0.1. The temperature T =0.1 lies below the critical
temperature for the s-wave and px-wave channel, with s-wave pairing
stabilized in equilibrium. Crucially, the coupling between these chan-
nels is first-order in A(t). For simplicity, we assume that pairing inter-
actions in the d-wave and extended s-wave channels vanish.
Furthermore, an x-polarized pulse couples solely to px order, yielding

Fig. 3 | Effective action via diagrams.Diagrammatic representation of Eqs. (7) and
(8), which summarize how to calculate the generalized Ginzburg-Landau coeffi-
cients as an effective field theory starting from a microscopic Hamiltonian.
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Fig. 4 | Engineeringmetastable triplet superconductors with light. a Schematic
of a minimal rectangular tight-binding model of competing singlet and triplet
pairing instabilities. b Free energy landscape plot of Re ðΔpx

Þ vs Re(Δs), with the
time-dependent trajectory in (c) plotted in green. cTimeplots ofAx(t) and ∣Δi(t)∣ for
stotal [Methods], px, and py order parameters subjected to an example Gaussian
pulse.d Schematic plot showing the spectral profile of the pulse in (c) in relation to

the Bardasis-Schrieffer mode frequency ΩBS and the edge of the quasiparticle
continuum (QPC). e A parametric plot of fluence versus inverse pulse width
showing the final state induced by a family of Gaussian pulses, with frequency
Ω =0.75ΩBS centered slightly below the BS mode frequency. A star indicates the
pulse parameters used in b–d.
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an appealingly simple minimal action

L=
X
i = s,p
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,
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whereweabbreviateAii � ai,Biiii � bi, andBiijj � bij , andassumeequal
inertial (γ) and damping (η) coefficients without loss of generality. The
first two lines describe decoupled TDGL actions for s and p ≡px order
parameters. The third line describes their quartic coupling that dictates
the emergence of ametastableminimum, and the last line couples s and
p orders to linear order in the light field Aμ. In the rectangular model,
this coupling keeps the s- and px-wave order parameters completely
real, allowing the dynamics to be completely captured by a visualizable
two-dimensional free energy contour plot (see Fig. 4b).

Intriguingly, as a function of pulse width and fluence, one finds a
contiguous parametric family of Gaussian pulses that result in the final
state settling into the pureΔpx

stationary point of the free energy, as in
Fig. 4e. The presence of a clear threshold for the width of the Gaussian
pulse is evidence that dynamical inversion symmetry breaking, which
occurs more strongly with a tighter pulse width, is crucial for efficient
coupling between opposite-parity orders. We find switching to be
most reliable for strong driving near the Bardasis-Schrieffer mode
frequency (Fig. 2d), which reads

ΩBS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
γp

ap � 3as

bsp

bs

� �s
, ð11Þ

and is determined by deviations from the global free energyminimum
in the direction of the target instability [see Methods]. Light polarized
in the x-direction drives the order parameter strongly in the direction
of a closely competing px minimum in its free energy landscape, and

forGaussianpulses centered at this frequencywithwidths on theorder
of a few resonant periods (see Fig. 4e), the system is efficiently swit-
ched to the target metastable state. Figure 4d and e together reveal a
trade-off whereby the pulse needs to be short enough to allow for
strong dynamical inversion symmetry breaking while being wide
enough (i.e. spectrally sufficiently narrow) to avoid excitation of
quasiparticles across the gap (excitations that are not captured by
TDGL). The latter constraint leads us to detune the central frequency
of the Gaussian pulse to be slightly below ΩBS, decreasing the spectral
overlapwith the quasiparticle continuumwhile stillmaintaining a large
overlap with the BSmode. [See the SupplementaryMaterial for further
details.]

