
Article https://doi.org/10.1038/s41467-024-47811-6

Spike-based dynamic computing with
asynchronous sensing-computing
neuromorphic chip

ManYao 1,12,OleRichter 2,12, GuangsheZhao3,12, NingQiao2,4,12, YannanXing4,
Dingheng Wang5, Tianxiang Hu1, Wei Fang 6,7, Tugba Demirci2,
Michele De Marchi2, Lei Deng 8, Tianyi Yan 9, Carsten Nielsen2,10,
Sadique Sheik2, Chenxi Wu2,10, Yonghong Tian 6,7, Bo Xu1 & Guoqi Li1,11

By mimicking the neurons and synapses of the human brain and employing
spiking neural networks on neuromorphic chips, neuromorphic computing
offers a promising energy-efficient machine intelligence. How to borrow high-
level brain dynamic mechanisms to help neuromorphic computing achieve
energy advantages is a fundamental issue. This work presents an application-
oriented algorithm-software-hardware co-designed neuromorphic system for
this issue. First, we design and fabricate an asynchronous chip called “Speck”, a
sensing-computing neuromorphic system on chip. With the low processor
resting power of 0.42mW, Speck can satisfy the hardware requirements of
dynamic computing: no-input consumes no energy. Second, we uncover the
“dynamic imbalance” in spiking neural networks and develop an attention-
based framework for achieving the algorithmic requirements of dynamic
computing: varied inputs consume energy with large variance. Together, we
demonstrate a neuromorphic system with real-time power as low as 0.70mW.
This work exhibits the promising potentials of neuromorphic computing with
its asynchronous event-driven, sparse, and dynamic nature.

Resource and energy constraints are the major restrictions to
deploying traditional AI methods, especially in real-world edge plat-
forms. A promising solution with an attractive low-power feature is
neuromorphic computing, which is partially inspired by the human
brain that runs even more complex and larger neural networks with a
total energy need of just 20W1–4. By abstracting the computations in
the human brain at the neuron and synapse level, existing neuro-
morphic platforms, such as the classic BrainScales5, SpiNNaker6,
Neurogrid7, TrueNorth8, and themost recent Darwin9, Loihi10, Tianjic11,

have demonstrated impressive energy efficiency via spike-based
communication and computing. However, whether this level of
abstraction2,12,13 is the most suitable approach for emulating the effi-
cient computationof thebrain, and the role that high-level stereobrain
mechanisms can play in neuromorphic chips, are challenges thatmust
be addressed at this stage”.

An important function of the human brain is the ability to
dynamically allocate its resources according to the required demand,
which is what we call “dynamic computing” due to the attention

Received: 16 October 2023

Accepted: 12 April 2024

Check for updates

1Institute of Automation, Chinese Academy of Sciences, Beijing, China. 2SynSense AG Corporation, Zurich, Switzerland. 3School of Automation Science and
Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China. 4SynSense Corporation, Chengdu, Sichuan, China. 5Northwest Institute of Mechanical &
Electrical Engineering, Xianyang, Shaanxi, China. 6School of Computer Science, Peking University, Beijing, China. 7Peng Cheng Laboratory, Shenzhen,
Guangdong, China. 8Center for Brain-Inspired Computing, Department of Precision Instrument, Tsinghua University, Beijing, China. 9School of Life Science,
Beijing Institute of Technology, Beijing, China. 10Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland. 11Key Laboratory of
Brain Cognition and Brain-inspired Intelligence Technology, Beijing, China. 12These authors contributed equally: Man Yao, Ole Richter, Guangshe Zhao,
Ning Qiao. e-mail: guoqi.li@ia.ac.cn

Nature Communications | (2024) 15:4464 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0904-8524
http://orcid.org/0000-0002-0904-8524
http://orcid.org/0000-0002-0904-8524
http://orcid.org/0000-0002-0904-8524
http://orcid.org/0000-0002-0904-8524
http://orcid.org/0000-0001-5399-8992
http://orcid.org/0000-0001-5399-8992
http://orcid.org/0000-0001-5399-8992
http://orcid.org/0000-0001-5399-8992
http://orcid.org/0000-0001-5399-8992
http://orcid.org/0009-0009-4409-0312
http://orcid.org/0009-0009-4409-0312
http://orcid.org/0009-0009-4409-0312
http://orcid.org/0009-0009-4409-0312
http://orcid.org/0009-0009-4409-0312
http://orcid.org/0000-0002-5172-9411
http://orcid.org/0000-0002-5172-9411
http://orcid.org/0000-0002-5172-9411
http://orcid.org/0000-0002-5172-9411
http://orcid.org/0000-0002-5172-9411
http://orcid.org/0000-0002-2674-4134
http://orcid.org/0000-0002-2674-4134
http://orcid.org/0000-0002-2674-4134
http://orcid.org/0000-0002-2674-4134
http://orcid.org/0000-0002-2674-4134
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://orcid.org/0000-0002-2978-5935
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47811-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47811-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47811-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47811-6&domain=pdf
mailto:guoqi.li@ia.ac.cn

mechanism14,15. Salient stimuli tend to receive greater attention, pri-
marily manifested in the heightened spiking activity of brain regions
or neurons associated with the stimulus16. Incorporating the high-
level dynamic computing nature of the human brain into machine
intelligence is very challenging. Specifically, dynamic computing
encompasses two connotations: energy consumption is minimal
when there is no input, while it significantly varies with input changes.
With these understandings as the anchor, we present an application-
oriented algorithm-software-hardware co-designed neuromorphic
system to investigate the dynamic and sparse computing of spike-
based machine intelligence in our newly designed and fabricated
neuromorphic chip.

To achieve the hardware requirement of no-input consumes no
running energy, we design and fabricate the “Speck” (Fig. S1) with the
size of 6.1mm×4.9mm, a spike-based and fully asynchronous neu-
romorphic chipwith lowprocessor resting power (only0.42mW). The
fully asynchronous architecture of Speck, which renders computing
capacity solely dependent on input data, constitutes the key factor
behind its persistent “always-on” profile. In this paradigm, the neuro-
morphic chip no longer needs the global or local clock signal, which
efficiently prevents the redundant power consumed by clock empty
flips. In other words, the asynchronous design can be understood as
the most extreme form of fine granular clock gating for every com-
ponent in the processing pipeline while being instantly available,
requiring no wake-up procedures17. Meanwhile, by integrating the
DVS18–20 as the “eye” of the chip, Speck becomes the sensing-
computing neuromorphic System on Chip (SoC). The DVS asynchro-
nously and sparsely generates a stream of events (binary spikes with
addresses) when the brightness of the visual scene changes. The pro-
cessor in Speck only operates when receiving incoming events, lever-
aging its hardware circuit design to enable asynchronous event-driven
distributed convolution processing of spike trains. Remarkably, the
entire system processes a single spike with an ultra-low latency of only
3.36μs. This collaborative philosophy between neuromorphic hard-
ware and applications perfectly encapsulates the essence of dynamic
computing. It empowers Speck with distinct advantages in scenarios
with stringent power and latency requirements, such asmobile devices
and the Internet of Things.

In the context of spike-based computing, it is commonly believed
that computation is triggered exclusively by input spikes. With each
input, only a subset of the network becomes activated, resulting in the
activation ofmultiple sets of spiking neurons. Therefore, it is natural to
believe that varied inputs consume different energy in SNNs. However,
we uncover a phenomenon called “dynamic imbalance” that com-
monly exists but has been ignored for a long time in SNNs, i.e.,
although spiking neurons are selectively and sparsely activated, spik-
ing networks respond similarly to different inputs. Specifically, we
observe that spiking firing rates in vanilla SNNs at each timestep are
very similar, which indicates that the scales of the activated sub-
networks are similar for diverse input. It implies the connotations of
dynamic computing referring to “varied inputs consume energy with
large variance” usually does not hold in SNNs. Consequently, the
dynamic computing advantage that neuromorphic system naturally
have is undermined. To address this issue, we design an attention-
based dynamic framework, which can assist SNNs in regulating spiking
responses according to the importance of input discriminatively.

To efficiently deploy algorithms/models for various dynamic
vision applications, Speck provides a complete software toolchain,
including datamanagement,model simulation, hostmanagement, etc.
This enables us to demonstrate the attractive features of the proposed
neuromorphic system in accuracy, energy cost, and latency. To this
end, dynamic SNNs are evaluated on four demanding event-based
action recognition benchmarks. Extensive experiments show that the
attention nature of the brain, data-dependent dynamic processing
currently underappreciated in SNNs, can confer sparser firing and

better performance to SNNs concurrently. By deploying the dynamic
SNNs to Speck, we demonstrate a high-accuracy neuromorphic system
with real-time power as low as 0.70mW and ultra-low latency of less
than 0.1ms on a single sample in public datasets. The practice in this
work demonstrates the power of the neuromorphic chip in dynamic
computing, expands a creative path for the development of neuro-
morphic computing, and pushes neuromorphic computing a big step
toward real-world applications.

Results
Dynamic computing is an emerging topic in deep learning21. Dynamic
neural networks can adapt their computational graphs (activated
structures) to the input at the inference stage, thus holding more
attractive properties than static ones, such as performance, compu-
tational efficiency, etc. From the perspective of dynamic computing,
neuromorphic and traditional AI systems are two completely different
paradigms. Neurons in SNNs communicate through spike (0-nothing
or 1-spike) trains, while neurons in traditional Artificial Neural Net-
works (ANNs) exchange information using continuous values (Fig. 1a).
Consequently, spike-based neuromorphic computing naturally has a
dynamic computational graph, with often only a small percentage of
the overall spiking neurons being active at any moment and the rest
being idle. In contrast, traditional computing, such as ANNs working
onGPUs, is controlled by static computational graphs. Even if all inputs
or activations of ANNs are zeros, the network must perform all
operations (Fig. 1b). To realize dynamic computing in traditional AI,
researchers have designed various dynamic algorithms21–23.

However, the energy-efficiency advantages of dynamic comput-
ing in real AI systems remain theoretical for now. Hardware is the first
and most challenging obstacle to overcome. The power required to
run an AI system usually consists of two components, resting and
running power. The former is determined by the hardware design,
while the latter depends on the model deployed when the hardware is
fixed (Fig. 2a). The greatmajority of hardware, whether neuromorphic
or traditional, employs a significant amount of energy even when no
computing is being done. Suppose the ratio of resting power to the
overall power is too high, it is illogical to expect the total power can be
lowered by dynamic algorithm design that decreases the running
power only (Fig. 2b, c).

Even considering only the running power, gaining the benefits of
advanced dynamic algorithms on hardware is challenging. For tradi-
tional AI systems, there will inevitably be a gap between dynamic
algorithms and hardware practical efficiency when running dynamic
sparse patterns (e.g., indexing, weight-coping) on dense computing
hardware21. For neuromorphic AI systems, they are theoretically born
with a form of dynamic computing that only activates a subset of
spiking neurons for any input. However, an overlooked fact is that
vanilla SNNs don’t possess the function of dynamic computing (i.e.,
dynamic imbalance), which requires discriminative responses to ‘easy’
or ‘hard’ inputs. Specifically, we observe that the Network Spiking
Firing Rate (NSFR) of SNN is almost constant throughout timesteps
(Fig. 1c). We argue that SNNs’ spatio-temporal invariance24,25, which
exploits the same weights for each location across all timesteps, is the
underlying cause of this phenomenon (Fig. S2). This sharing weakens
the potential energy benefit of dynamic computing (Fig. S3), despite
increasing the parameter utilization efficiency. In this work, we present
a neuromorphic system that practices and demonstrates the power of
dynamic computing.

An always-on sensing-computing neuromorphic SoC – Speck
Most neuromorphic hardware design begins from the bottom of the
compute stack, i.e., the materials and devices, and it is then the
developer’s responsibility to map corresponding algorithms and
applications onto the hardware2. Contrarily, the design ethos of Speck
is that neuromorphic hardware deployed at the edge may be tailored

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 2

to operate with one particular application and have a focus point
(Fig. 2e), such as low power or latency. Then, the shining unique
benefits of neuromorphic computing might be able to speed up the
development of the technology.

As an integrated sensing-computing neuromorphic SoC, Speck
(Fig. 2d, Fig. S1, Table S1) combines a 128 × 128-pixel DVS with an
asynchronous spike-based neuromorphic AI chip. Speck contains
328 k spiking neurons, with an integration level of 11,000 neurons per
square millimeter. Its processing pipeline is built with asynchronous
digital logic26, thus enabling always-on low resting power consumption

(Fig. S6, Table S2) and optimum latency. Specifically, asynchronous
logic is built using a cascade of asynchronous circuit blocks that
communicate via a request/acknowledge protocol when transferring
data, without requiring a global clock. As soon as the data is accessible
at its input port, each block independently calculates its output value.
Thus, no running power from logic gates is employed when the
asynchronous pipeline is idle.

