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While the search for topological triplet-pairing superconductivity has
remained a challenge, recent developments in optically stabilizing metastable
superconducting states suggest a new route to realizing this elusive phase.

Here, we devise a testable theory of competing superconducting orders that
permits ultrafast switching to an opposite-parity superconducting phase in
centrosymmetric crystals with strong spin-orbit coupling. Using both micro-
scopic and phenomenological models, we show that dynamical inversion
symmetry breaking with a tailored light pulse can induce odd-parity (spin
triplet) order parameter oscillations in a conventional even-parity (spin sing-
let) superconductor, which when driven strongly can send the system to a
competing minimum in its free energy landscape. Our results provide new
guiding principles for engineering unconventional electronic phases using
light, suggesting a fundamentally non-equilibrium route toward realizing
topological superconductivity.

Topological superconductors are elusive unconventional super-
conducting phases' that can host topologically-protected Majorana
boundary modes and non-Abelian vortex excitations*®, which are of
fundamental as well as tremendous practical interest as a route
towards fault-tolerant quantum computing®. Spin-triplet super-
conductors with finite angular momentum Cooper pairs”® have long
been regarded as particularly promising candidates, with degen-
eracies between nodal order parameters expected to favor a chiral
topological superconducting state’. However, spin-triplet pairing
remains rare in nature and signatures of chiral topological order
remain inconclusive, despite several candidate compounds such as
Sr,Ru04'° or UTe,*" being placed under exceptional experimental
scrutiny.

At the same time, a series of pioneering pump-probe experiments
have established irradiation with light as an alternative and funda-
mentally non-equilibrium tool for interrogating and manipulating
superconducting phases on ultrafast time scales, ranging from time-
resolved probes of Higgs“™® and Leggett'”* mode oscillations in
conventional and multi-gap superconductors to the light-induced
enhancement or induction of long-lived superconducting signatures in
the fullerides . With the underlying mechanisms still under sub-
stantial debate, these observations coincide with broader

experimenta and theoretical efforts**** in exploring thermal and

non-thermal pathways to suppress or control competing ordered
phases with light.

These results immediately raise the tantalizing question of
whether elusive topological spin-triplet superconducting states can
instead emerge as metastable phases upon irradiating a conventional
superconductor with light. Consider an inversion-symmetric material
with a conventional s-wave superconducting phase that preempts a
closely competing topological spin-triplet pairing instability in
equilibrium. In addition to the usual Higgs mode, such a system must
necessarily retain additional amplitude modes in alternative pairing
channels called Bardasis-Schrieffer (BS) modes**, which include
odd-parity amplitude modes corresponding to spin-triplet pairing.
These modes can lie below the gap in the case of closely-competing
orders® provided that long-range Coulomb interactions do not push
the mode into the pair-breaking continuum®’. While this mode
remains decoupled in equilibrium from conventional Higgs oscilla-
tions in centrosymmetric materials, a tailored ultrafast light pulse
can transiently break inversion symmetry and combine with strong
spin-orbit coupling to induce odd-parity amplitude oscillations in a
conventional superconductor. At a moderate fluence, the material
can refuse to relax back to its equilibrium phase, instead becoming
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trapped in a metastable spin-triplet superconducting phase, with
thermalization to the equilibrium spin-singlet phase suppressed due
to restored inversion symmetry after the pulse.

In this work, we illustrate this mechanism as both a new route
towards engineering spin-triplet and topological superconducting
phases out of equilibrium as well as a generic probe of competing odd-
parity instabilities in conventional superconductors. The protocol is
summarized in Fig. 1. We first identify ultrafast and two-color pulses as
two complementary routes to dynamically break inversion symmetry,
and demonstrate using a minimal model of quasiparticle dynamics
that they can conspire with spin-orbit coupling to transiently induce
odd-parity order parameter oscillations in a system with even-parity
order. We then derive an effective time-dependent Ginzburg-Landau
theory dictated via symmetry and present an explicit switching pro-
tocol for driving the system to settle into a metastable odd-parity
superconducting state. Remarkably, we find that the coupling between
equilibrium conventional s-wave order and a competing spin-triplet
order parameter necessarily scales linearly with the field strength, in
contrast to ordinary Higgs mode excitations which scale quadratically
with the field. We illustrate the proposed mechanism for light-induced
switching to a triplet superconductor by the example of two different
lattice models, one of which features a metastable chiral topological
superconducting state, and discuss implications for real systems such
as dilute-doped 1T WTe,. Our results reveal new guiding principles for
engineering metastable unconventional superconducting states
using light.