We now turn to a realistic model of a conventional centrosym-
metric superconductor with strong spin-orbit coupling on the hon-
eycomb lattice, with a putative closely-competing triplet pairing
instability (Fig. 5a). This models the low-energy physics near the Dirac
points of several systems of recent interest, including kagome
superconductors56–58, honeycomb materials with large spin-orbit cou-
pling and recently-reported superconductivity59–61, and many moiré
heterostructures of transition metal dichalcogenides62–66. Rotation
symmetry and energetics dictate that the chiral triplet states Δp± ip �
1ffiffi
2

p Δpx
± iΔpy

� �
are stable local free energyminima, while the nodal Δpx

and Δpy
states individually are not. Figure 5c depicts the free energy

landscape with an equilibrium s-wave minimum and proximal p ± ip
local minima. This is therefore a promising example of a truly meta-
stable non-equilibrium chiral superconducting state in a system with
conventional s-wave order in equilibrium.

The key parameter allowing singlet-triplet switching at first order
in the gauge field A(t) is the coefficient Cμ

ij in Eq. (5). For the honey-
combmodel, up to first order in the spin-orbit coupling strength λ, this
matrix element

Cμij ≈
iλ
2

Z
d2k

ð2πÞ2
X
mn

nFðξnkÞ � nFð�ξmkÞ
ξnk + ξmk

× ∂λ Aμ
k,f

y
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� �
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ð12Þ
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Fig. 5 | Switching between trivial s and topological triplet p ± ip pairing in
honeycomb superconductors. a Schematic of a minimal honeycomb-lattice
conventional s-wave superconductor with a competing chiral triplet pairing
instability. b Order parameter trajectory in the free energy landscape as a func-
tion of the magnitudes of the s and p + ip order parameters, demonstrating the
stable switching of the equilibriumorder parameter to ametastable chiral state. A
small difference in the relaxation rates for the two chiral states is assumed.
c Dynamics of Ax(t), Ay(t), and ∣ΔiðtÞ∣ for Δs and Δp±ip. d Schematic plot of the

spectral profile of the pulse in (c) showing strong overlap with the BS mode
frequency ΩBS and minimal overlap with the quasiparticle continuum (QPC).
e Parametric plot in terms of inverse pulse width (in THz) and fluence (in mJ/cm2)
showing which Gaussian pulses centered at Ω = 0.75ΩBS lead to successful
switching to the metastable p + ip state. The window is chosen so that no more
than 10% of the fluence overlaps with the QPC. A star indicates the pulse para-
meters used in b–d.
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becomes a function of the (matrix-valued) non-Abelian Berry connec-
tion Aμ

kmn � ihumkj∂kμ
unki. Since the energy eigenvalues of the

Hamiltonian are at order λ2 and higher, the dominant contribution to
Cμ for small λ is therefore purely geometric in nature, controlled by the
Berry connection. Notably, this effect is distinct from quantum-
geometric corrections to the superfluid weight67,68, and can be
equivalently expressed via the Fermi surface Berry connection at low
temperatures (see “Methods”).

To approximate the energetics in conventional but strongly
spin-orbit coupled superconducting systems,69,70 we choose para-
meters so that the nearest neighbor hopping amplitude is 1 eV, the
spin-orbit strength is 0.1 eV, the system is hole-doped with chemical
potential μ = −0.4 eV and the critical temperatures of the s and p ± ip
states are ~10K for effective renormalized interactions vs = − 1.25 eV,
vp = − 2.3 eV. In this scenario, the superconducting gaps are between
1 − 10meV. The inertial coefficients Γð2Þij in Eq. (4) are set so that the
frequency of small amplitude oscillations of Δimatches the expected
Higgs mode frequency, Ωi =2jΔðeqÞ

i j=_. This sets the time scale of
interest to be on the order of picoseconds, with relevant frequencies
between 1 − 10 THz. The time scale for relaxation (parametrized by
Γð1Þij in Eq. (4)) is longer than the Higgs mode period by the dimen-
sionless factor βjΔðeqÞ

i j31, which in our case is about 10. Lastly,
assuming a lattice constant on the order of Angstroms, our results
call for peak field strengths on the order of ~100 kV/cm for ultrafast
pulses.