Nonetheless, asynchronous logic is far less used than synchro-
nous digital logic in Von-Neumann processor architecture imple-
mentations. The primary cause is that the design and implementation

a

b

Neuromorphic
compu�ng
(Hardware)

Neuromorphic chips

Neuromorphic
compu�ng

(Vanilla algorithm)

Neuromorphic
compu�ng

(Dynamic algorithm)

Spiking neural networks (SNNs) Ar�ficial neural networks (ANNs)

“Easy” input “Hard” input “Easy” input “Hard” input

Dynamic computa�onal graph
(Dynamic imbalance) Sta�c computa�onal graph

A�en�on-based dynamic
framework

Data-dependent
processing

Gap between
Algorithm Design

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

0

0.4

0

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

0.5

0.7

0.2

TrueNorth Tianjic

IA

IA

IA

Loihi CPU GPU

Dynamic structure

General-purpose chips

Dynamic SNNs Dynamic ANNs

Tradi�onal
compu�ng

(Vanilla algorithm)

Tradi�onal
compu�ng

(Dynamic algorithm)

Gap between
Theore�cal & Prac�cal

Efficiency

Tradi�onal
compu�ng
(Hardware)

“Easy” input “Hard” input “Easy” input “Hard” input

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF
1 (spike)

0 (no-spike)

0 (no-spike)

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

1 (spike)

1 (spike)

1 (spike)

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

1 (spike)

0 (no-spike)

0 (no-spike)

LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

1 (spike)
LIF

LIF

1 (spike)

1 (spike)

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

0

0.4

0

0.5

0.7

0.2
ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Synapse

Soma

Output spikes

Pre-Spikes
1 0 1s

0 1 0

Synap�c accumulate (AC)

Spiking neuron

Ac�va�on

SynapsePre-ac�va�on

x

Y

Mul�ply-and-Accumulate (MAC)

SomaAr�ficial neuron
Threshold

Speck

c
LIF

LIF

LIF

LIF

LIF

LIF

LIF

LIF

SNNs (Spa�o-temporal invariance)

Layer 1 Layer 2 Layer 3

t=1

t=36

Event stream

…

Network Spiking Firing Rate (NSFR) of vanilla SNN at each �mestep
(Dynamic imbalance)

Output
(spiking response)

Fig. 1 | Neuromorphic computing vs. traditional computing from the view of
dynamic computing. a Spiking neuron vs. Artificial neuron. Left: spiking neurons
communicate through spike trains coded in binary spikes, and themajor operation
is synaptic Accumulation (AC) between weights. Right: neurons in ANNs commu-
nicate using activations coded in analog values, and Multiply-and-Accumulate
(MAC) of inputs and weights is the major operation. b From a dynamic computing
perspective, we compare neuromorphic and traditional computing in three
aspects: vanilla algorithm (top), dynamic algorithm (middle), and hardware (bot-
tom). In traditional computing (right part), vanilla algorithms generally hold a
static, fixed computational graphmanner. Although some neurons have activation
values of zero, all zero-basedMAC operationsmust be performed. By adapting the
structures of static models to different inputs, dynamic ANNs can lead to notable
advantages in accuracy and computational efficiency. However, traditional

computing hardware is mostly optimized for static models and not friendly to
dynamic networks, and there is a gap between the theoretical and practical effi-
ciency of dynamic ANNs21. In neuromorphic computing (left part), SNNs are born
with dynamic computational graphs, and neuromorphic hardware is naturally
suitable for SNNs. However, we observed the dynamic imbalance in SNNs, which
respond similarly to diverse inputs. c Dynamic imbalance. SNNs satisfy dynamic
activation forms but are not good at dynamic functions, i.e. responding dis-
criminatively. Spatio-temporal invariance (Figs. S2, S3) is the fundamental
assumption of SNNs because they share parameters at different timesteps. Con-
sequently, LSFRs (definition is given in Part “Details of algorithm evaluation'') at
each timestep is similar, which indicates that the scales of the activated sub-
networks of SNNs are similar for diverse input.

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 3

of asynchronous circuits are more complicated. To tackle this chal-
lenge, we optimized the overall sensing to computing strategy with
event streams in the dynamic visual scene, and thus we can take full
advantage of the spike nature of the data and themodular architecture
of the chip to perform flexible, efficient event-driven computing.
Specifically, Speck comprises a central event router that can be con-
figured to route events from any to any of the 9-SNN cores, where
every core can work independently and asynchronously (Fig. 2g).
Consequently, the design effort is limited to a single SNN core (Fig. 2h)
but can be scaled to design larger hardware. Moreover, asynchronous
event-driven convolution is also one of the core designs to improve
computational efficiency (Fig. 2i, Fig. S4).

Attention-based dynamic framework for SNNs
It has long been known that the brain’s dynamic visual responses are
associated with both external visual stimuli and the brain’s internal
attention mechanisms. Some brain attention-based stimulus-related
functional modulations are easily described15,16. Attention is a limited
resource, and brains typically respond more favorably to a preferred
stimulus while inhibiting a non-preferred stimulus. These functional
processes are mainly reflected in the activeness of the spikes in the
brain. On the other hand, as a powerful and complicated brain
mechanism, attention stereoscopically acts on diverse neural levels. In

Fig. 3a, we roughly divide neural correlates of attention into four
structural levels. These prior understandings of visual attention in
neuroscience provide us with a lot of inspiration for designing
dynamic SNNs.

Our goal is to mitigate the dynamic imbalance of SNNs so that
they can react to varied inputs more discriminatively. In the human
brain, attention controls the neuronal activity to perform this goal.
Inspired by this, the basic idea of the proposed dynamic framework is
tomodify the spiking response by optimizing themembrane potential
because spiking neurons determine whether to fire based on whether
the membrane potential exceeds a threshold. In our previous
work25,27–29, we implemented the attention through additional plug-
and-play modules, including independent or coupled three dimen-
sions of temporal, channel, and spatial, to learn “when”, “what” and
“where” to focus on. These attention modules first capture global
information of different dimensions and then use them to model the
relative importance between different input moments, channels, or
locations. The attentionmodules finally output the attention scores (a
value between0 and 1), which are exploited to optimize themembrane
potential.

To facilitate the deployment of attention SNNs on neuromorphic
chips, we summarize existing methods25,27–29 into a general attention-
based dynamic framework. Figure 3b, c show the LIF-SNN layer and

DVS camera +
Asynchronous

neuromorphic chip

Speck

Asynchronous event-driven convolu�on

Output neurons

Convolu�onal weights

Input event
[polarity, x, y]

Address mapping
func�on

Neuron
address

Synapse
address

Asynchronous
convolu�on

Bias
memory

Kernel
memory

Linear processor

Input
spikes

Output
spikesFetch

neuron data
Threshold
compare

Fetch
neuron dataNeuron

memory

Nonlinear processor

SNN core microarchitectureElectrical Characteris�cs

Memory device

Chip architecture
(Asynchronous/ Synchronous)

…

Total power

Res�ng
power

Running
power

Brain-inspired algorithm

Network compression

Network architecture

Dynamic algorithm…

Advanced
dynamic

algorithm design Power
savings via
advanced
algorithms

Res�ng power

Running power

Total power Total power

Res�ng power

Running power

Low res�ng power + Advanced algorithm Applica�ons scenarios of
always-on hardware

Smart robot Smart home

Smart travelInternet of things

…

Sensing-compu�ng
end-to-end SoC

• Low-power

• Low-latency

Dynamic visual
percep�on

Asynchronous
neuromorphic chip

Fusion

• High dynamic range

• μs-level temporal
resolu�on

…

a

c

d

e

f

h

i

b High res�ng power + Advanced algorithm

Res�ng power

Running power

Total power

Res�ng power

Running power

Total power
Advanced
dynamic

algorithm design

Power
savings via
advanced
algorithms

g The fully asynchronous architecture of Speck
(Non-von Neumann)

128x128
Dynamic Vision

Sensor (DVS)

Network on Chip (NoC)

Readout
core

SNN
core0

Pre-processing + DVS
noise filter

Input asynchronous
interface

SNN
core1

SNN
core7

SNN
core8

…

Fig. 2 | The design details of Speck. a The power composition of AI systems. b The
case of high resting power.When the resting power is too high, the gain brought by
the advanced algorithm design is hard to lower the total power effectively. c The
case of low resting power. Low resting power helps unleash the power of advanced
algorithm design. d Speck physical display. e Speck is a sensing-computing end-to-
end SoC that integrates DVS and asynchronous neuromorphic chip. f Typical
application scenarios of always-on Speck. g The fully asynchronous architecture of
Speck. The DVS events come from the on-chip sensor. After an asynchronous event
pre-processing core, events can be routed to SNN cores for processing. In Fig. S1,

we give the layout of Speck. h The SNN core microarchitecture (more details in
Fig. S5). Each SNNcore canbe simply considered as a spiking convolution layerwith
an integrated pooling layer. When a spike (event) is received at the input of the
core, a fully asynchronous convolution operation is performed to calculate all
requiredneuron updates causedby the received input spike. iAsynchronous event-
driven convolution. Based on the address of the input event or spike, the address
mapping function outputs the address of the neuron and synapse that need to
perform synaptic operations (more details in Fig. S4).

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 4

dynamic SNN architecture, respectively. The proposed dynamic fra-
mework merges two classes of strategies, attention-based refinement
andmasking. In the refinement part,membranepotential optimization
is realized by refining intermediate featuremaps through the attention
scores. Some not essential maps or inputs can be directly masked out
in side the masking process. The dynamic framework takes the fol-
lowing form (see more details in “Methods” section):

U Wτðθ,UÞ � U, ð1Þ

where U is the membrane potential, Wτ(θ, U) represents the input-
dependent dynamic optimization factors generated by the policy
function τ(θ,U), θ are parameters in the policy function,⊙ denotes the
element-wisemultiplication. τ(θ,U) has a huge design space, including
policy dimension and location, attention design, masking method.
Optimizing the membrane potential distribution by the dynamic
framework is mathematically equivalent to dynamically adjusting the
weights according to the input, thus effectivelymitigating the dynamic
imbalance caused by the spatio-temporal invariance25.

Evaluation of neuromorphic system in terms of dynamic
computing
We evaluate the dynamic SNN algorithm using four event-based
benchmark datasets. DVS128 Gesture30, DVS128 Gait-day31 and
DVS128 Gait-night32 are recorded by a DVS128 camera. As the data-
set’s name implies, Gesture comprises hand gestures, Gait-day col-
lects human gaits during the daytime, and Gait-night is a mated
dataset for Gait-day that contains gaits at night in challenging light-
ing settings. Another dataset, HAR-DVS33, is currently the largest
event-based Human Activity Recognition (HAR) dataset with more
than 100K samples. Some samples of these datasets are shown
in Fig. 4a.

We are especially interested in what happens to the model’s
accuracy and spiking when we switch from vanilla to dynamic SNNs.
Our framework outperforms a variety of baseline network scales
(Table S5), where results on Gesture, Gait-day, and Gait-night are
presented, and we exploit the same structure for all datasets, a light-
weight baseline network with a three-layer Conv-based LIF-SNN27. We
employ two attention dimensions - temporal and channel. Throughout

Re�na

V1

V2
V4

IT

LGN

A�en�on neural circuit

Bo�om-up a�en�on
(Saliency map)

Top-down a�en�on
(Priority map)

PFC

Eye movement

PPC

SC

Prior
knowledge

Visual areas

Neuron

Synap�c: Enhanced weighted

Intermediate
features

Feature
combina�on

Synap�c: Diminished weighted

Top-down a�en�on circuit
Bo�om-up a�en�on circuit

Spiking firing of a
neuron

Spiking firing of
a visual area

Area-level: A�en�on modulates neuronal
firing in the spa�o-temporal domain at
various visual areas

Synap�c-level: A�en�on enhances synap�c
efficacy

Neuron-level: A�en�on alters the firing of
a single neuron in the temporal domain

Circuit-level: A�en�on makes the visual
neural circuit focus on salient informa�on

a

Temporal-wise
focus

Task: search
panda

…

1.1%

0.3%

A�en�on
consump�on

2.6%

A�en�on
consump�on

17%

A�en�on
power

(A�en�on is a limited resource)

Dynamically allocates
a�en�on based on

visual s�muli

…

b c

Conv

A�en�on-based dynamic framework

Conv

LIF LIF LIF…

Conv…

A�en�on-based
Refine (AR policy)

or A�en�on-based
Mask (AM policy)

Intermediate
features

…

Gate
(Mask)⨀

…

Temporal a�en�on

Channel a�en�on

AR feature
combina�on

A�en�on-dominated dynamic feature combina�on
(AR policy + Mask policy = AM policy)

…

AM feature
combina�on

…

Temporal forward propaga�on
Spa�al forward propaga�on

Spa�al input (spike tensor)

Spa�al output (spike tensor)

Temporal input

Temporal output

Intermediate feature

Timestep
Layer

Conv

LIF

Spiking neuron model:
Leaky Integrate and Fire (LIF)

A�en�on
consump�on

A�en�on
consump�on

Fig. 3 | Brain-inspired dynamic framework for neuromorphic computing.
a Attention-based dynamic response in neuroscience. The brain’s dynamic
responses are associatedwith visual attention. Since attention is a limited resource,
the brain only selectively processes a part of sensory input. The neural correlates of
attention can be roughly divided into four structural levels14,15. Attention neural
circuit. The top-down versus bottom-up dichotomy is one of the classic classifica-
tions of attention neural circuits, which encompass multiple visual areas63. Top-
down deploys the attention to internal, behavioral goals of the brain, which can be
present through the priority map. Bottom-up allocates attention according to the
physical salience of a stimulus, which the salience map can illustrate. Visual area.
The regulation of attention involves multiple brain areas, which generally results in
changes in neuronal firing rate within the areas15. Neuron. Attention-related

neuronalmodulations16. Recordings from individual cells have shown that attention
is associated with the change in neuron firing, which can enhance the quality of
sensory representations. Synaptic. Attention fine-tunes neuronal communication
by selectively modifying synaptic weights, enabling enhanced detection of
important information in a noisy environment34. b A typical spiking neuron model:
Leaky Integrate and Fire (LIF). c Attention-based dynamic SNNs. The proposed
dynamic framework exists as plug-and-play attention modules that optimize the
membrane potential in a data-dependent manner in both temporal and channel
dimensions. The dynamic framework provides two types of combinable strategies,
refinement, andmasking, to expand the strategy space and establish a better trade-
off between accuracy and energy consumption.