Results

Dynamical inversion symmetry breaking with light

While conventional centrosymmetric superconductors typically
comprise local spin-singlet Cooper pairs with even parity and net
spin S = 0, spin-triplet superconductivity entails odd-parity pairs with
net spin $=1 and three allowed values m;=0, +1 for the spin com-
ponent. Spin and parity are linked by necessity; since the combina-
tion of inversion and spin-exchange has the net effect of exchanging
two fermions, even-parity pairs must be singlets while odd-parity
pairs must be triplets. Coupling singlet and triplet orders therefore
immediately requires the breaking of both inversion and SU(2) spin
rotation symmetries. The latter is readily broken in superconductors
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Fig. 1| Light-induced metastable triplet superconductors. (1) The system starts
in a superconducting phase that is even-parity (singlet-pairing) in equilibrium. (2)
An optical pulse dynamically breaks inversion symmetry, driving the system
toward a local minimum in its free energy landscape that comprises multiple
competing order parameters. (3) The system relaxes into a metastable super-
conducting state that is odd-parity (triplet-pairing). (4) Since inversion symmetry
is restored after the pulse, equilibration back to the opposite-parity state is
suppressed.

with strong spin-orbit coupling such as heavy-fermion compounds.
Most notably, monolayer 1T' WTe, has been observed to host
both a quantum spin hall insulating phase**™** due to strong spin-
orbit coupling and a proximal superconducting phase for dilute
doping** with a rich array of predicted competing superconducting
states with different pairing symmetries*, rendering it a prime can-
didate to search for an out-of-equilibrium topological super-
conducting phase.

In contrast, inversion-breaking turns out to be more subtle,
requiring careful consideration of the optical driving scheme. A simple
monochromatic light wave is not sufficient, since it preserves a more
general dynamical inversion symmetry defined by a combination of
parity and time translation by half the wave period T,

r——r, t—>t—T/2. @
This dynamical symmetry can be strongly broken in two ways: (a) via
the envelope of an ultrafast pulse, or (b) via a two-color pulse
E(¢) =&, cos(w;t) + &, cos(w,t) if the two constituent frequencies are
not odd harmonics w; = pwg, > = gwe of a common frequency we* ™.
Dynamical symmetries have been extensively studied as a means of
high-harmonic generation in atomic and molecular systems**~° and
are more recently being used for optically controlling solids®>*.

We first illustrate the ramifications of breaking these two sym-
metries for a minimal mean-field model of a centrosymmetric honey-
comb lattice superconductor
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with effective attractive local (U) and nearest-neighbor (U’) interac-
tions. Importantly, the inclusion of spin-orbit coupling A via spin-
dependent next-nearest-neighbor hopping with phases v;=+1 for left
or right turns® reduces spin rotation symmetry to U(1), permitting a
coupling between singlet and ms;=0 triplet

PAirs ~ (G, 7y Cip)/V/2-

A standard BCS mean-field decoupling of the interaction in the
Cooper channel introduces the superconducting gap function
Ayp(k)= Z,-ffxﬁ(k)A,- with sublattice indices a, f which can be decom-
posed into pairing channels

;= %;f;g(k)<é_kméka¢> 3)

classified in terms of the irreducible representations of the crystal
point group with form factors fjw(k) and channel-projected interac-
tions v; that depend on U, U’ [see Methods].

Suppose now that a conventional s-wave superconducting phase
in equilibrium is irradiated with a weak but wide pump pulse, which
couples to electrons via the Peierls substitution with a vector
potential A(¢) polarized in the x direction. The pulse is parameterized
via the dimensionless field strength |A| =eay&,/hw where £,, w and
ao denote the electric field amplitude, frequency, and the lattice
constant, respectively. For numerical expediency, in Fig. 2 we use
effective interactions U=U'= — 2 and =10, in units of hopping.
Strikingly, the onset of p,-wave order parameter oscillations for weak
light pulses is linear in the field strength, shown in Fig. 2a-b for a two-
color pulse, and in stark contrast to ~ A% scaling for ordinary ampli-
tude mode oscillations. Furthermore, the amplitude of p, order
scales linearly with A, completely vanishing in the SU(2) symmetric
limit A=0. To illustrate the role of inversion symmetry breaking,
Fig. 2c and d depict the order parameter response to a two-color
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Fig. 2 | Dynamical inversion symmetry breaking and odd-parity Bardasis-
Schrieffer (BS) modes. a, b Demonstration of a linear-in-|A| and linear-in-A (spin-
orbit parameter) coupling between an equilibrium order parameter A; and a p,-
wave order parameter A, . A two-color x-polarized pulse that breaks dynamical
inversion symmetry is applied with various small magnitudes |4|, and example time-
plots of the resulting fluctuations in |A,, (¢)| are plotted in (b). The maxima of these
fluctuations are plotted versus |A| in (a), for five different magnitudes of the spin-
orbit coupling strength A in units of hopping. ¢ Time dynamics resulting from a two-
color pulse that breaks dynamical inversion symmetry (with a 2:1 frequency ratio).
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d Time dynamics resulting from a two-color pulse that preserves dynamical
inversion symmetry (with a 3:1 frequency ratio). Both (c) and (d) start from purely
even superconducting order (indicated by blue curves), and the onset of odd
orders (indicated by red and pink curves) is suppressed when dynamical inversion
symmetry is unbroken (see legend in bottom right). e Short-time deviations in the s-
wave and p,-wave order parameters for weak driving with x-polarized light as a
function of frequency Q, revealing a BS mode for the p,-wave order parameter that
is sub-gap (indicated by the unshaded region).