Figure 5 e reveals a broad region of pulse widths (~0.1 ps) and
fluences (~1.0mJ/cm2) that lead to successful switching from s to a
chiral triplet p + ip state via an ultrafast circularly polarized pulse. The
resulting order parameter trajectory in a subspace of the free energy
landscape is shown in Fig. 5c and illustrates key features of the
switching protocol, whereby the dynamical inversion symmetry
breaking kicks the order parameter in the vicinity of a chiral instability.
To allow the system to settle into one of the chiral p ± ip states within
TDGL theory, we set a slight difference in their relaxation rates
(η± = 1 ± δð Þη with δ =0.5). Though introduced as a phenomenological
parameter, one can expect this to arise microscopically from pump-
induced time-reversal symmetry breaking of the environmental
degrees of freedom that provide dissipation, an effect which is not
captured by TDGL theory. The chiral states are stable against fluctua-
tions in the amplitudes and relative phases of all competing order
parameters that are supported by nearest-neighbor pairing interac-
tions, providing a promising proof-of-concept for engineering a
metastable topological superconducting state.

Summary and outlook
We present light-induced dynamical inversion symmetry breaking as
a generic route to explore competing triplet pairing instabilities in
conventional superconductors with strong spin-orbit coupling.
Identifying a sub-gap odd-parity BS mode that couples linearly to
light, we find that driving this mode with a tailored two-color or
ultrafast light pulse can switch the system to a metastable uncon-
ventional superconducting state. We illustrate this mechanism for
minimal models of superconductors with closely competing pairing
instabilities.

Immediate future directions include searching for experimental
signatures of a sub-gap opposite-parity Bardasis-Schrieffer mode, in
addition to applying this methodology to realistic tight-binding
models of candidate materials, including 1T0 WTe2 and moire het-
erostructures of transition metal dichalcogenides. Following
experiments that use pump-probe microscopy to detect the con-
ventional Higgs mode via a linear scaling between pump intensity
and the amplitude of resulting gap fluctuations16–18, a simple optical
protocol may be to search for gap fluctuations scaling with the
square root of the pump intensity, indicating an amplitude mode
coupling linearly to light. Additionally, an intriguing open problem is

under what general conditions does a subleading stationary point in
the free energy become a local minimum. We have found that the
only examples of metastable states are Kramers partners with chiral
pairing, i.e. px ± ipy order parameters in lattices where the px and py
orders are degenerate. It would be fruitful to further understand the
necessary conditions for a system to support a metastable super-
conducting instability. Another interesting direction would be to
model heating effects from irradiation with an ultrafast pulse,
accounting for microscopic mechanisms for heat dissipation not
included in our methods. Lastly, throughout this work we use
effective renormalized interaction strengths vi as phenomenological
parameters for emergent pairing at low energy scales. Detailed
modeling of these parameters in candidate materials, via renorma-
lization group treatments and incorporating RPA effects39, is an
important direction for future work.

Methods
Gap function equations of motion via quasiparticle dynamics
Quasiparticle equations of motion for a superconductor coupled to
light are derived for a generic BCS-like Hamiltonian

Ĥ =
X
kαβσ

ĉykασ h
σ
αβðkÞ ĉkβσ

+
1

Ld
X

kk0αα0ββ0
Vαβα0β0 ðk,k0Þ ĉykα"ĉ

y
�kβ#ĉ�k0β0#ĉk0α0",

ð13Þ

where ĉykασ creates an electron in the state with momentum k, orbital
index α∈ {1,…,N}, and spin σ∈ {↑,↓}. The dependence of the one-
body Hamiltonian hσ

αβðkÞ on spin encodes spin-orbit coupling that
reduces the SU(2) spin rotation symmetry to spin-z conservation. L
denotes the linear system size. We decompose the four-fermion
interaction vertex Vαβα0β0 ðk,k0Þ in terms of a set of orthonormal basis
functions f iαβðkÞ

n o
,

Vαβα0β0 ðk,k0Þ=
X
i

vi f
i
αβðkÞf

i
α0β0 ðk0Þ: ð14Þ

A standard mean-field decoupling of the interaction in the Cooper
channel introduces the superconducting gap function

ΔαβðkÞ=
1

Ld
X
k0α0β0

Vαβα0β0 ðk,k0Þ ĉ�k0β0#ĉk0α0"
D E

=
def X

i

Δi f
i
αβðkÞ,

ð15Þ

where the components Δi are classified in terms of the irreducible
representations of the crystal point group. The mean-field decom-
position of Eq. (13) canbewritten inBogoliubov-deGennes (BdG) form
as

Ĥ =
X
k

Ψk HBdG
k Ψk �

X
i

Ld

vi
jΔij2, ð16Þ

where

Ψk =
def

ĉk,1,"

..