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 5

all ablation experiments, the only variable was whether the proposed
module was plugged into the vanilla SNNs.

Ablation studies are conducted in Fig. 4b–e. First, we solely
employ the Attention-based Refine (AR) policy on the Temporal and
Channel dimensions separately or simultaneously, denoted as T-AR, C-
AR, and TC-AR. We observe that refining policy can almost always
improve the performance (Fig. 4b) and drop the spiking firing (Fig. 4c),
whether executing on the single-dimensional or dual-dimensional.
Then, the impact of the mask policy is examined. Suppose α and β are
two hyper-parameters denoting temporal and channel masking

proportions. OnGesture, we iterate over all possible combinations ofα
and β range from 0 (i.e., only execute TC-AR) to 0.6, and report per-
formance and Network Average Spiking Firing Rate (NASFR, see strict
definition in the “Methods” section) in Fig. 4d, e. As mask proportions
rise, we see a decline in the model’s accuracy. Spiking firing, in con-
trast, is not sensitive to the masking proportions. Moreover, as shown
in Fig. 4f, the dynamic imbalance is effectively mitigated in dynamic
SNNs, and the NASFR is significantly decreased.

We explain these observations from two different angles. We
begin with the entire sample set and track the variations in the spiking

Fig. 4 | Analysis of dynamic SNNs regarding performance and spiking activity.
a Examples of event-based sample.b Effects of Attention-basedRefine (AR) policies
on accuracy. Optimizing the membrane potential in both temporal and channel
dimensions yields the best accuracy gain. c Effects of AR policies on spiking firing.
Exploiting attention to optimize themembrane potential can drop spikes. d Effects
of Attention-based Mask (AM) policies on accuracy. Increasing the masking ratios
will generally result in a loss of performance. e Effects of AM policies on spiking
firing. Adding the mask ratios does not always reduce spiking firing. f Spiking
responsesof vanilla anddynamicSNN.Theproposeddynamic framework alleviates
dynamic imbalance.gVisualizationof overall spiking responseonGait. From top to
bottom: spiking features in the first layer (64 channels) of vanilla, AR, and AM-SNN.

The redder the pixel, the higher NSFR (i.e., neuron spike firing rate, specific defi-
nition is given in Part “Details of algorithm evaluation''); the bluer the pixel, the
closer the NSFR is to 0. Attention drives the network to focus on the target and
suppress the redundant background channels, where the latter leads to a sig-
nificant reduction in spikes. h Structural and functional correspondence between
dynamic processing in neuroscience and dynamic SNNs on the network (circuit)-
level and layer (area)-level. When generating saliency maps, the proposed dynamic
framework recombines intermediate features according to their importance.
i Neuronal dynamics in vanilla and dynamic SNNs. j Optimizing the membrane
potential is mathematically equivalent to moderating the weights.

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 6

firing of vanilla and dynamic SNNs in Fig. 4g. We can observe that the
attention modules can adaptively inhibit the background noise (i.e.,
the red area, the darker the red, the higher the firing rate of spiking
neurons), thereby reducing the number of spikes. Then, we examine
the response of the vanilla and dynamic SNNs to the same single input
sample. As depicted in Fig. 4h–j, we demonstrate that dynamic pro-
cessing in neuroscience and dynamic SNNs are closely related to both
structurally and functionally. Specifically, at the network (circuit)-level,
we averaged the 4D ([T, C, H, W]) spiking features into a 2D map over
the temporal and channel dimensions. The 2D maps represent the
average spiking firing rate of SNNs and are thus considered saliency
maps. Dynamic SNNs exhibit a more pronounced enhancement of the
essential information region and a significant suppression of the
background noise region, particularly in the final two layers. We can
tell that the saliencymap improves becauseattention suppresses some
noisy intermediate channels by looking at the spiking responses of
each layer (Area)-level channel. We also display the membrane
potential dynamics of a single spiking neuron at the same location in
both vanilla and dynamic SNNs for the identical input (neuron-level,
Fig. 4i). The membrane potential of spiking neurons is optimized by
attention, which influences firing.

We then evaluate dynamic SNNs on Speck. A complete neuro-
morphic system can be built based on Speck (Fig. 5a). The software
toolchain (Figs. S8, S9, Table S3) provided by Speck makes it efficient
to deploy SNN algorithms. Users only need to exploit the program-
mable framework Sinabs to train themodel and thenmap it directly to
Speck. We show a complete solution for employing Speck as edge
computing devices for smart home application scenarios in Fig. S10.
Furthermore, Speck can be easilymatched with other external devices
for algorithm and application testing (Fig. S11).

We test dynamic SNNs on Speck based on Gesture30/Gait-day31/
Gait-night32 datasets to facilitate comparison with other works. We
modified the dynamic framework to enable the smooth deployment of
dynamic SNNs. The most significant change is how to apply temporal-
wise attention (Fig. 5b, c). An underlying assumption in the proposed
dynamic framework in Fig. 3d is that we must first gather information
at all times, forcing temporal-wise attention to only function offline. To
break this assumption and fully utilize Speck’s always-on, we here only
employ temporal-wise attention at the input layer to judge whether
event streams within a certain temporal window are needed. The
temporal-wise attention scores are exploited to mask some inputs
directly. For simplicity, themasking ratio in all trials is set to 0.5, which
means that only half of the input is retained.

In Table 1, we show the results of deploying vanilla and dynamic
SNNs on Speck and GPU regarding accuracy, power, and latency. We
first focus on comparing the same SNN model running on GPU and
Speck. The total power and latency required to run a single sample on
Speck are much less than running on a GPU. Speck can process event
streams in mW-level power with almost no latency. By contrast, run-
ning the same model on a GPU requires thousands of times more
power (e.g., 30079mW vs. 3.8mW on Gesture) with tens of milli-
seconds of latency. We found that there is only a little loss of accuracy
when the same model is deployed on Speck and simulated on GPU.
Note, since we use public event-based datasets, the power reported in
Table 1 only involves the processor part of Speck and does not include
the DVS camera part of Speck.

The processor resting power is a key point that affects the total
energy consumption of the hardware. The GPU consumes 30W of
power even when it is not processing any jobs, which is far more than
the running power necessary to process a single sample. These
experimental findings verified our earlier claim that a sufficiently low
resting power is a prerequisite for dynamic computing. In contrast,
neuromorphic systems based on Speck are ideal for performing
dynamic computing (processor resting power is only 0.42mW, details
are given in Part “Chip performance evaluation” of “Methods” section).

Asynchronous event-driven paired with dynamic SNN input masking
allows Speck to reduce energy consumption by 3× and significantly
improve accuracy (Table 1). For instance, masking half of the input on
Gesture drops spikes by 60.0%, reducing the total power from 9.5mW
to 3.8mW (the lowest power sample consumes only 0.70mW), but
boosting accuracy by +9.0%.

Speck provides real-time power consumption monitoring that
generates data every ms. The majority of Speck’s real-time power is
composed of RAM and Logic power (Fig. S6). It can be simply con-
sidered that the former is the power of data reading and neuron state
update, and the latter is the power of synaptic operation. The sum of
the two is the total power of the chip. We present a typical case in
Fig. 5e, f, the real-time power of the same sample in vanilla and
dynamic SNN. To make observation easier, we average the blurred
lines on the background every 20ms to obtain a clear solid line. On
vanilla SNN, we can clearly observe the dynamic imbalance in that the
real-time power changes little at all moments. Moreover, we see that
the resting power of Speck is almost zero, which is fantastic for edge
computing devices that must be left on for extended periods of time.
In particular, when the input ismasked in the dynamic SNN, Speckonly
costs the resting power. The power curve in Fig. 5f is more fluctuating
compared to the vanilla SNN in Fig. 5e, and the peak and total power
also drop greatly.

Discussion
Although dynamic computing possesses bio-plausibility and fascinat-
ing properties such as accuracy, adaptiveness, and computational
efficiency, these advantages currently exist only in theory. To truly
demonstrate the power of sophisticated dynamic computing with
machine intelligence, top-level design of the entire AI system is indis-
pensable. In this work, we have shown an application-oriented
algorithm-software-hardware co-designed neuromorphic system that
naturally and subtly embodies the unique advantages of dynamic
computing regarding energy consumption, output latency, and task
accuracy. We have presented a sensing-computing asynchronous
neuromorphic SoC like an eye-brain integrated system to realize
attention-based dynamic computing.

At the algorithmic level, we have revealed that brain-inspired
spiking communication makes SNNs inherently capable of dynamic
computing. Still dynamic imbalance caused by another fundamental
assumption of SNNs, spatio-temporal invariance, undermines this gift.
Inspired by the attention-based dynamic response mechanism in the
human brain, we proposed dynamic SNNs, which combine the
attention-based dynamic framework with vanilla SNNs to improve the
ability to focus on important information so that varied inputs con-
sume energy with large variance. Experimental results show that
dynamic SNNs can simultaneously achieve the two main considera-
tions for realizingmachine intelligence - effectiveness and efficiency28.
We were pleasantly surprised to find that dynamic SNNs correspond
well to the attentionmechanisms in the human brain both structurally
and functionally15. Attention stereoscopically regulates the firing of
spikes in the brain’s neural circuits, brain regions, andneurons, and the
dynamic framework assists the vanilla SNNs in comprehensively opti-
mizing the spike firing of networks, layers, and neurons. Consequently,
dynamic SNNs can kill two birds with one stone by focusing on
important information while suppressing noise spikes, significantly
reducing network energy consumption while improving performance.

At the hardware level, we have demonstrated Speck, which
bringing to reality the theoretical advantages of dynamic SNNs at the
algorithmic level. The most intriguing feature of Speck is the low
resting power (no-input consumes no running energy) brought about
by the fully asynchronous design, i.e., always-on, making it particularly
competitive in resource-constrained edge computing scenarios. This is
also the basic hardware requirement for dynamic computing. We have
demonstrated that the energy gain from the sophisticated dynamic

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 7

algorithmdesign is completely negligible once the resting power is too
high. Moreover, present-day neuromorphic computing frequently
separates the design of applications, algorithms, and chips. The needs
of hardware and applications are rarely considered when designing
neuromorphic algorithms and vice versa. By contrast, Speck incorpo-
rates a fully asynchronous spike-based neuromorphic chip with a DVS
camera, creating the perfect blend of hardware and applications well
suited for dynamic computing. Calculations in Speck are only

triggered when DVS generates an event. Comprehensively, based on
our top-level designof dynamic algorithms, chip architecture, and real-
world application requirements, we have demonstrated mW-level
power and ms-level latency solution in typical dynamic visual scenar-
ios. This tapping into the potential of neuromorphic computing will
undoubtedly advance the field.