pulse with 2:1 and 3:1 frequency ratio, respectively. A 3:1 frequency
ratio preserves a dynamical inversion symmetry [Eq. (1)] with time
translation ¢~ t+m/w; p-wave order oscillations are consequently
dramatically suppressed at short times. Conversely, broken dyna-
mical inversion symmetry efficiently excites odd-parity order already
for short times [Fig. 2c]. Note that, due to the nonlinear nature of the
quasiparticle equations of motion, these heuristics only apply for
time scales of only a few cycles of the pump pulse. Central to efficient
switching to triplet order, Fig. 2e reveals a BS mode resonance for
subdominant p-wave order parameter oscillations that crucially lies
below the ordinary Higgs mode and pair-breaking excitations.
Spectroscopic observation of this mode would immediately provide
an experimentally accessible handle to probe the existence of a
subdominant pairing channel, and would importantly suggest that
stronger ultrafast excitation of this mode can potentially nudge the
system well beyond linear order parameter oscillations and into a
metastable competing phase with triplet pairing.

Optical switching to a metastable state

Insight into whether strongly driving a triplet BS mode can allow for
light-induced switching to a metastable odd-parity superconductor
can be readily gleaned from an effective time-dependent Ginzburg-
Landau (TDGL) description, which encodes the coupling of multiple
order parameters to light and importantly accounts for relaxation. In
this picture, a suitably tailored pulse liberates the superconducting
order parameter from its global free energy minimum and brings it
close enough to a proximal local minimum that it relaxes into a
metastable opposite-parity phase. A minimal Lagrangian that
describes this process reads

=8P o7 +1 8,)A; — BF(A, VAL B). )

and includes a kinetic contribution with damping coefficients rj.}> and
inertial coefficients l'sz’. The equilibrium free energy F is taken to
generalize the usual Ginzburg-Landau action to N order parameters
that crucially include subdominant orders not stabilized in

equilibrium, and formally reads

_ 1 o
ﬁ]::‘AlelAj + §BljmnAlAjAmAfl

+CLAVH A + D VFANT A,

©)

Here, the bar denotes complex conjugation, and summation over
repeated indices is implied. Coefficients Ay, B, and Déf” are ten-
sorial generalizations of the usual Ginzburg-Landau coefficients for
quadratic, quartic, and gradient contributions. We use subscript Latin
indices (i,j,m,n=1,...,N) to index different order parameters, and
superscript Greek indices (u, v) to index spatial directions. The theory
accurately represents a multi-dimensional free energy landscape in the
vicinity of the critical temperature T, for the equilibrium even-parity
instability. Finally, we couple the superconductor to light by introdu-
cing minimal coupling to a gauge field in velocity gauge,
VA VH +i2e ¥ (), where -e<0 is the electron charge. We discard
subsequent gradient terms by considering only spatially homoge-
neous irradiation and order parameters (VA; =0). From this, one can

derive Euler-Lagrange equations of motion (%_ 0, a(g%) :0> that
i 2

describe light-induced dynamics of competing orders.

The structure of the TDGL action is dictated solely by parity and
angular momentum conservation, and importantly permits a coupling
between even- and odd-parity order parameters already to linear order
in A“(¢). If the lattice has C, rotational symmetry with n > 2, order
parameters for s-, p-, d-wave instabilities can be enumerated by their
angular momentum eigenvalues ™", with [=0, [=+1, [=+2 (modulo
n) respectively. An appealing selection rule permits light-induced
coupling C’,.j between superconducting orders i, j with Al=+1 at linear
order in the field. Notably, this dictates that the Lagrangian couples an
equilibrium s-wave order parameter to odd-parity p-wave order
already at linear order in A*(¢), in agreement with the quasiparticle
dynamics of Fig. 2a. Conversely, second order in A*(f) contributions
couple same-parity order parameters with Al=0 or Al =+ 2, capturing
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the excitation of the conventional amplitude mode. This observation
has intriguing consequences for Higgs mode experiments (see Sum-
mary and outlook).