.

ĉk,N,"

ĉy�k,1,#

..

.

ĉy�k,N,#

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
, HBdG

k =
hk" Δk

Δy
k �h>

�k#

 !
: ð17Þ
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The equal-time Nambu Green’s function

GBdG
k =

def
Ψk �Ψk

	 

�

ĉykβ"ĉkα"
D Eh i

ĉ�kβ#ĉkα"
D Eh i

ĉykβ"ĉ
y
�kα#

D Eh i
ĉ�kβ#ĉ

y
�kα#

D Eh i
0BB@

1CCA:
ð18Þ

obeys equations of motion (setting ℏ = 1)

i∂tGBdG
k = HBdG

k ,GBdG
k

h i
: ð19Þ

GBdG
k ∣t!�1 =nF�D HBdG

k

� �
, ð20Þ

where nF�DðXÞ � 1 + expðβXÞð Þ�1 is the Fermi-Dirac distribution func-
tion. Combined with the instantaneous self-consistency equation for
order parameters, this yields equations of motion for the gap function
in terms of the Heisenberg dynamics of the Bogoliubov quasiparticles.

Symmetry analysis of the Lagrangian
Suppose we demand that the Lagrangian be invariant under some
symmetry transformation on the order parameters Δi and the gauge
field Aμ(t),

Δj 7 �!Djj0 Δj0

Aμ 7 �!Rμμ0
Aμ0

,
ð21Þ

for tensorsD andR. LetR beorthogonal (ðR>ÞμνRνρ = δμρ) and choose
a basis for Δi such that D is diagonal (Dij � dðiÞδij). One can then show
that,

Rμμ0N μ0

ij = dðiÞdðjÞN μ
ij ,

Rμμ0Mμ0ν0

ij ðR>Þν
0ν

= dðiÞdðjÞMμν
ij :

ð22Þ

N μ
ij is nonzero if and only if dðiÞdðjÞ is an eigenvalue of R, and Mμν

ij is
nonzero if dðiÞdðjÞ is a product of two (not necessarily distinct) eigen-
values ofR. For example, if one considersCn rotational symmetry on a
lattice with n ≥ 2, the constraints given by Eq. (22) yield the l selection
rules discussed in Results.

Effective action from the path integral
We start with the partition function written in terms of an imaginary-
time path integral over the Grassmann fields ψ, ψ,

Z =
Z

D½ψ,ψ�e� S0 ½ψ,ψ�+ Sint ½ψ,ψ�ð Þ, ð23Þ

with a free-electron action given by,

S0½ψ,ψ�=
Z β

0
dτ
X
kσαβ

ψkασ δαβ ∂τ +h
σ
αβðkÞ

h i
ψkβσ , ð24Þ

and an interacting action given by,

Sint½ψ,ψ�=
Z β

0
dτ

1

Ld
X

kk0qαα0ββ0i

vif
i
αβðkÞf

i
α0β0 ðk0Þ

× ψk + q
2,α"ψ�k+ q

2,β#ψ�k0 + q
2,β

0#ψk0 + q
2,α

0":

ð25Þ

As before, α, β denote orbital indices, σ denotes a spin index, and vi
denotes the interaction decomposed into pairing channels. A
Hubbard-Stratonovich transformation71 decouples Sint in the Cooper

channel in terms of auxiliary fields Δi,q, Δi,−q,

~S½Ψ,Ψ,Δ,Δ� =
X
kk0 ωn

Ψk,ωn
G�1
� �ωn

k,k0Ψk0 ,ωn
�
X
iq

Δi,q
βLd

vi
Δi,�q, ð26Þ

where the Nambu spinor Ψ and Gor’kov Green’s operator G�1 are
defined in terms of their momentum components and Matsubara
frequency dependence as follows,

Ψk =
def

ψk,1,"

..