In target edge computing environments, the overhead energy
is strictly constrained, especially for a small system working in

c

Dynamic
sparse visual

percep�on by
bio-inspired
DVS camera

Visualize event stream by event-based frame
representa�on

Temporal-wise a�en�on-based input mask

…
…

Real visual scene:
radio gymnas�cs

…
…

…
…

Gate: off

Event stream

[1673, 1, 52, 60]
[1673, 1, 58, 61]
[1673, 0, 51, 59]
[1675, 1, 52, 65]
[1675, 0, 18, 25]
[1678, 1, 57, 62]
[1678, 1, 58, 60]
[1678, 0, 14, 17]
[1678, 1, 50, 61]

[6725, 0, 41, 22]
[6725, 1, 45, 26]
[6725, 1, 43, 28]
[6725, 1, 52, 65]
[6760, 0, 15, 15]
[6760, 1, 57, 62]
[6778, 0, 28, 23]
[6810, 1, 63, 58]
[6819, 0, 10, 23]

…
…

…

[�mestamp, polarity, x, y]
Event-based data:

Address-event
representa�on (AER)

Event-by-event
processing

Channel-wise AR-SNN

Speck

Gate: on

Gate: off

Gate: on

ba Speck-based neuromorphic system

Hardware

So�ware

Algorithm

Applica�on

Spike-based asynchronous
neuromorphic chip

Compile toolchain
(Samna)

Programmable framework
for SNN (Sinabs)

Event-based vision
(DVS128 camera)

d On-chip real-�me power based on vanilla SNN On-chip real-�me power based on dynamic SNNe

…

Temporal-wise a�en�on-based input mask

…

…

Conv

Channel-wise AR

IF

Conv

Channel-wise AR

IF

= 0
set

IF

= 0
set

IF

25 mm

Fig. 5 | Placement of the dynamic SNNs on Speck. a Speck-based neuromorphic
system. b Dynamic SNN architecture deployed on Speck. We made some algo-
rithmic adjustments based on the proposed dynamic framework, to adapt to the
hardware. We only employ temporal-wise attention on the event streams to wean
out which inputs can be masked. On the other hand, the spiking neuron model on
Speck is Integrate andFire (IF), i.e., LIF neuronwithout leaky operation.Xt,n,Ht,n, and
St,n (specific definitions are given in Part “Spiking neuron models'' section) repre-
sent the spatial input, temporal input, and spike output of the spiking neuron,
respectively. c Overall of Speck-based neuromorphic system with dynamic SNNs.
The DVS camera only perceives and encodes the brightness change information in

the visual scene (the red/green dots in the graph represent brightness increase/
decrease respectively.), significantly reducing spatial redundancy compared with
the traditional camera. However, the high temporal resolution of the DVS causes
information redundancy in the temporal dimension. We adaptively mask some
inputs using temporal attention. Since Speck is event-driven, less input means
lower energy consumption.Moreover, thewidth of Speck kit shows is equivalent to
the diameter of a coin, about 25mm, which is convenient for edge computing
scenarios. d, e On-chip real-time power based on vanilla and dynamic SNNs,
respectively.

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 8

self-poweredmode for a long time. Speck is a neuromorphic chip with
sensing-computing-integrated functionality, which consumes quite
low-power consumption via asynchronous digital design. Such high
energy efficiency and low production cost are difficult to promise
modeling flexibility and computing precision. Fortunately, it is
acceptable in our target scenarios where energy efficiency matters
more than the task difficulty and behavior accuracy. We believe Speck
can cover a broad range of neuromorphic-vision-specific edge com-
puting tasks distinct from cloud computing while improvingmodeling
flexibility and computing precision under the energy constraint
remains an interesting and valuable direction. For example, enriching
the supported network types and introducing mixed-precision com-
puting might be possible solutions in future work.

At the software level, Speck provides a complete software tool-
chain to enable neuromorphic computing to be effectively and effi-
ciently deployed in various applications based on dynamic vision.
Specifically, the complete software toolchain provided by Speck,
including data management, model simulation, host management,
etc., can promote the rapid deployment of neuromorphic computing.
We look forward to these engineering efforts to promote the advan-
tages of neuromorphic computing in more applications.

Finally, incorporating an attention mechanism to SNNs in neuro-
morphic hardware can be seen as a first step towards porting more
sophisticated high-level neuralmechanisms in the humanbrain15,34 into
such hardware. As well known, neuromorphic hardware is non-von-
Neumann architecture hardware whose structure and function are
inspired by brains. Some unique fundamental operational character-
istics, including highly parallel operation, collocated processing and
memory, inherent scalability, and event-driven computation, stem
from their choice to incorporate neurons and synapses to serve as the
primary computational units. Although the vast majority of neuro-
morphic computing works have been based on the model design and
hardware implementation of spiking neurons, it is unclear whether
they are the only aspects of the biological brain important for per-
forming computations. The practice in this work confirms that the
attention mechanism is also very important for computing. Neuro-
morphic computing should consider the response of neuron granu-
larity and perform overall control from a higher abstraction level, like
the human brain. Even more exciting, these high-level abstractions of
brain mechanisms may be functionally and structurally well-suited for
implementation in brain-inspired neuromorphic computing. In parti-
cular, neuromorphic computing may contribute in answering one of

computational neuroscience and machine learning’s important open
questions: how can diverse high-level neural mechanisms generated
during the evolution of the brain be imitated and incorporated into
computers to enable machine intelligence to function similarly to
the brain?

Methods
Design philosophy
Whether leveraged as small stand-alone applications or employed as
edge nodes to build larger systems, edge devices call for edge hardware
with unprecedented low latency and low power. In theory, neuro-
morphic intelligence is well suited for edge computing scenarios as it
can perceive and process information sparsely. In this work, we propose
a neuromorphic system to mine and cash in these unique gifts of neu-
romorphic intelligence through top-level co-design of hardware, algo-
rithms, software, and applications. Our top-level design derives from
two well-known common principles in computational neuroscience.
First, the humanbrain integrates visual information from the eyes, which
perceive scenes sparsely. At the same time, only a fraction of neurons in
the brain respond to visual stimuli. Secondly, even if the eye perceives
lots of information, some global advanced information processing
mechanisms in the humanbrain, such as attention, will allow the brain to
ignore some information to alleviate the processing burden directly.

Eye-brain integrated hardware design. Speck is a sensing-computing
neuromorphic SoC with the spike-based sparse computing paradigm.
DVS simulates biological visual pathways, asynchronously and sparsely
generates events (spikes with address information) when scene
brightness changes, which can drop redundant data at the source.
Neuromorphic chips only activate a portion of spiking neurons to
perform computations when an input event occurs (i.e., event-driven).
As low-level abstractions of the human eye and brain, the sparse sen-
sing of a single pixel in DVS and the sparse computing of a single
spiking neuron in neuromorphic chip are the basic building blocks for
the structure and function realization of Speck. After the physical
combination of DVS and neuromorphic chip, three key designs
inject soul into Speck’s eye-brain integrated processing are: (a) DVS
and chip interface system design, the basis of high-speed and efficient
data transmission. (b) SNN convolution core design, the basis of low-
latency and low-power machine intelligence. (c) Full asynchronous
logic design, the basis of Speck’s high-speed processing and low
resting power.

Table 1 | Benchmarking results

GPU(3090)

Vanilla SNN Dynamic SNN (This work)

Task Acc(%) Rest
power (mW)

Total
power (mW)

Latency
(ms)

Spike
counts (×106)

Acc(%) Rest
power (mW)

Total
power (mW)

Latency
(ms)

Spike
counts (×106)

Gesture 82.3 30000 30078 24.7 1.2 92.0 (+9.7) 30000 30079 28.1 0.5 (−60.5%)

Gait-day 87.2 30000 30047 24.5 2.6 90.2 (+3.1) 30000 30048 27.5 1.0 (−60.8%)

Gait-night 85.5 30000 30049 21.5 3.5 91.0 (+5.6) 30000 30049 23.5 1.3 (−62.8%)

Speck

Gesture 81.0 0.42 9.5 <0.1 1.0 90.0 (+9.0) 0.42 3.8 (−60.0%) <0.1 0.4 (−60.0%)

Gait-day 86.0 0.42 16.1 <0.1 2.9 90.0 (+4.0) 0.42 7.3 (−54.7%) <0.1 1.2 (−58.6%)

Gait-night 86.0 0.42 46.8 <0.1 3.3 91.0 (+5.0) 0.42 12.3 (−73.7%) <0.1 1.5 (−54.5%)

On theGesture30/Gait-day31/Gait-night32,weuse exactly the sameexperimental settings, including input timewindow, network structure, trainingmethod, hyper-parameter settings, etc.Wedesign a
tiny network structure for these datasets, i.e., Input-32C3S1-32C3S2-32C3S1-AP4-32FC-Output. Note, AP4-average pooling with 4 × 4 pooling kernel size, nC3Sm-Conv layer with n output feature
maps, 3 × 3weight kernel size, andm stride size, kFC-Linear layer with k neurons.We first train themodel onGPU (Nvidia RTX 3090) and then deploy the trainedmodel to Speck (only five SNN cores
are utilized). In the inference stage, we count the accuracy, energy consumption, and latency on both GPU and Speck. For the GPU, we set the batch size to 1, ran 1000 samples (all samples have an
input timewindowof 540ms), andcounted their power and latency. In thewholeprocess, we remove the consumption of the data loadingprocess. For the Speck,we randomly sample 100 samples
oneachdataset as input toSpeckchippart to evaluate power and latency,where the total power is composedof Logic andRAMpower, and the latencyof a single sample is definedas thedifference
between the timestampof theoutput result and the last input event. Thanks to theSinabs framework and thenewlyproposed spiking neuronmodel (please see “Methods” section), themodel trained
onGPU has little accuracy loss after being deployed on Speck. Note, since we use public event-based datasets, the power reported in this Table only involves the processor part of Speck and does
not include the DVS camera part of Speck (please see Eq. (2)).

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 9

High-level brain mechanism mapping. The dynamic response
mechanism is a high-level abstraction of human brain functions, which
requires global regulation of the spike firing of neurons in each brain
region based on the stimulus. The human brain allocates attention
according to the importance of the input. Since sensing and comput-
ing in Speck are asynchronously spike-based event-driven, at least one
simple dynamic response can be realized: masking the stream of
unimportant events for a period of time so that the neuromorphic chip
does not perform any computations during this temporal window.

Comprehensively, the low-level abstraction of the human eye and
brain is the basis for Speck’s high-speed, low-latency, and low-power
computing. The high-level attention abstraction can be downward
compatible with the low-level abstraction, improving computational
efficiency. This organic integration of multi-level brain mechanisms
benefits from our firm grasp of the philosophy of brain-like spike-
based sparse sensing and computing in the design of Speck.

Chip design
We define Speck as an efficient medium-scale neuromorphic sensing-
computing edge hardware. It has fourmain components (Fig. 2g): DVS
with a spatial resolution of 128 × 128, sensor pre-processing core,
9-SNN cores enabling combined convolution and pooling or fully
connected SNN layers, and readout core. The connection of each
component mentioned is done through a universal event router.
Combining such low latency, high dynamic range, and sparse sensor
with an event-driven spiking Convolutional Neural Network (sCNN)
processor, that excels in real-time low latency processing on a single
SoC is a natural technological step. To complement the architectural
advantages of always-on sparse sensing and computation, the SoC is
built in a fully asynchronous fashion. The asynchronous data flow
architecture provides low latency and high throughput processing
when requested by sensory input while inherently shifting to a low
power/idle state when the sensory input is absent. Thoroughly inves-
tigating and verifying many edge computing vision application sce-
narios, Speck was designed to comprise 328 K neuron units spread
over nine high-speed, low latency, and low-power SNN cores.

Sensing-computing coupling. Current technologies exploit USB
connections or other interface technologies to connect to the vision
sensor and neuromorphic chips/processors. Moving data over chip
boundaries and long distances impacts latency and increases power
dissipation for robust signal transmission significantly. While
advanced CIS-CMOS processes can couple dedicated high-quality
vision sensors (vision optimized fabrication process) and neural net-
work compute chips (logic optimized fabrication process) in a single
package35, by combining both sensor and processing on a single die
into a smart sensor, we lower unit production costs significantly while
saving energy on high-speed and low-latency data communication, as
the raw sensory data never has to leave the chip.