To address the existence of a metastable triplet superconductor
as a local minimum of the free energy landscape, we explicitly com-
pute the multi-component Ginzburg-Landau coefficients for micro-
scopic  Hamiltonians,  thus  connecting the  top-down
phenomenological approach to the bottom-up microscopic approach
of the previous section. Starting from a generic multiband Hamiltonian
with effective attractive pairing interactions, the generalized Ginzburg-
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Fig. 3 | Effective action via diagrams. Diagrammatic representation of Egs. (7) and
(8), which summarize how to calculate the generalized Ginzburg-Landau coeffi-
cients as an effective field theory starting from a microscopic Hamiltonian.
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Fig. 4 | Engineering metastable triplet superconductors with light. a Schematic
of a minimal rectangular tight-binding model of competing singlet and triplet
pairing instabilities. b Free energy landscape plot of Re (B, ) vs Re(Ay), with the
time-dependent trajectory in (c) plotted in green. ¢ Time plots of A,(¢) and |A«(¢)| for
Stotal [Methods], p,, and p,, order parameters subjected to an example Gaussian
pulse. d Schematic plot showing the spectral profile of the pulse in (c) in relation to

Landau coefficients can be computed diagrammatically as

1 1
A= = =6+ 170), By = 5150, ©)
)
with correlation functions
n®aq)=Trifl, G f., G 7
ij (q) ik k—% 'k k+lzj ’ ( )
M = Tr { £ GAFixGif i Gif i G} ®

depicted in Fig. 3, and Matsubara Green’s functions for particles and
holes given by

1
Gl(iw,)=- , Gl = —— . 9

T iy — T T g R ®
In the above equations, Tr = #Zk,wn tr, indicating a sum over

momenta, orbital indices, and Matsubara frequencies. The gradient
terms Cf.} and Df.j.” are calculated from expanding l'lﬁ.jz)(q) inpowers of q.

We first demonstrate key qualitative features by example of the
conceptually simplest single-band model on a rectangular lattice
(Fig. 4a) that captures the essential physics for switching to metastable
odd-parity superconductor. We choose a hopping anisotropy 6¢t=0.2,
chemical potential p=-0.1, and interaction parameters vs=-1.75,
Up, =Up, = —2.5, in units of hopping. As spin-orbit interactions in cen-
trosymmetric crystals require at least a two-orbital unit cell, we break
SU(2) via a small Zeeman magnetic field Azeeman = 0.1 [see “Methods”].
The free energy parameters are computed from the microscopic
model, and the phenomenological inertial/damping coefficients are
set to y=1.0, n=0.1. The temperature T=0.1 lies below the critical
temperature for the s-wave and p,-wave channel, with s-wave pairing
stabilized in equilibrium. Crucially, the coupling between these chan-
nels is first-order in A(¢). For simplicity, we assume that pairing inter-
actions in the d-wave and extended s-wave channels vanish.
Furthermore, an x-polarized pulse couples solely to p, order, yielding

Single cycle

P
=

Fluence (arb. units)

Final state
= A, (s-wave)

= A, (p,-wave)

0.0 05 1.0 15
Inverse pulse width (o)~

the Bardasis-Schrieffer mode frequency Qgs and the edge of the quasiparticle
continuum (QPC). e A parametric plot of fluence versus inverse pulse width
showing the final state induced by a family of Gaussian pulses, with frequency
0 =0.75 Qs centered slightly below the BS mode frequency. A star indicates the
pulse parameters used in b-d.
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Fig. 5 | Switching between trivial s and topological triplet p + ip pairing in
honeycomb superconductors. a Schematic of a minimal honeycomb-lattice
conventional s-wave superconductor with a competing chiral triplet pairing
instability. b Order parameter trajectory in the free energy landscape as a func-
tion of the magnitudes of the s and p +ip order parameters, demonstrating the
stable switching of the equilibrium order parameter to a metastable chiral state. A
small difference in the relaxation rates for the two chiral states is assumed.

¢ Dynamics of AX(¢t), A(¢), and |A;(t)| for As and A,.;,. d Schematic plot of the

spectral profile of the pulse in (c) showing strong overlap with the BS mode
frequency Qgs and minimal overlap with the quasiparticle continuum (QPC).

e Parametric plot in terms of inverse pulse width (in THz) and fluence (in mjJ/cm?)
showing which Gaussian pulses centered at Q =0.75 Qgs lead to successful
switching to the metastable p + ip state. The window is chosen so that no more
than 10% of the fluence overlaps with the QPC. A star indicates the pulse para-
meters used in b-d.

an appealingly simple minimal action

£=>" [K,- <yaf +qat>A,. +a;|A P +bi|Ai|4]

i=s,p
.2 - .2
£ <V“ - I{Aﬂ> A, (V" +176A“) A,
i=sp (10)
1 -2 =2
+ Ebsp <4|AS|2|Ap|2 + ASAFZ) + ApA§>
+ [CSPK (V" + i%‘AX) A+ c.c.] ,
where we abbreviate A; = a;, By; = b;, and By; = by;, and assume equal

inertial (y) and damping () coefficients without loss of generality. The
first two lines describe decoupled TDGL actions for s and p = p, order
parameters. The third line describes their quartic coupling that dictates
the emergence of a metastable minimum, and the last line couples s and
p orders to linear order in the light field A“. In the rectangular model,
this coupling keeps the s- and p,-wave order parameters completely
real, allowing the dynamics to be completely captured by a visualizable
two-dimensional free energy contour plot (see Fig. 4b).