.

ψk,N,"
ψ�k,1,#

..

.

ψ�k,N,#

0BBBBBBBBBBB@

1CCCCCCCCCCCA
, ð27Þ

G�1
� �ωn

k + q
2,k�

q
2

=

�iωn + ĥk"
� �

δq,0
P
i
Δi,�q f̂ k,iP

i

�Δi,�q f̂
y
k,i �iωn � ĥ

>
�k#

� �
δq,0

0BB@
1CCA: ð28Þ

Note that here, k can be interpreted as the internalmomentum of
a Cooper pair, while q corresponds to the external momentum. One
can then perform the path integral over the Grassmann fields Ψ, Ψ,
which gives,

Z =
Z

D½Δ,Δ� exp lndetG�1 +
X
iq

Δi,q
βLd

vi
Δi,�q

( )
: ð29Þ

Using lndetM= tr lnM, this results in an effective action

Seff ½Δ,Δ�= � tr lnG�1 �
X
iq

Δi,q
βLd

vi
Δi,�q: ð30Þ

Expanding this to fourth order in Δ yields,

Seff ½Δ,Δ�= βLd
X
i,j,q

Δi,q �δij

vi
+Πð2Þ

ij ðqÞ
� �

Δj,�q

+βLd
1
4

X
i,j,m,n

Δi,0Δm,0Π
ð4Þ
ijmnð0ÞΔj,0Δn,0,

ð31Þ

which, comparing to Eq. (5), allows one to compute the generalized
Ginzburg-Landau coefficients for completing orders as described in
Results.

Model details
Rectangular lattice model. Consider a rectangular lattice with hop-
ping amplitudes tx > ty >0, on-site interaction U, and nearest neighbor
interactionU 0. As discussed in themain text, breaking SU(2) symmetry
in a single-bandmodel requires including a small the Zeeman splitting
due to a z-aligned magnetic field. The single-particle dispersion reads

ϵkσ = � 2ðtx cos kx + ty cos kyÞ+ΔZeeman sgn ðσÞ: ð32Þ

When the Zeeman splitting energy ΔZeeman is nonzero, there are
separate spin-up and spin-down Fermi surfaces, making it difficult to
define singlet/even order parameters and triplet/odd order para-
meters in this model. For this reason, we will consider the applied
magnetic field to be zero initially, only to be adiabatically turned on
before the optical pulse and adiabatically turned off after the optical
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pulse. We note that a small ΔZeeman has a negligible effect on the
Ginzburg-Landau free energy, butmust necessarily be present to allow
coupling between singlet and triplet orders. Conversely, multiband
models discussed below allow for the inclusion of spin-orbit coupling,
obviating a magnetic field.

The form factors f i(k) for this model up to nearest-neighbor
interactions are tabulated in Table 1. There are three order parameters
in the A irrep (s-wave) and two in the B irrep (p-wave). In equilibrium,
the system settles into a combination of the three s-wave orders dic-
tated by the relative strengths of the on-site and nearest neighbor
interactions. For simplicity, we re-express these order parameters in
the eigenbasis ofΠð2Þ

ij ð0Þ [Eq. (7)], defining Δs in the main text to be the
order parameter with the lowest eigenvalue. We then define jΔstotal

j in
Fig. 4c to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
slocal

+Δ2
sext,x

+Δ2
sext,y

q
.