The sensor. The sensor of Speck consists of 128 × 128 individually
operating event-based visionpixels, alsocalleddynamic visionpixels20.
In contrast to the frame-based cameras, these pixels encode the inci-
dent light intensity temporally on a logarithmic intensity scale, also
known as Temporal Coding (TC) encoding. In other words, the sensor
transmits only novel information in the field of view, sparsifying the
data stream significantly and seizing transmission on no visual chan-
ges. Each pixel is attached to a single handshake buffer to enable the
pixel to work fully independently from the arbitration readout system.
The arbitration is built out of one arbiter tree for column arbitration
and one for rows36,37. The event address is encoded from the
acknowledge signals of the arbitration trees and handed off as an
Address Event Representation (AER) word to the event pre-processing
block. The events are encoded as 1-bit polarity (ON-increasing illumi-
nation / OFF-decreasing illumination), 7-bit x-address, and 7-bit y-

address (total of 15-bit data per pixel event). A complete arbitration
process with ID encoding takes approximately 2.5 − 7.5ns for a single
readout. The arbitration endpoint with buffer in the pixel itself is
optimized to limit the transistor count, resulting in a fill factor of 45%
front illumination for each pixel. The refractory of each pixel is around
500μs. Under the worst-case condition where the activity rate of the
image is around 100%, the data needs to be transmitted during
refractory is around 250Kb (128 × 128 × 15 bit), i.e. 500Mb/s data rate.
For a typical condition, 10% to 20% of the pixel area is estimated to be
active, which causes a 50 to 100Mb/s data rate. Opposed to power-
hungry high-speed low latency off-chip communication, transmitting
this sparse data stream on-chip yields a significant reduction in power
consumption, proportional to the data rate.

DVSpre-processing core. To conform the rawAER event stream from
the sensor to the requirements of the sCNN, a pre-processing stage is
required. The image may be flipped, rotated or cropped if only a
Region of Interest (ROI) of the image is required. A lower image
resolution might be required, or the polarity can be ignored. To
accomplish this, the sensor event pre-processing pipeline consists of
multiple stages enabling the following adjustments in the sensor event
stream: polarity selection as ON only, OFF only, or both, region of
interest adjustment, image mirroring in x, y or both axes, pooling in x
or y coordinates separatelyor together, shifting the origin of the image
to another location by adding anoffset, etc. In addition, there is also an
option to filter out the noisy events coming out from the DVS by using
full-digital low-pass or high-pass filters. The output of the pre-
processing core has a maximum of two channels, with each channel
indicating whether the event belongs to the ON or OFF category. After
the pre-processing of the sensory events, the data output is trans-
mitted to the Network on Chip (NoC).

Network on chip. The NoC router follows a star topology. The routing
system operates non-blocking for any feed-forward network model
and routes events via AER connections. The mapping system allows
data to be sent from one convolution core to up to 2 other cores and
for one core to receive events from multiple sources without addres-
sing superposition with up to 1024 incoming feature channels. On
every incoming channel, the routing header of every AER packet is
read, and the payload is directed to the destination. This is done by
establishing parallel physical routing channels that do not intersect for
any network topology that does not contain recurrence. This prevents
skew due to other connections and deadlocks by loops inside the
pipeline structure. The routing header information is stripped from
theword during transport, and the payload is delivered to its intended
destination.

SNN core. In conventional CNN, a frame-based convolution is done.
Thus, the camera’s full frame must be available before starting the
convolution operation. In contrast to CNN, event-driven sCNN does
not operate on a full frame basis: for every arriving pixel event, the
convolution is computed for only that pixel position. For a given input
pixel, all output neurons that are associated with its convolution are
traversed, as opposed to a kernel that is swept pixel-by-pixel over a
complete image. An incoming event includes the x and y coordinates
of the active pixel as well as the input channel c it belongs to, as
depicted in Fig. 2i and Fig. S4. The event-driven convolution imple-
mented step-by-step in Speck with the following components (Fig. S5):
a. Zero padding: the event is padded to retain the layer size if nee-

ded. The image field, i.e. the address of the events, is expanded by
adding pixels to the borders to retain the image size after the
convolution if needed.

b. Kernel anchor and address sweep: In the kernelmapper, the event
is first mapped to an anchor point in the output neuron and the
kernel space. The behavior is seen in Fig. S4. Using this anchor the

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 10

kernel, represented by an address, is linked to an address point in
the output space. The referenced kernel is swept over the
incoming pixel coordinate. The kernel address and the neuron
address are swept inversely to eachother. For every channel in the
output neuron space, the kernel anchor address is incremented so
that a new kernel for the new output channel is used. The sweep
over the kernel is repeated. If a stride is configured in either the
horizontal or vertical direction, the horizontal and vertical sweeps
are adjusted to jump over kernel positions accordingly.

c. Address space compression: To effectively use the limited mem-
ory space, the verbose kernel address and the neuron address are
compressed to avoid unused memory locations. Depending on
the configuration, the address space gets packed so that there are
no avoidable gaps inside the address that are not used by the
configuration.

d. Synaptic kernel memories: The kernel addresses are then dis-
tributed on the parallel kernel memory blocks according to the
compressed addresses, and the specific signed 8-bit kernel weight
is read. The weight and the compressed neuron address are then
directed to the parallel neuron compute-in-memory-controller
blocks according to the address location. Kernel positions with 0
weight are skipped during reading and are not forwarded to the
neuron.

e. Neuron compute units: The compute-in-memory-controller block
model an Integrate and Fire (IF) neuronwith a linear leak for every
signed 16-bit memory word. Besides classic read and write, the
memory controller has a read-add-check_spike-write operation.
Whenever the accumulated value reaches a configured threshold,
an event is sent out as shown in Fig. 2h and the neuron state
variable has a threshold subtraction or reset written back.

f. Bias and leak address sweep and memory: The leak (or bias) is
modeled via an additional memory controller. The Leak/bias
controller has a neuron individual signed 16-bit weight stored for
every output channel map. An update event with this bias is sent
to all its active neurons on a time reference tick. The reference tick
is supplied from off-chip and is fully user-configurable.

g. Pooling: Theoutput events arefinallymerged into apooling stage.
The pooling stage operates on the sum pooling principle, i.e., it
merges the events from 1,2 or 4 neurons in both x and y coordi-
nates individually.

h. Channel shift and routing: Before entering the routing NoC, the
channels are shifted, and a prefix with routing information is
added. One event is sent per destination for up to 2.

Speck has 9-SNN cores (layers) with different computational
capabilities and memory sizing. For example, SNN core0, SNN
core1, and SNN core2 have larger neuron memory sizes because the
first layer, which connects to the dynamic vision sensor part, requires
more neuron states with fewer input channels. As the network gets
deeper, the synaptic operation or kernel memory requirement
increases. The intermediate cores usually require a larger kernel
memory size for generating more output channels using different
kernel filters.

A key point for our presented architecture is synaptic memory
utilization. Especially for CNN-based architectures, the on-the-fly
computation of synaptic connections allows for minimizing memory
requirements. This, in turn, saves area and energy - in the case of
SRAM, both running and static. Our dedicated sCNN approach allows
for many more synaptic connections by using the kernel weights
stored in memory and computing all the synapses that share weights
compared to standard SNN hardware implementations8,10,38 with
minimal additional compute required. As shown in Table S1, on-the-fly
synaptic kernel mapping allows the deployment of bigger network
models to larger feature-size CMOS, thus significantly more cost-
effective fabrication technologies while matching state-of-the-art

performance. Besides exploiting SNN cores as convolutional layers,
any SNN core that can be utilized as a fully connected layer with
synaptic connections up to64k, 32k, or 16k. In general, this is preferred
at the last stages of the SNN.

Readout core. The optimal readout engine of the Speck is essential to
receive the classification output directly from the chip. The last core
output of the SNN can be connected to the readout engine. Unlike the
neuromorphic chip’s other cores (layers), only one SNN core can
be connected to the readout layer for a given network configuration.
The readout layer can simultaneously calculate 15 different classifica-
tions connected to 15 different output channels of the last SNN core.
Each channel has a parallel processing engine that calculates the
average of spike counts over 1, 16, or 32 slow clock cycles, in the range
of 1 kHz to 50 kHz operation. Furthermore, an optional asynchronous
internal clock is also generated by the event activity of theDVS and can
be used as a timing tick of the spike count averaging function. After
computing the average of each spiking channel, the average value is
compared by a global threshold that is the same for all 15 readout
engines. The average values that exceed this threshold are compared,
and the one with the maximum value is selected as the classification
winner. The index of the winner neuron or spiking channel is directly
sent to the readout pins. When a network requires more than 15 clas-
sifications, the readout layer can be bypassed or not used, and the
spike information of up to 1024 output featuremaps can be read from
the last SNN core output. To get a reasonable identification, an
external processor is required to do the averaging over time and find
the right class selection.

Asynchronous logic designmethodology. DVS has μs level temporal
resolution due to the asynchronous visual perception paradigm. To
complement the architectural advantages of sparse sensing and
computing, the neuromorphic chip in Speck is built in a fully asyn-
chronous fashion. The asynchronous data flow architecture provides
low latency, and high processing throughput when requested by sen-
sory input, and immediately switches to a low power/idle state when
the sensory input is absent. This is archived by building on the well-
established Pre Charge Full Buffer low latency pipeline designs39. As
each component is naturally gated in this design approach, no com-
plex or slow wake-up procedures must be implemented, thereby
reducing running power consumption and obtaining an always-on
feature with no additional latency. Asynchronous chips make the data
follow event-based timestamps rather than clock rising or falling
edges. Therefore, during the idle period, there is no switching output
from the DVS pixel array, and there is no information routed to the
chip that leads to no running power consumed in any processing unit
other than the readout layer. However, there is still a static power
consumption from the DVS pixel array, and leak currents from logic
andmemory, which are reduced by the before-mentioned architecture
resource optimizations and optional independent voltage scaling for
both logic and memory.

In our asynchronous design flow, we implemented an extensive
library of asynchronous data flow templates. Each function in
our library is built using a 4-phase handshake and Quasi Delay
Insensitive (QDI) Dual Rail (DR) data encoding, making it robust to an
extended range of supply voltages, operation conditions, and
temperatures17,40. The main functions implemented in our library are
Latch/Buffer, Compose, Splits, Non-conditional Splits, Conditional
Pass, and Merge functions40. At the last stage of the asynchronous
chain, we serialize the data to be monitored to reduce the pin count.
Before the serialization operation, we convert the dual rail encoded
information to Bundle Data (BD) encoding. Performance is ensured
by hierarchically detailed automatic floor planning that employs
extensive guides and fences for the individual components and
pipeline stages.

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 11

Chip fabrication
Speck was fabricated using a 65 nm low-power 1P10M CMOS-logic
process. The die layout is shown in Fig. S1. The total die size is
“6.1mm×4.9mm”. The whole pixel array, including the dummy rows/
columns and the peripheral bias circuitry, occupies an area of
“2.8mm× 3mm”. The vision sensory part consists of 128 × 128 DVS
pixels usingn-well photodiodeswith apixel pitchof 20μmandclose to
45% of fill factor41. The chip’s logic implementation is fully done by
foundry-based standard cells. This also helps to transfer the logic
implementation easily to lower or different technology nodes. For the
SNN core and DVS pre-processing circuitry, a total of 7.8Mb foundry-
based Static Random-AccessMemory (SRAM) cells are used. Each SNN
core is designed with separate memory for its local computing unit,
i.e., convolutional kernel and neuron states. Different cores do not
share memory accessibility. The memory size distribution follows the
standard CNN structure characteristics, which typically require higher
neuron memory for the shallow layers and increasing kernel amount
for deeper layers. Concerning the 128× 128 as the largest possible
input size, the biggest neuron and synaptic memory of one SNN core
supporting this input size are 1.05Mb and 0.13Mb, respectively.
Besides, each SNN core has a 16Kb bias memory for the independent
channel-wise bias configuration. EachSNNcore can support up to 1024
fan-in/fan-out (input/output) channels, and the kernel size can be
flexibly set up to 16 × 16. The bandwidth of the core is defined as the
number of Synaptic Operations (SynOp) per second that a layer can
maximally process without latency, where a SynOp is defined as all the
steps involved in the life-cycle of a spike arriving at a layer until it
updates the neuron states and generates a spike if applied. SNN core0,
the first SNN layer that typically receives the highest number of events,
implements a fully symmetric parallel computation path to improve
throughput up to 100M SynOps/s. The bandwidth of other SNN cores
is 30M SynOps/s. Featured by the unique property of sCNN and LIF
neuronmodels, the activity of the sparse sensor event stream is further
reduced by every processing layer, truly exploiting the always-on only-
compute-on-demand features of this architecture. The summary and
performance of Speck are listed in Table S1 compared with existing
neural network platforms.

Chip performance evaluation
We here evaluate Speck’s performance in terms of power and latency.
Speck is an event-driven asynchronous chip whose power consump-
tion and output latency vary with the number of SynOp.