Intriguingly, as a function of pulse width and fluence, one finds a
contiguous parametric family of Gaussian pulses that result in the final
state settling into the pure A, stationary point of the free energy, asin
Fig. 4e. The presence of a clear threshold for the width of the Gaussian
pulse is evidence that dynamical inversion symmetry breaking, which
occurs more strongly with a tighter pulse width, is crucial for efficient
coupling between opposite-parity orders. We find switching to be
most reliable for strong driving near the Bardasis-Schrieffer mode
frequency (Fig. 2d), which reads

_ 1 by,
QBS = E <ap — 305 b_s> y

and is determined by deviations from the global free energy minimum
in the direction of the target instability [see Methods]. Light polarized
in the x-direction drives the order parameter strongly in the direction
of a closely competing p, minimum in its free energy landscape, and

an

for Gaussian pulses centered at this frequency with widths on the order
of a few resonant periods (see Fig. 4e), the system is efficiently swit-
ched to the target metastable state. Figure 4d and e together reveal a
trade-off whereby the pulse needs to be short enough to allow for
strong dynamical inversion symmetry breaking while being wide
enough (i.e. spectrally sufficiently narrow) to avoid excitation of
quasiparticles across the gap (excitations that are not captured by
TDGL). The latter constraint leads us to detune the central frequency
of the Gaussian pulse to be slightly below Qgs, decreasing the spectral
overlap with the quasiparticle continuum while still maintaining a large
overlap with the BS mode. [See the Supplementary Material for further
details.]

We now turn to a realistic model of a conventional centrosym-
metric superconductor with strong spin-orbit coupling on the hon-
eycomb lattice, with a putative closely-competing triplet pairing
instability (Fig. 5a). This models the low-energy physics near the Dirac
points of several systems of recent interest, including kagome
superconductors®™%, honeycomb materials with large spin-orbit cou-
pling and recently-reported superconductivity’’®, and many moiré
heterostructures of transition metal dichalcogenides®**®. Rotation
symmetry and energetics dictate that the chiral triplet states A

prip =
% A, £ iApy are stable local free energy minima, while the nodal A,
and A, states individually are not. Figure 5c depicts the free energy

py . .y . . . . .
landscape with an equilibrium s-wave minimum and proximal p +ip

local minima. This is therefore a promising example of a truly meta-
stable non-equilibrium chiral superconducting state in a system with
conventional s-wave order in equilibrium.

The key parameter allowing singlet-triplet switching at first order
in the gauge field A(¢) is the coefficient Cf.j‘. in Eq. (5). For the honey-
comb model, up to first order in the spin-orbit coupling strength A, this
matrix element
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becomes a function of the (matrix-valued) non-Abelian Berry connec-
tion Ay = i(umk|akuunk). Since the energy eigenvalues of the
Hamiltonian are at order A? and higher, the dominant contribution to
C* for small A is therefore purely geometric in nature, controlled by the
Berry connection. Notably, this effect is distinct from quantum-
geometric corrections to the superfluid weight®”*®, and can be
equivalently expressed via the Fermi surface Berry connection at low
temperatures (see “Methods”).

To approximate the energetics in conventional but strongly
spin-orbit coupled superconducting systems,*’° we choose para-
meters so that the nearest neighbor hopping amplitude is 1eV, the
spin-orbit strength is 0.1 eV, the system is hole-doped with chemical
potential z=- 0.4 eV and the critical temperatures of the sand p + ip
states are ~10 K for effective renormalized interactions vs=-1.25¢€V,
vp=-2.3eV. In this scenario, the superconducting gaps are between
1-10 meV. The inertial coefficients l'ﬁjz) in Eq. (4) are set so that the
frequency of small amplitude oscillations of A; matches the expected
Higgs mode frequency, Q,-:2|Al(eq)|/h. This sets the time scale of
interest to be on the order of picoseconds, with relevant frequencies
between 1-10 THz. The time scale for relaxation (parametrized by
I'f.}) in Eq. (4)) is longer than the Higgs mode period by the dimen-
sionless factor ﬁ|Af.e‘”|3l, which in our case is about 10. Lastly,
assuming a lattice constant on the order of Angstroms, our results
call for peak field strengths on the order of ~100 kV/cm for ultrafast
pulses.

Figure 5 e reveals a broad region of pulse widths (0.1 ps) and
fluences (-1.0 mJ/cm?) that lead to successful switching from s to a
chiral triplet p + ip state via an ultrafast circularly polarized pulse. The
resulting order parameter trajectory in a subspace of the free energy
landscape is shown in Fig. 5c and illustrates key features of the
switching protocol, whereby the dynamical inversion symmetry
breaking kicks the order parameter in the vicinity of a chiral instability.
To allow the system to settle into one of the chiral p + ip states within
TDGL theory, we set a slight difference in their relaxation rates
(7, =1+ 6)n with 6=0.5). Though introduced as a phenomenological
parameter, one can expect this to arise microscopically from pump-
induced time-reversal symmetry breaking of the environmental
degrees of freedom that provide dissipation, an effect which is not
captured by TDGL theory. The chiral states are stable against fluctua-
tions in the amplitudes and relative phases of all competing order
parameters that are supported by nearest-neighbor pairing interac-
tions, providing a promising proof-of-concept for engineering a
metastable topological superconducting state.