Honeycomb lattice model with spin-orbit coupling. We now con-
sider a honeycomb lattice with Kane-Mele spin-orbit coupling55 as well
as effective on-site and nearest-neighbor attractive interactions,

hσ
αβðkÞ

h i
=

λvσSOðkÞ � μ gðkÞ
g*ðkÞ �λvσSOðkÞ � μ

 !
, ð33Þ

with nearest and next-nearest-neighbor hopping

gðkÞ= � t
X
di

e�ik�di , vσSOðkÞ= sgn ðσÞ
X
ai

sinðk � aiÞ: ð34Þ

Here, λparameterizes the strength of spin-orbit coupling, μdenotes the
chemical potential, t denotes the hopping parameter, {di} denotes the
three nearest-neighbor lattice vectors, and {ai} denotes the three next-
nearest-neighbor lattice vectors (a1 =d2 −d3, a2 =d3 −d1, a3 =d1−d2).
For the interaction term, we consider an on-site attraction U and
nearest-neighbor attraction U 0, decomposing Vαβα0β0 ðk,k0Þ as in Eq. (14)
using thebasis functions tabulated inTable 2. SettingU =U 0, theΔs state
is found to have the highest critical temperature, followed by two
degenerate px and py states. These have a d-wave k-space structure, but
are odd under sublattice exchange and have angular momentum l= ± 1.
Chiral superpositions are abbreviated as 1ffiffi

2
p Δpx

± iΔpy

� �
� Δp± ip.

BS mode frequency and free energy barrier between two order
parameters. The Lagrangian [Eq. (4)] results in Euler-Lagrange equa-
tions of motion

�Γð2Þij ∂2
t � Γð1Þij ∂t

� �
Δj = Aij +BijmnΔmΔn

h
+N μ

ijA
μðtÞ

+Mμν
ij A

μðtÞAνðtÞ
i
Δj ,

ð35Þ

where N μ
ij � i 2e_ Cμij and Mμν

ij � ði 2e_ Þ
2Dμν

ij are defined to absorb factors
of i 2e_ from minimally substituting ∇μ�!∇μ + i 2e_ A

μðtÞ into Eq. (5) and
assuming spatially-homogeneous order parameters and irradiation.

Focusing on the simplest case of two competing order
parameters that are only coupled at linear order in Aμ(t) (e.g. s-wave
and px-wave), the free energy for two order parameters can be written
concisely as,

βF ð2Þ = a1jΔ1j2 +
1
2
b1jΔ1j4 +a2jΔ2j2 +

1
2
b2jΔ2j4

+
1
2
b12 4jΔ1j2jΔ2j2 +Δ

2
1Δ

2
2 +Δ

2
2Δ

2
1

� �
,

ð36Þ

where ai � Aii, bi � Biiii, and b12 equals any fourth-order coefficient
coupling two Δ1’s and two Δ2’s (these are all equivalent in this case).
This is in agreement with Ref. 72. Assuming the system is initially in the
equilibrium state, ΔðeqÞ

1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a1=b1

p
,ΔðeqÞ

2 =0 (assume overall phase
equals zero without loss of generality), the equation of motion for Δ2

up to linear order in Δ2 and Aμ(t) is given by,

ð�γ2∂
2
t � η2∂tÞΔ2ðtÞ=M2Δ2ðtÞ+AμðtÞN μ

21Δ
ðeqÞ
1

+ OðjAðtÞj2,jΔ2ðtÞj3Þ,
ð37Þ

where γ2 � Γð2Þ22 , η2 � Γð1Þ22 (we assume the inertial and damping coeffi-
cients are diagonal), and M2 is given by,

M2 =a2 � 3a1
b12

b1
� γ2Ω

2: ð38Þ

One can formally integrate this equation of motion as,

Δ2ðtÞ=N μ
21Δ

ðeqÞ
1

Z
dω
2π

eiωt

γ2ω2 �M2 � iη2ω
eAμðωÞ, ð39Þ

which yields a resonant responsewhenω2 ≡Ω2 =M2/γ2.We identify this
as the BS mode frequency ΩBS. One can also derive from Eq. (36) the
free energy barrier between the two states by finding the saddle point
surrounded by the Δ1 minimum, the Δ2 minimum, and the Δ1,2 = 0
maximum. The free energy difference between this saddle point and

Table 1 | Basis functions f i(k) that form a complete basis for
Vðk,k0Þ=Pivif

iðkÞfiðk0Þ up to nearest-neighbor pairing inter-
actions on the rectangular lattice

Irrep. Pairing fi(k)

A slocal 1

B px

ffiffiffi
2

p
sin kx

B py

ffiffiffi
2

p
sin ky

A sext,x
ffiffiffi
2

p
cos kx

A sext,y
ffiffiffi
2

p
cos ky

Normalization is such that
R

d2k
ð2πÞ2 f

iðkÞfjðkÞ=δij.