Power evaluation. The total power consumption of speck contains
four power rails:

Ptotal = Ppixel,analog +Ppixel,digital|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PDVS

+ Ppre +PNoC +PSNN +Preadout
zffl}|ffl{
|ffl{zffl}

PLogic +PRAM

Pprocessor

, ð2Þ

where PDV S indicates the power of DVS (see Fig. S7), Pprocessor denotes
the power of the Speck processor. The power consumption of the DVS
pixels contains the analog part (biases and power of the analog cir-
cuits, i.e., Ppixel,analog) and the digital part (asynchronous circuits gen-
erating and routing out the events, i.e., Ppixel,digital). The power
consumption of the processor also includes two parts, PLogic and PRAM.
Due to the split of the power tracks, we exploit the number of SynOps
tomeasure all the power consumption of the processor, this covers all
the power consumed by RAM and Logic. A SynOp includes the fol-
lowing steps: logic→Kernel RAM→logic→Neuron RAM Read→Neuron
RAMWrite→Logic. The processor’s power consumption is accordingly
divided into logic power (all computations for neuron dynamics, i.e.,
Plogic) and RAM power (read/write of kernel and neuron RAMs, i.e.,
PRAM). In summary, Speck’s power breakdown can be categorized into

four power tracks based on the utilization of its four modules. Power
measurements are not conducted in isolation for individual functional
modules but rather based on their actual usage in terms of {pixel
analog, pixel digital, logic, and RAM}. Thus, PLogic and PRAM can be
considered to be the sum of the power consumption of the DVS pre-
processing core (Ppre), NoC (PNoC), SNN cores (PSNN), and readout core
(Preadout).

For each power rail, the energy consumption can be divided into
resting and running power, which could bemeasured separately in the
following way:
1. Design a list of stimuli which will induce known events/SynOps

rate r1, r2,… at the circuit under test (e.g.,flickering lightwith fixed
frequency for DVS, pseudo-random input spike stream for SNN
processor, etc.)

2. Measure the average power consumption P1, P2,… over time for
each stimulus

3. Fit a straight line toP = Prest + rErun. The estimated resting power is
Prest and the running energy per spike/operation is Erun.

Thepower results onSpeckare shown in Figs. S6, S7, andTableS2.
The spiking firing rate can effectively affect power consumption with
respect to event-driven processing. At a supply voltage of 1.2 V, the
DVS and processor on Speck typically consume resting power con-
sumptionof 0.15mWand0.42mW, respectively. In Table 1, we employ
three public datasets to test the power of Speck. Since the DVS part of
Speck is not exploited, the power in Table 1 is only Pprocessor, including
the pre-processing power, the NoC power, the total computational
power, andmemory r/wpower that is consumedby the SNNcores, and
the readout power.

Latency evaluation. We measure the latency of the Speck by calcu-
lating the difference between an input event and an output event.
Speck can be flexibly configured to include different modules in the
pipeline, including the DVS pixels, pre-processing, and different SNN
layers.
1. DVS response latency, defined as the time difference between the

change of light intensity and the generation of the corresponding
event, is measured to range from40μs to 3ms, depending on the
bandwidth configuration.

2. DVS pre-processing layer latency, defined as the time to adapt the
raw DVS events to SNN input spikes, including pooling, ROI
(Region of Interest selection), mirroring, transposition, and
multicasting, is measured to be 40 ns.

3. SNN processor latency (per layer), defined as the time it takes to
perform the event-driven convolution. It is measured by config-
uring a kernel with ones in a stride × stride square, and thresh-
old = 1 (thus guarantees exactly one output spike is generated for
every input spike). The value is related to the kernel size and the
relative position of the neuron in the kernel and ranges from
120 ns to 7μs (per layer).

4. IO delay: Speck uses a customized serial interface for event input
and output. The transmission time is 32 and 26 IO interface clock
cycles for spike input and output, respectively. The data are
converted to/from parallel lines inside the chip for fast intra-chip
transmission andprocessing. The conversion time, including both
input and output, is 125 ns.

To evaluate the end-to-end latency of the SNN processor on
Speck, we map the network in Table 1 onto the chip and record the
input and output spikes. Since the chip is fully asynchronous and feed-
forward, an output spike only takes place after the corresponding
input spike triggers at least one spike in each layer sequentially. We
measure the minimum delay between any input-output spike-pair to
be 3.36 us (averaged over all samples). This includes the input spike
transmission time of 1.28 us at 25MHz IO interface clock.

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 12

Spiking neuron models
Spiking neurons are the fundamental computation units of SNN,
communicating via spikes coded in binary activations, which closely
mimic thebehaviors of biological neurons. The keydifference between
traditional artificial neurons and spiking neurons is that the latter
considers the dynamics of the temporal dimension. The dynamics of a
spiking neuron can be described as accumulatingmembrane potential
over time from either the environment (via input information to the
network) or from internal communications (typically via spikes from
other neurons in the network); when the membrane potential reaches
a certain threshold, the neuron fires spikes and updates themembrane
potential. In this work, to evaluate the proposed dynamic framework
and deploy SNNs on hardware for event-based tasks, we exploit three
spikingneuronmodels, which differ in themembranepotential update
and spiking firing rules.

LIF spiking neuron. The leaky integrate-and-fire (LIF)42,43 model is one
of the most commonly used spiking neuron models since it is a trade-
off between the complex spatio-temporal dynamic characteristics of
biological neurons and the simplified mathematical form. LIF neurons
are suitable for large-scale SNN simulations and can be described by a
differential function:

τ
dU tð Þ
dt

= � U tð Þ+ I tð Þ, ð3Þ

where τ is the time constant, and U tð Þ and I tð Þ are the membrane
potential of the postsynaptic neuron and the input collected from
presynaptic neurons, respectively. Solving Eq. (3), a simple iterative
representation of the LIF neuron44,45 for easy inference and training can
be obtained. For the convenience of describing our dynamic SNN, here
we give the expression of a layer of LIF-SNN (Fig. 3b):

Ut,n =Ht�1,n +Xt,n

St,n =Heaviside Ut,n � uth

� �
Ht,n =V resetS

t,n + γUt,n� �� 1� St,n� �
,

8><
>: ð4Þ

where t and n denote the timestep and layer,Ut,n means themembrane
potential which is produced by coupling the spatial featureXt,n and the
temporal input Ht−1,n (the internal state of spiking neurons from the
previous timestep), uth is the threshold to determine whether the
output spiking tensor St,n should be given or stay as zero, Heaviside(⋅)
is a Heaviside step function that satisfies Heaviside xð Þ= 1 when x ≥0,
otherwise Heaviside xð Þ=0, Vreset denotes the reset potential which is
set after activating the output spiking, and γ = e�

dt
τ < 1 reflects the decay

factor. Spatial featureXt,n can be extracted from the original input St,n−1

by fully connected (FC) or convolution (Conv) operations.When using
the Conv operation,

Xt,n =AvgPool BN Conv Wn,St,n�1
� �� �� �

, ð5Þ

where AvgPool(⋅), BN(⋅) and Conv(⋅) mean the average pooling, batch
normalization46, and convolutional operation respectively, Wn is the
weight matrix, St,n−1(n ≠ 1) is a spike tensor that only contains 0 and 1,
and Xt,n 2 Rcn ×hn ×wn (cn is the number of channels, hn and wn are the
size of the channels).

The LIF layer integrates the spatial feature Xt,n and the temporal
input Ht−1,n into membrane potential Ut,n. Then the fire and leak
mechanism is exploited to generate spatial spiking tensors for the next
layer and the new neuron states for the next timestep. Specifically,
when the entries in Ut,n are greater than the threshold uth, the spatial
output of spiking sequence St,n will be activated, the entries in Ut,n will
be reset to Vreset, and the temporal output Ht,n should be decided by
the Xt,n since 1 − St,n must be 0. Otherwise, the decay of the Ut,n will be
used to transmit the Ht,n, since the St,n is 0, which means there is no

activated spiking output. After the Conv operation, all tensors have the
same dimensions, i.e., Xt,n,Ht�1,n,Ut,n,St,n,Ht,n 2 Rcn ×hn ×wn .

IF spiking neuron. Another commonly exploited spiking neuron is
integrate-and-fire (IF), a supported neuron model on Speck. IF does
not leak membrane potential after spiking firing. That is, the decay
factor γ = 1 in equation (4).

M-IF spiking neuron. When using SNNs to process event-based tasks,
there is a problemof lossof accuracy aftermodel synchronous training
and asynchronous deployment (detailed later). To alleviate this pro-
blem,wedesigned aMulti-spike IF (M-IF) neuronmodel and integrated
it into the programmable framework Sinabs. M-IF can be described as:

Ut,n =Ht�1,n +Xt,n

St,n = M-Heaviside Ut,n,uth

� �
Ht,n =V resetHeaviside Ut,n � uth

� �
+MODðUt,n,uthÞ � 1� Heaviside Ut,n � uth

� �� �
,

8><
>:

ð6Þ

where M-Heaviside(Ut,n, uth) is a Multi-spike Heaviside function that
satisfies M-Heaviside(Ut,n, uth) = [Ut,n/uth] when Ut,n − uth≥0, M-
Heaviside(Ut,n, uth) = 0 when Ut,n − uth < 0, MODð�Þ is the remainder
function, and [⋅] is the floor function. Comparing Eq. (4) and (6), it can
be seen that the main difference between the two is that γ = 1 in M-IF
and multiple spikes can be fired at a timestep when the membrane
potential is greater than the threshold.

To facilitate the understanding of the difference in the dynamics
of these three spiking neurons, we present a simple example. Assume
that at a certain timestep, the membrane potential of the spiking
neuron is one, and the threshold uth = 0.3. Then, in LIF and IF, a spike is
fired, and the internal state (i.e.,Ht,n) of the neuron is Vreset; and inM-IF,
three spikes are fired, and Ht,n =Vreset. Speck supports LIF and IF spik-
ing neurons, and we exploit IF for algorithm testing.

Synchronous training and asynchronous deployment
Due to the novel sensing paradigm of event cameras, extracting
information from event streams to unlock the advantages of the
camera is a challenge. Event cameras output events with μs
temporal resolution, which are asynchronous and spatially sparse.
One of the most common ways to meet this challenge is to con-
vert the asynchronous event stream into other synchronous
representations and then exploit corresponding algorithms for
processing20. Specifically, when using the SNN algorithm, the
event stream is aggregated into an event-based frame sequence
and then sent to the network for training. The chip will perform
asynchronous event-by-event processing on the input event
stream by deploying the trained model to an asynchronous neu-
romorphic chip, thereby obtaining the minimum output latency.
This training and deployment process is called “synchronous
training and asynchronous deployment” (Fig. S12).

Here, we show how to convert an event stream into a sequence of
frames, namely, frame-based representation. An event-based camera
outputs event steam that comprises four dimensions (address event
representation format): the timestamp, the polarity of the event, and
two spatial coordinates (Fig. 5c). The polarity indicates an increase
(ON) or decrease (OFF) of brightness, where ON/OFF can be repre-
sented via +1/-1 values. All events with the same timestamp t0 can form
a set

Et0 = eijei = t0,pi,xi,yi
� �	

, ð7Þ

where (xi, yi) indicates the coordinates and pi represents the polarity of
the i-th event. The event set can be reassembled into an event (spike)
pattern tensor Xt 0 2 R2 ×h0 ×w0 , where h0 =w0 = 128 (spatial resolution
of the DVS128) and 2 is the channel number (ON/OFF). All elements in

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 13

the tensor are either 0 or 1 (the aforementioned +1/-1 is just for con-
venience to indicate which channel the event is on).

Assume the temporal window of two adjacent timestamps is dt0

(μs in DVS128), we select η consecutive spike pattern tensors to
aggregate into one frame with a new temporal window dt =dt0 ×η.
Formally, the event-based frame of input layer at t time St,0 2
R2 ×h0 ×w0 based on dt can be got by

St,0 = qðXt 0 Þ ð8Þ

where t0 is an integer index whose value range is η× t,η × t + 1ð Þ � 1½ �,
t 2 1,2, � � � ,Tf g is timestep, q(⋅) is aggregation function that could be
selected27,47 suchasnon-polarity aggregation, accumulate aggregation,
AND logic operation aggregation, etc. We choose the accumulation
function with polarity information as q(⋅) by default.

However, there is a model accuracy error between synchronous
training and asynchronous deployment because the inputs during
training and actual deployment are different. The inputs are frames
when training on the GPU, while neuromorphic chips are processing
event streams in an asynchronous event-by-eventmanner that updates
the system state upon the arrival of a single event (Fig. S12). An
effective method is to set dt as small as possible during training (to
reduce the difference with dt0) and set the timestep T to be larger (to
increase the total input data). But the price is a significant boost in
training time.

Another effective way is to exploit the proposed spiking neuron
model in equation (6). The basic idea is that the frame-based repre-
sentation will increase the value of the input, and these modifications
will eventually be reflected in the membrane potential of the spiking
neuron. In this situation, it is irrational to give one spike at a timewhile
disregarding the true value of the membrane potential. We, therefore,
introduced the M-IF neuron that can fire multiple spikes at once
depending on the membrane potential. When deploying tasks in real
scenarios, we employ M-IF to train the model, and then map it to the
Speck supporting the IF model. Model accuracy will scarcely be lost
when a synchronously trained model is deployed asynchronously to
Speck thanks to the reasonable design of dt and T and the use of the
M-IF neuron model.