Summary and outlook

We present light-induced dynamical inversion symmetry breaking as
a generic route to explore competing triplet pairing instabilities in
conventional superconductors with strong spin-orbit coupling.
Identifying a sub-gap odd-parity BS mode that couples linearly to
light, we find that driving this mode with a tailored two-color or
ultrafast light pulse can switch the system to a metastable uncon-
ventional superconducting state. We illustrate this mechanism for
minimal models of superconductors with closely competing pairing
instabilities.

Immediate future directions include searching for experimental
signatures of a sub-gap opposite-parity Bardasis-Schrieffer mode, in
addition to applying this methodology to realistic tight-binding
models of candidate materials, including 1T" WTe, and moire het-
erostructures of transition metal dichalcogenides. Following
experiments that use pump-probe microscopy to detect the con-
ventional Higgs mode via a linear scaling between pump intensity
and the amplitude of resulting gap fluctuations'*®, a simple optical
protocol may be to search for gap fluctuations scaling with the
square root of the pump intensity, indicating an amplitude mode
coupling linearly to light. Additionally, an intriguing open problem is

under what general conditions does a subleading stationary point in
the free energy become a local minimum. We have found that the
only examples of metastable states are Kramers partners with chiral
pairing, i.e. px+ip, order parameters in lattices where the p, and p,
orders are degenerate. It would be fruitful to further understand the
necessary conditions for a system to support a metastable super-
conducting instability. Another interesting direction would be to
model heating effects from irradiation with an ultrafast pulse,
accounting for microscopic mechanisms for heat dissipation not
included in our methods. Lastly, throughout this work we use
effective renormalized interaction strengths v; as phenomenological
parameters for emergent pairing at low energy scales. Detailed
modeling of these parameters in candidate materials, via renorma-
lization group treatments and incorporating RPA effects”, is an
important direction for future work.

Methods

Gap function equations of motion via quasiparticle dynamics
Quasiparticle equations of motion for a superconductor coupled to
light are derived for a generic BCS-like Hamiltonian

I:I = Z élT(aa hgﬁ(k) ékﬁa

kapo (13)
S Vg KD g
14 afa kat “—kB KB L K artr

kK aa' B8’

where ¢/, creates an electron in the state with momentum k, orbital
index a {1, ..., M}, and spin o € {*, {}. The dependence of the one-
body Hamiltonian hzﬁ(k) on spin encodes spin-orbit coupling that
reduces the SU(2) spin rotation symmetry to spin-z conservation. L
denotes the linear system size. We decompose the four-fermion
interaction vertex Vg, 5 (k, k) in terms of a set of orthonormal basis
functions {fﬁ,,ﬂ(k)},

Vaparp 6 K)= > 0 fhgK)f g (K). (14)
i

A standard mean-field decoupling of the interaction in the Cooper

channel introduces the superconducting gap function

1 A N
Bap®)= 75 D Vg (k. K) (e wpibear)
def K’ i (15
= Aifap),
i

where the components A; are classified in terms of the irreducible
representations of the crystal point group. The mean-field decom-
position of Eq. (13) can be written in Bogoliubov-de Gennes (BdG) form
as
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The equal-time Nambu Green’s function

gBdG def <ka ® l'l'lk>

(GRS

B (18)
(il )] - [(Eulia)]
obeys equations of motion (setting 71=1)
i0,G8 = [ ec,gpee). 19)
BdolH =M (HBdG) , 20)

where ng_p(X) = (1+exp(ﬁX))’1 is the Fermi-Dirac distribution func-
tion. Combined with the instantaneous self-consistency equation for
order parameters, this yields equations of motion for the gap function
in terms of the Heisenberg dynamics of the Bogoliubov quasiparticles.

Symmetry analysis of the Lagrangian

Suppose we demand that the Lagrangian be invariant under some
symmetry transformation on the order parameters A; and the gauge
field A*(o),

Aj — Dy AJ

(1)
AP RM AR

for tensors D and R. Let R be orthogonal (RT)*R*? = §*?) and choose

a basis for A; such that D is diagonal (D; = d;6;). One can then show

that,

ATH g 1
RIN dodyN )
/ 114% TV _ 3 g

RCMEYRTY = dydy My
N“ is nonzero if and only if d(,)d ;) is an eigenvalue of R, and M”” is
nonzero if d(,)d(,) is a product of two (not necessarily distinct) elgen
values of R. For example, if one considers C, rotational symmetry on a
lattice with n > 2, the constraints given by Eq. (22) yield the [ selection
rules discussed in Results.