Table 2 | Basis functions fiαβ that form a complete basis for

Vαβα0β0 ðk,k0Þ =Pivif
i
αβðkÞf

i
α0β0 ðk0Þ up to nearest-neighbor pairing

interactions on the honeycomb lattice

Irrep. Pairing fiαβðkÞ
A1g s 1ffiffi

2
p 1 0

0 1

� �
A1g sext 1ffiffi

2
p 0 fs�extðkÞ

fs�extðkÞ 0

� �
E1u px

1ffiffi
2

p
0 fdx2�y2

ðkÞ
�fdx2�y2

ðkÞ 0

 !
E1u py

1ffiffi
2

p
0 fdxy

ðkÞ
�fdxy

ðkÞ 0

 !
E1g dx2�y2 1ffiffi

2
p

0 fdx2�y2
ðkÞ

fdx2�y2
ðkÞ 0

 !
E1g dxy

1ffiffi
2

p
0 fdxy

ðkÞ
fdxy

ðkÞ 0

 !
B1u f1 1ffiffi

2
p 1 0

0 �1

� �
B1u f2 1ffiffi

2
p 0 fs�extðkÞ

�fs�extðkÞ 0

� �
fs�extðkÞ= 1ffiffi

3
p e�ik�d1 + 1ffiffi

3
p e�ik�d2 + 1ffiffi

3
p e�ik�d3

fdx2�y2
ðkÞ=

ffiffi
2
3

q
e�ik�d1 � 1ffiffiffi

6
p e�ik�d2 � 1ffiffiffi

6
p e�ik�d3

fdxy
ðkÞ= � 1ffiffi

2
p e�ik�d2 + 1ffiffi

2
p e�ik�d3
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the global minimum is given by,

Ebarrier =
a2
1b2 +a

2
2b1 � 2a1a2b12ð2 + cosϕÞ

ð9+8 cosϕ+ cos 2ϕÞb2
12 � 2b1b2

+
a2
1

2b1
, ð40Þ

where ϕ � arg Δ2=Δ1

� �
is the relative phase between the two order

parameters. For successful switching, the time-integrated pulse must
supply enough kinetic energy ∼ 1

2 γ2j∂tΔ2j2 to overcome this free
energy barrier. Since the matrix elementN μ

ij / Cμij depends linearly on
the spin-orbit coupling strength λ (for small λ), we expect the requisite
fluence for switching to scale as ~ (t/λ)2 (where t is the nearest-neighbor
hopping amplitude).

Cμij in terms of the Fermi surface Berry connection. Assuming the
chemical potential exists in a band with Bloch functions ∣uk



, and

dispersion ξk (measured with respect to the chemical potential) with a
large gap Δgap to all other bands that we formally take to infinity,

Cμij =
iλ
2

Z
d2k

ð2πÞ2
tanh βξk

2

2ξk
∂λΛ

μ
k,ij





λ!0

+O λ2,Δ�1
gap

� �
ð41Þ

Λμ
k,ij = huk∣f

y
i ∣uki h∂μukjf j juki � hukjf jj∂μuki

� �
� h∂μukjf yi juki � hukjf yi j∂μuki
� �

huk∣f j ∣uki
ð42Þ

In the β→∞ limit, the integrand diverges at the Fermi surface,
meaning the dominant contribution to Cμij at low temperatures and low
spin-orbit strengths comes from the geometry of the Bloch states at
the Fermi surface.

Data availability
Data sets are available from the corresponding author on request.

Code availability
Codes are available from the corresponding author on request.
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