Attention-based dynamic framework
Our goal is to optimize themembrane potential via an attention-based
module to tune spiking responses in a data-dependent manner dyna-
mically. SNNs’ building blocks, convolutional and recurrent opera-
tions, each process a single local neighborhood at a time. According to
this viewpoint, the introductionof non-local operations48 for capturing
long-range dependencies is themainway for the attentionmechanism
tooptimizemembranepotential. Inour dynamic framework, two types
of policy functions, refinement, and masking, are covered, which can
be implemented in three steps.

Step 1: Capture global information. (Figure S13a). Average-pooling
and max-pooling are two commonly used global information acquisi-
tion methods49,50. The former can learn the degree information of the
object, while the latter can learn the discriminative features of the
object. Global information of various dimensions can be gathered by
applying pooling processes in different dimensions. In a certain layer
of SNN, the intermediate feature maps at all timesteps can be
expressed as Xn = ½X1,n, � � � ,Xt,n, � � � ,XT ,n� 2 RT × cn ×hn ×wn . The vectors
Favg,Fmax 2 RT × 1 × 1 × 1, for instance, can be obtained by exploiting
pooling compression in the temporal dimension, which represents the
global information of the time dimension. Similarly, we can compress
Xt,n 2 Rcn ×hn ×wn to Favg,Fmax 2 Rcn × 1 × 1 in the channel dimension. In
addition, it is also conceivable to applyFavg andFmax simultaneously by
developing techniques to capture global information more
effectively51.

Step 2: Model long-range dependencies. (Figure S13a). Long-range
dependencies can bemodeled with the global information obtained in
step 1. There are many specific modeling methods, and various
methods can be designed according to the needs of specific applica-
tion scenarios in terms of accuracy, computation efficiency, and
parameter number52. The most classic method is to model long-range
dependencies, namely, attention scores, through a learnable two-layer
FC network49,50. Here, we only show this approach for simplicity. For-
mally, the typical two-layer attention function50 is described by:

fð�Þ= σ W1ðReLUðW0ðAvgPoolð�ÞÞÞÞ+W1ðReLUðW0ðMaxPoolð�ÞÞÞÞ� �
,

ð9Þ

where AvgPool(⋅) and MaxPool(⋅) represent the results of average-
pooling andmax-pooling respectively, theoutput of f(⋅) is a vectorwith
the same dimensions as AvgPool(⋅) and MaxPool(⋅), σ(⋅) means the
sigmoid function, W0, and W1 are the weights of linear layers in the
shared FC.

In our framework, the input of f(⋅) is Xn if temporal-wise attention
is performed. The pooling operations first infer the T-dimensional
vectors, then the two-layer shared FC network achieves a new
T-dimensional vector. Each element in this vector is an attention score,
which measures the importance of the intermediate feature maps at
different timesteps. For the modeling of channel-wise attention, we
only need a new trainable two-layer FC network and set the input to
Xt,n. Consequently, we can get a cn-dimensional channel-wise attention
vector at each timestep. Note that channel attention vectors can be
shared across the temporal dimension to reduce computation (Fig. 3c
in this work), or solved independently at each timestep28. In terms of
final task accuracy, there is little difference between the two designs.

Step 3: Mask information. (Figure S13b). A more aggressive policy
masks part of the information based on attention scores. The value
internal of the attention score in f(⋅) is (0, 1). The masking policy
directly sets part of the attention scores to 0. In this work, we employ
the reparameterization winner-take-all function that retains the largest
top-K values in f(⋅) and replaces other values assigned to 0:

gð�Þ= gðfð�ÞÞ, ð10Þ

where the output dimensions of masking function g(⋅) and f(⋅) are
exactly the same.

Finally, the featuremaps optimized by the Attention-based Refine
(AR) and Attention-based Mask (AM) modules can be expressed as:

Xn f ðXnÞ � Xn, ð11Þ

or

Xn gðXnÞ � Xn: ð12Þ

During multiplication ⊗, the attention scores are broadcasted
(copied) accordingly, for example, the temporal-wise attention vector
is broadcasted along both the channel and spatial dimension, and the
channel-wise attention vector is broadcasted along the temporal and
spatial dimension. In practice, functions f(⋅) and g(⋅) have a hugedesign
space21,52 (Fig. S13c).

Details of algorithm evaluation
The attention-based dynamic framework is practiced as a plug-and-
play module that can be integrated into pre-existing SNN archi-
tectures. Overall, we perform strict ablation experiments, where we
add the dynamic modules to the baseline (vanilla) SNNs and keep all
the rest of the experimental details consistent, including input-output
coding and decoding, training methods, hyper-parameter setting, loss

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 14

function, and network structure, etc. For simplicity, we choose some
baselines from previous work27, and the typical experimental settings
are given in Table S4.

Datasets. We test dynamic SNNs on two datasets of different scales.
DVS128Gesture30, DVS128Gait-day31, andDVS128Gait-night32 are three
smaller datasets, which are mainly designed for the application of
some special scenarios. On these three datasets, we first perform
algorithmic characteristics evaluation (Fig. 4) and then deploy the
dynamic SNNs to Speck (Fig. 5, Table 1). On the other hand, to verify
the performance of the proposed dynamic framework on deep SNNs,
we conduct tests on HAR-DVS33, which is currently the largest dataset
for human action recognition. HAR-DVS records 300 categories and
more than 100K event streamswith a DAVIS346 camera. The design of
HAR-DVS considers many factors, such as movement speed, dynamic
background, occlusion, multiple views, etc., making HAR-DVS a chal-
lenging event-based benchmark. The original HAR-DVS dataset is very
large, over 4 TB. For easeof processing, the authors convert each event
stream into frames via frame-based representation and randomly
sample 8 frames as the official HAR-DVS dataset.

Training details. With the frame-based representation, both zero and
non-zero integers are present in the values in the input frames St,0.
Then the first layer of SNN is equivalent to the coding layer, which
recodes these non-binary inputs into spike trains53. All other layers in
the SNN communicate via spikes. After counting the number of spikes
over the whole time window issued by the output neurons, a softmax
function and cross-entropy are followed as loss functions. All models
were trained using spatio-temporal backpropagation from scratch,
which provides a surrogate gradient method to solve the non-
differentiable problem of spike activity44,45. After choosing the base-
line models, the general training setup is given in Table S4.

Network structure. In Table S5, we use three sizes of network struc-
tures for dynamic algorithm evaluation. In typical edge computing
application scenarios, tasks are single and simple, so only lightweight
networks are often deployed. On the Gesture, Gait-day, and Gait-night
datasets, we exploit three-layer27 and five-layer54 Conv-based LIF-SNNs.
Specifically, network structure (LIF-SNN27): Input-MP4-64C3S1-
128C3S1-BN-AP2-128C3S1-BN-AP2-256FC-Output. Network structure
(LIF-SNN54): Input-128C3S1-MP2-128C3S1-MP2-128C3S1-MP2-128C3S1-
MP2-128C3S1-MP2-512FC-AP10-Output. AP2-average denotes pooling
with 2 × 2 pooling kernel size, MP2-max pooling with 2 × 2 pooling
kernel size, nC3Sm-Conv layerwith noutput featuremaps, 3 × 3weight
kernel size, andm stride size, kFC-Linear layer with k neurons. We then
employ Res-SNN-1855 to verify the performance of the proposed
dynamic framework on deep SNNs and large-scale HAR-DVS. Experi-
mental results are given in Table S5. We can see that our algorithm
significantly improves task accuracy on lightweight networks.
For instance, our module improves the task accuracy on the Gesture
and Gait-day datasets by 4.2% and 6.1%, respectively, when it is inte-
grated into the three-layer Conv-based LIF-SNN. Besides, our algorithm
also works well on deep SNNs, with an accuracy gain of 0.9% on
HAR-DVS.

Input time window. When deploying event-based applications in real
scenarios, it is usually assumed that a task result will be output at
regular intervals, and we call this interval the input time window, i.e.,
dt × T. Generally, the validity of the data increases and task perfor-
mance improves with increasing input timewindow size. But the user’s
experience with the product will be impacted if the input time window
is set too broadly. In this work, we test the performance of the pro-
posed dynamic frameworkwithmulti-scale input timewindows on the
Gesture, Gait-day, and Gait-night datasets. One option is to align the
dt × T to some fixed length (called restricted input). Another option is

to fix the value of T and then adaptively set all dt × T to the total
duration of the sample (called full input). As shown in Table S5, we set
up ablation experiments on restricted input, 540ms = 15ms × 36.
Moreover, in Gesture, Gait-day, and Gait-night, the duration of each
sample is about 6000ms, 4400ms, and 5500ms, respectively. We
also test the performance of vanilla and dynamic SNNs on full input.
Experimental results show that dynamic SNNs performs better than
vanilla SNNs in both accuracy and network average spiking firing rate
at multiple input time window scales (Table S5).

Theoretical energy consumption evaluation. In traditional ANNs,
the times of floating-point operations (FLOPs) are used to esti-
mate computational burden, where almost all FLOPs are MAC56.
Following this line of thinking, in SNNs, the theoretical energy
consumption in the network is also evaluated by FLOPs28,55,57,58,
which are mainly AC operations and are strongly correlated with
the number of spikes. Although this evaluation view ignores the
hardware implementation basis and the temporal dynamic of
spiking neurons59, it is still useful for simple analysis and eva-
luation of algorithm performance and guidance for algorithm
design. We employ this method to qualitatively analyze the
energy consumption of dynamic SNNs.

In general, the energy consumption of SNNs is related to spiking
firing, and energy efficiency improves with smaller spike counts. We
define three kinds of spiking firing rates to comprehensively evaluate
the impact of the proposed dynamic framework on firing. Firstly, we
define Network Spiking Firing Rate (NSFR) as: at timestep t, a spiking
network’s NSFR is the ratio of spikes produced over all the neurons to
the total number of neurons in this timestep. Then, we define the
Network Average Spiking Firing Rate (NASFR) as the average of NSFR
over all timesteps T. NSFR is used to evaluate the change of the same
network’s spike distribution at different timesteps; NASFR is exploited
to compare the spike distribution of different networks. Finally, we
define the Layer Average Spiking Firing Rate (LASFR) to finely evaluate
the energy consumption of SNNs. At timestep t, a layer’s spiking firing
rate (LSFR) is the ratio of spikes produced over all the neurons to the
total number of neurons in that layer; then we define the LASFR that
averages LSFR across all timesteps T. It should be noted that a set of
NSFR, NASFR, and LASFR can be obtained for each sample. In this
work, by default, we count these spiking firing rates of the samples in
the entire test set and get their mean as the final data.

Specifically, the inference energy cost of vanilla SNN EBase is
computed as

EBase = EMAC � FL1SNNConv + EAC �
XN
n= 2

FLnSNNConv +
XM
m= 1

FLmSNNFC

 !
, ð13Þ

whereN andM are the total number of layers of Conv and FC, EMAC and
EAC represent the energy cost of MAC and AC operation,
FLnSNNConv = ðknÞ2 � hn �wn � cn�1 � cn � T �Φn�1

Conv and FLmSNNFC = im � om � T �
Φm�1

FC are the FLOPs of n-th Conv and m-th FC layer, respectively, kn
is the kernel size of the convolutional layer, I'm, and om are the input
and output dimensions of the FC layer,Φn

Conv andΦm
FC are the LASFR of

SNN at n-th Conv and m-th FC layer. The first layer is the encoding
layer, thus its basic operation is MAC. Refer to previous work58,60, we
assume the data for various operations are 32-bit floating-point
implementation in 45 nm technology61, in which EMAC = 4.6 pJ and
EAC = 0.9pJ.

It can be seen from equation (13) that once the network structure
and the simulation timestep T are determined, EBase is only related to
the spiking firing rate, i.e.,Φn

Conv andΦm
FC. In the case of dynamic SNNs,

we optimize the membrane potential using the attention module,
which in turn drops the spiking firing. So the energy increase comes
from MAC operations due to the regulation of membrane potential.
The energy decrease comes from the drop of AC operations caused by

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 15

sparser spiking firing. That is,

ΔE = EDyn � EBase = EMAC � ΔMAC � EAC � ΔAC, ð14Þ

where EDyn is the energy cost of dynamic SNN, ΔMAC, and ΔAC are the
number of operations increased to compute the attention scores and
reduced in the SNN, respectively. The energy consumption of dynamic
SNN is lower than that of vanilla SNN as long as ΔE <0. Further, we can
define the relative energy change ratio rREC as:

rREC =
ΔE

EBase
: ð15Þ

Equation (13) indicates that a sparse firing regime is the key to
achieving the energy advantage of SNN. The ideal situation is that we
can get the best task performance with the fewest spike, but the
relationship between spike firing and performance is complex and has
not been adequately explored. This work demonstrates that data-
dependent attention processing can significantly improve perfor-
mance while substantially reducing the number of spikes.