Effective action from the path integral
We start with the partition function written in terms of an imaginary-
time path integral over the Grassmann fields ¢, ¢,

- / DI, Ple~ ColP1+Sudt), 23)
with a free-electron action given by,
_ B _ o
Sol@ 9= [ 4T Tuao [60p 0 +HipW|hger  29)
0 koap
and an interacting action given by,
— _ A 1 i —i ’
Swlfovl= [ drg Y ufikf)
0 KK qaafBi (25

x (pk +3at l/Lk +3B1 l/Lk' +18 (pk’ +dat-

As before, a, f denote orbital indices, o denotes a spin index, and v;
denotes the interaction decomposed into pairing channels. A
Hubbard-Stratonovich transformation” decouples S;, in the Cooper

channel in terms of auxiliary fields A; 4, A;—q,

iq’

L _ . — p
SW,W,AA = > W, (g—l):k,wkr’wn —ZAilqﬁTAi,,q, (26)
| S ;

kK w,

where the Nambu spinor W and Gor’kov Green’s operator G
defined in terms of their momentum components and Matsubara
frequency dependence as follows,

Y1y
g, | Prt 27)
« Yoy |
[
® <_iwn + ilkT)é‘q,O Z Ai,quk,i
-1 = ! 28)
(g ) k+$k-3 (

(—iwn — I{M)é‘qp

Note that here, k can be interpreted as the internal momentum of
a Cooper pair, while q corresponds to the external momentum. One
can then perform the path integral over the Grassmann fields W, W,
which gives,

ot
28 ofui
l

l

d
Z= /D[A A]exp{ln detg+ ZA,qﬁL. Ai,q}. (29)

Using Indet M = tr In M, this results in an effective action

_ _ B
Sefrld, A]= — tring™ =" A,-,qﬁy—'A,-‘_q. (30)
iq t
Expanding this to fourth order in A yields,
SulBAl= B9 S B, (~ %0 12 ) A
eff[ » ]_ﬁ Z iq _7[_ y(q) Y,—q
. V4 @31
A A 4
+pL4 Z > Ai'oAm’ol'lf.j,;m(O)AjloAnlo,
ij,mn

which, comparing to Eq. (5), allows one to compute the generalized
Ginzburg-Landau coefficients for completing orders as described in
Results.

Model details
Rectangular lattice model. Consider a rectangular lattice with hop-
ping amplitudes ¢, > t, > 0, on-site interaction U, and nearest neighbor
interaction U'. As discussed in the main text, breaking SU(2) symmetry
in a single-band model requires including a small the Zeeman splitting
due to a z-aligned magnetic field. The single-particle dispersion reads
€kg = — 2(t, cOsky +, COS k) + Azeeman SEN (0). (32)
When the Zeeman splitting energy Azeeman iS Nonzero, there are
separate spin-up and spin-down Fermi surfaces, making it difficult to
define singlet/even order parameters and triplet/odd order para-
meters in this model. For this reason, we will consider the applied
magnetic field to be zero initially, only to be adiabatically turned on
before the optical pulse and adiabatically turned off after the optical
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Table 1| Basis functlons fi(k) that form a complete basis for
VkKk)=>v; f'(k)f (k') up to nearest-neighbor pairing inter-
actions on the rectangular lattice

Irrep. Pairing fi(k)

A Slocal 1

B Py V2sink,
B py V2sink,
A S V2 cosk,
A Sexty V2cosk,

Normalization is such that [ ngz f (k)fi(k):ﬁ,l.

pulse. We note that a small Azeeman has a negligible effect on the
Ginzburg-Landau free energy, but must necessarily be present to allow
coupling between singlet and triplet orders. Conversely, multiband
models discussed below allow for the inclusion of spin-orbit coupling,
obviating a magnetic field.

The form factors fi(k) for this model up to nearest-neighbor
interactions are tabulated in Table 1. There are three order parameters
in the A irrep (s-wave) and two in the B irrep (p-wave). In equilibrium,
the system settles into a combination of the three s-wave orders dic-
tated by the relative strengths of the on-site and nearest neighbor
interactions. For simplicity, we re-express these order parameters in
the eigenbasis of l'IEJ.Z’(O) [Eq. (7)], defining A, in the main text to be the
order parameter with tl;e lowezst eigenvalue. We then define |A;_ | in
Fig. 4c to be CHAS, L TAS
Honeycomb lattice model with spin-orbit coupling. We now con-
sider a honeycomb lattice with Kane-Mele spin-orbit coupling® as well
as effective on-site and nearest-neighbor attractive interactions,

Ao (k) — p &(k)
o — SO
(g ( vl g ) (33)
with nearest and next-nearest-neighbor hopping
gk)= — t; e ™ 2 (k)= sgn (o) ; sink-a,). 34

Here, A parameterizes the strength of spin-orbit coupling, 1 denotes the
chemical potential, ¢ denotes the hopping parameter, {d;} denotes the
three nearest-neighbor lattice vectors, and {a} denotes the three next-
nearest-neighbor lattice vectors (a;=d,-d3, a,=d;-d;, a3=d; - d,).
For the interaction term, we consider an on-site attraction U and
nearest-neighbor attraction U’, decomposing Vaﬁa,ﬂ/(k,k’) asin Eq. (14)
using the basis functions tabulated in Table 2. Setting U = U’, the A, state
is found to have the highest critical temperature, followed by two
degenerate p, and p, states. These have a d-wave k-space structure, but
are odd under sublattice exchange and have angular momentum [/=+1.
Chiral superpositions are abbreviated as = (A +iA ) =0,
BS mode frequency and free energy barrier between two order
parameters. The Lagrangian [Eq. (4)] results in Euler-Lagrange equa-
tions of motion

(-ro; -

“>a> [A + BjmnBmly

+ NEAA(E)
M A (t)A"(t)] A

(35

where N = i%¢C; and MY = (i 2~'3) Dy are defined to absorb factors
Oflze from mmlmally substltutmg V”—>V” +12‘3A"(t) into Eq. (5) and
assuming spatially-homogeneous order parameters and irradiation.

Table 2 | Basis functions'firﬂ that form a complete basis for

Vopap(k K)= Z,-v,-ffw(k)?;, 5 (K) up to nearest-neighbor pairing
interactions on the honeycomb lattice

Irrep. Pairing ffz@ k)

Aig s B (1 0)
V2

A1g Sext a1 (7 S en(k)>
V2 fs ext(k) 6]

Eqy Px a de y2 (k)
ﬁ Z Z

o Py 1 fq, (k)
& (k) 0

E1g dxz,yz , fd2 Z(k)
ﬁ 2 2

Eig dyy 1 fd (k)
VE\fy, (k)

B1u f1 B ]
v2\ 0 —1

o " 2% 0 3®)
2\ fo a0 O

foex(k)= eflkd‘ b }e*’k dy }e—:k dy

Fo_, (0= Be ™ — Jo ke _ 3 gy

= _ 1 gkd, 1 o-ikd,
fdxy (k) e 7€

Focusing on the simplest case of two competing order
parameters that are only coupled at linear order in A“(¢) (e.g. s-wave
and p,-wave), the free energy for two order parameters can be written
concisely as,

1 1
BF® = a)|A 1+ 2b1|A1|4 + A, + 2bzmzr‘
(36)
1 -2, -2
+ by (4|A1\2|A2|2 +A1A§+A2Af>,

where q; = A;, b; = B;;, and by, equals any fourth-order coefficient
coupling two A’s and two Ay’s (these are all equivalent in this case).
This is in agreement with Ref. 72. Assuming the system is initially in the
equilibrium state, AY=./—a,/b;,AYY=0 (assume overall phase
equals zero without loss of generality), the equation of motion for A,
up to linear order in A, and A“(¢) is given by,

— m0)8,(8) = M Dy (1) + A ONB ALY
+ O(A@D) 2, 18,(0P),

(—Vz 37)

where y, =2, n, =I'}) (we assume the inertial and damping coeffi-
cients are diagonal), and M is given by,

M>=a, — 3allz =y,07%. (38)
One can formally integrate this equation of motion as,
dw elt ~#
1 A(eq)
BO=NHA™ [ 50 V0% — M — i’lzwA (@), (39)

which yields a resonant response when w? = Q* = M?/y,. We identify this
as the BS mode frequency Qgs. One can also derive from Eq. (36) the
free energy barrier between the two states by finding the saddle point
surrounded by the A; minimum, the A, minimum, and the A;,=0
maximum. The free energy difference between this saddle point and
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the global minimum is given by,

_ a3b, +a3b, — 2a,a,b,,(2 + cos ) . a@
barrier — 2 2b,’
(9+8cos @+ cos2¢)by, — 2b,b, 1

(40)

where ¢ = arg (A,/A,) is the relative phase between the two order
parameters. For successful switching, the time-integrated pulse must
supply enough kinetic energy ~ %yz\atAZF to overcome this free
energy barrier. Since the matrix element fj’ 1o C’i}f depends linearly on
the spin-orbit coupling strength A (for small 1), we expect the requisite
fluence for switching to scale as - (¢/1)* (where t is the nearest-neighbor
hopping amplitude).

Cf.J‘. in terms of the Fermi surface Berry connection. Assuming the
chemical potential exists in a band with Bloch functions |u ), and
dispersion & (measured with respect to the chemical potential) with a
large gap Ag,p, to all other bands that we formally take to infinity,

; 2 Béx
J_id [ @k tanh& -
1=3 ]y 2 2l PO ) “0
AL = (] ) ((a“uk|fj|uk) - (uk\fj\a“uk)) )

— (0wl ) — (w610 ) ) an )

In the B~ « limit, the integrand diverges at the Fermi surface,
meaning the dominant contribution to Cﬁ.j‘. atlow temperatures and low
spin-orbit strengths comes from the geometry of the Bloch states at
the Fermi surface.

Data availability
Data sets are available from the corresponding author on request.

Code availability
Codes are available from the corresponding author on request.
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