As shown in Eq. (14),wepayaprice in the attention-baseddynamic
process, but overall the benefits outweighed the costs. Empirically, the
firing of SNNs will be related to the dataset and network size. For
example, on Gesture and Gait-day datasets, the network average
spiking firing rate of the three-layer is greater than that of the five-layer
Conv-based LIF-SNN (Table S5). Consequently, the reduction in the
number of spikes of the three-layer SNN is also more obvious, e.g., on
the Gait-day, the AM module drops the spiking firing rate by 87.2%
resulting in rREC = −0.68. By contrast, in five-layer SNN, the spiking
firing rate of dynamic SNN reduced by 60.0%, while rREC = −0.18 (there
are too many MAC operations in the first encoding layer of baseline
SNN that leads to higher EBase). Thus, we can observe that rREC is
associated with the structure of the baseline. These analyses inspire
us that when designing dynamic SNN algorithms for practical
applications, we should comprehensively consider factors such as
task scale, network scale, attention module design, spiking firing,
task performance, etc., in order to achieve the highest task cost-
effective.

Comparison with previous methods. In Table S5, we make a com-
parison with prior work. On the Gesture, Gait-day, and Gait-night
datasets, we can get state-of-the-art or comparable results. Since we
mainly want to verify the dynamic algorithm, we did not blindly
expand the network scale on these datasets. Compared with other
types of networks that process event streams, such as Graph Con-
volutional Networks (GCN), SNNs have obvious performance advan-
tages when the input time window is limited. For example, we achieve
an accuracy of 98.2% with 540ms on Gait-night, which is higher than
94.9% obtained by 3D-GCN using the full input32. We also tested the
accuracy of dynamic SNNs when restricting the input time window to
120ms on the Gait-day and Gait-night datasets. The performance
advantageof dynamicSNN ismore significant in this case. For instance,
we get an accuracy of 84.8% on Gait-day, which outperforms
about 38.5% with 200ms in 3D-GCN32. Due to the lack of performance
benchmarks in the SNNdomain forHAR-DVS.We first useRes-SNN-1855

as a baseline and then incorporate our modules. Our dynamic
SNN achieves an accuracy of 46.7% on HAR-DVS, which is close to
the performance results obtained using ANN methods33. Although
it is beyond the scope of this work, we anticipate that further effec-
tiveness and efficiency gains will be achievable simultaneously by tai-
loring attention-based dynamic module usage for specific event-
based tasks.

In addition, by observing the results in Table S5, we pose a valu-
able but complex open question: what factors will and how they affect
the spiking firing rate of SNNs? Empirically, the firing of the network is

related to dataset size, network scale, input timewindowand timestep,
spiking neuron types, etc. For instance, for the Gesture dataset, the
NASFR of the lightweight three-layer LIF-SNN27 (0.17) is significantly
larger than that of the larger five-layer LIF-SNN54 (0.07). Consequently,
once the NASFR of a vanilla SNN is already low, it is relatively hard to
drop spiking firing further. These observations are crucial for under-
standing the sparse activations of SNNs, and we look forward to their
theoretical and algorithmic inspiration for subsequent research.

Deployment of SNNs on Speck
Speck greatly eases the difficulty of deploying SNNs on neuromorphic
chips by providing a complete toolchain (Figs. S8, S9). First, we offer
Tonic, a data management tool that enables users to manage existing/
handcraft event data. Tonic provides efficient APIs that allow
users’ easy access to various available public event camera datasets.
Then, to facilitate chip-compatible neural network development, we
propose the Sinabs Python package. Sinabs is a deep learning
library based on PyTorch for SNNs, with a focus on simplicity, fast
training, and scalability. It supports various SNN training methods,
such as ANN-to-SNN conversion62, direct training method based on
Back Propagation Through Time (BPTT)44, etc. It also allows the user to
freely define the synapse/spiking neuron model, and surrogate gra-
dient function to enable advanced SNN development. Sinabs also
comes with many useful plugins. For instance, with the Sinabs-Speck
plugin, the user can easily quantize and transfer the model parameter
and generate the compatible configuration for Speck; the EXODUS
plugin optimizes the gradient flow and can accelerate the BPTT
training 30 × faster.

Moreover, we provide Samna, the developer interface to the
toolchain, and run-time environment for interacting with Speck.
Developed towards efficiency and user friendly, a set of Python APIs
is available in Samna with the core running in C++. Thus,
users can utilize neuromorphic devices professionally and elegantly.
Samna also features an event-based stream filter system that allows
real-time, multi-branch processing of the event-based stream
coming in or out from the device. With an integration of a just-in-time
compiler in Samna, the flexibility of this filter system has been taken to
an even higher dimension, which supports adding users’ defined filter
functions at run-time to meet the requirements of any different
scenarios.

Data availability
All data used in this paper are publicly available and can be accessed at
https://research.ibm.com/publications/a-low-power-fully-event-
based-gesture-recognition-system for DVS128 Gesture dataset, https://
github.com/zhangxiann/TPAMI_Gait_Identification for DVS128 Gait-
day/Gait-night datasets. The HAR-DVS dataset is available on request
via https://github.com/Event-AHU/HARDVS.

Code availability
The source code is publicly available at https://github.com/BICLab.

References
1. Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine

intelligence with neuromorphic computing. Nature 575,
607–617 (2019).

2. Schuman, C. D. et al. Opportunities for neuromorphic computing
algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

3. Bartolozzi, C., Indiveri, G. & Donati, E. Embodied neuromorphic
intelligence. Nat. Commun. 13, 1024 (2022).

4. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a
master plan. Nature 604, 255–260 (2022).

5. Schemmel, J. et al. A wafer-scale neuromorphic hardware system
for large-scale neural modeling. In 2010 IEEE International Sympo-
sium on Circuits and Systems (ISCAS) 1947–1950 (IEEE, 2010).

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 16

https://research.ibm.com/publications/a-low-power-fully-event-based-gesture-recognition-system
https://research.ibm.com/publications/a-low-power-fully-event-based-gesture-recognition-system
https://github.com/zhangxiann/TPAMI_Gait_Identification
https://github.com/zhangxiann/TPAMI_Gait_Identification
https://github.com/Event-AHU/HARDVS
https://github.com/BICLab

6. Painkras, E. et al. Spinnaker: a 1-w 18-core system-on-chip for
massively-parallel neural network simulation. IEEE J. Solid-State
Circuits 48, 1943–1953 (2013).

7. Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip
system for large-scale neural simulations. Proc. IEEE 102, 699–716
(2014).

8. Merolla, P. A. et al. Amillion spiking-neuron integrated circuit with a
scalable communication network and interface. Science 345,
668–673 (2014).

9. Shen, J. et al. Darwin: a neuromorphic hardware co-processor
based on spiking neural networks. Sci. China Inf. Sci. 59, 1–5
(2016).

10. Davies,M. et al. Loihi: a neuromorphicmanycore processorwith on-
chip learning. IEEE Micro 38, 82–99 (2018).

11. Pei, J. et al. Towards artificial general intelligencewithhybrid Tianjin
chip architecture. Nature 572, 106–111 (2019).

12. Potok, T. et al. Neuromorphic computing, architectures, models,
and applications. A beyond-CMOS approach to future computing,
June 29-July 1, 2016. USDOE Office of Science (SC) (United States).
Advanced Scientific Computing Research (ASCR). (Oak Ridge,
TN, 2016).

13. Li, G. et al. Brain inspired computing: a systematic survey and future
trends. Preprint at TechRxiv https://doi.org/10.36227/techrxiv.
21837027.v1 (2023).

14. Moran, J. &Desimone, R. Selectiveattentiongates visual processing
in the extrastriate cortex. Science 229, 782–784 (1985).

15. Moore, T. et al. Neural mechanisms of selective visual attention.
Annu. Rev. Psychol. 68, 47–72 (2017).

16. Maunsell, J. H. Neuronalmechanisms of visual attention.Annu. Rev.
Vis. Sci. 1, 373–391 (2015).

17. Sparsø, J. Introduction to Asynchronous Circuit Design (DTU Com-
pute, Technical University of Denmark, 2020).

18. Indiveri, G. & Douglas, R. Neuromorphic vision sensors. Science
288, 1189–1190 (2000).

19. Lichtsteiner, P., Posch, C. & Delbruck, T. A 128 × 128 120 db 15 μs
latency asynchronous temporal contrast vision sensor. IEEE J. Solid-
State Circuits 43, 566–576 (2008).

20. Gallego, G. et al. Event-based vision: a survey. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 154–180 (2020).

21. Han, Y. et al. Dynamic neural networks: a survey. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 7436 – 7456 (2021).

22. Yang, B., Bender, G., Le, Q. V. & Ngiam, J. Condconv: conditionally
parameterized convolutions for efficient inference. In Advances in
Neural Information Processing Systems. 32, 1307–1318 (Curran
Associates, Inc 2019).

23. Huang, G. et al. Glance and focus networks for dynamic visual
recognition. IEEE. Trans. Pattern. Anal. Mach. Intell. 45, 4605–4621
(2022).

24. Huang, Z. et al. TAda! Temporally-Adaptive Convolutions for Video
Understanding. In International Conference on Learning Repre-
sentations. (2021)

25. Yao, M. et al. Inherent redundancy in spiking neural networks. In
Proc. IEEE/CVF International Conference on Computer Vision
16924–16934 (IEEE Computer Society, 2023).

26. Hauck, S. Asynchronous designmethodologies: an overview. Proc.
IEEE 83, 69–93 (1995).

27. Yao, M. et al. Temporal-wise attention spiking neural networks for
event streams classification. In Proc. IEEE/CVF International Con-
ference on Computer Vision (ICCV). 10201–10210 (IEEE, 2021).

28. Yao, M. et al. Attention spiking neural networks. IEEE Trans. Pattern
Anal. Mach. Intell. 45, 9393–9410 (2023).

29. Yao, M. et al. Sparser spiking activity can be better: feature refine-
and-mask spiking neural network for event-based visual recogni-
tion. Neural Networks. 166, 410–423 (Elsevier, 2023).

30. Amir, A. et al. A low power, fully event-based gesture recognition
system. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition 7243–7252 (2017).

31. Wang, Y. et al. Ev-gait: Event-based robust gait recognition using
dynamic vision sensors. In Proc. IEEE/CVFConference onComputer
Vision and Pattern Recognition 6358–6367 (2019).

32. Wang, Y. et al. Event-stream representation for human gaits iden-
tification using deep neural networks. IEEE Trans. Pattern Anal.
Mach. Intell. 44, 3436–3449 (2021).

33. Wang, X. et al. Hardvs: Revisiting human activity recognition with
dynamic vision sensors. In Proceedings of the AAAI Conference on
Artificial Intelligence. 38, 5615–5623 (2024).

34. Briggs, F., Mangun, G. R. & Usrey, W. M. Attention enhances
synaptic efficacy and the signal-to-noise ratio in neural circuits.
Nature 499, 476–480 (2013).

35. Eki, R.et al. 9.6 A 1/2.3inch 12.3Mpixel with on-chip 4.97TOPS/W
CNN processor back-illuminated stacked CMOS image sensor. In
2021 IEEE International Solid-State Circuits Conference (ISSCC)
154–156 (IEEE, San Francisco, CA, USA, 2021).

36. Purohit, P. & Manohar, R. Hierarchical token rings for address-event
encoding. In 2021 27th IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC) 9–16 (IEEE, Beijing,
China, 2021).

37. Bingham, N. & Manohar, R. A systematic approach for arbitration
expressions. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 4960–4969
(2020).

38. Manohar, R. Hardware/software co-design for neuromorphic sys-
tems. In 2022 IEEE Custom Integrated Circuits Conference (CICC)
01–05 (IEEE, Newport Beach, CA, USA, 2022).

39. Martin, A. et al. The design of an asynchronous MIPS R3000 micro-
processor. In Proc. SeventeenthConferenceonAdvancedResearch in
VLSI 164–181 (IEEE Comput. Soc, Ann Arbor, MI, USA, 1997).

40. Nowick, S. M. & Singh, M. High-performance asynchronous pipe-
lines: an overview. IEEE Des. Test. Comput. 28, 8–22 (2011).

41. Li, C., Longinotti, L., Corradi, F. & Delbruck, T. A 132 by 104
10μm-pixel 250μw 1kefps dynamic vision sensor with pixel-parallel
noise and spatial redundancy suppression. In 2019 Symposium on
VLSI Circuits C216–C217 (IEEE, 2019).

42. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal
Dynamics: From Single Neurons to Networks and Models of Cogni-
tion (Cambridge University Press, 2014).

43. Maass, W. Networks of spiking neurons: the third generation of
neural network models. Neural Netw. 10, 1659–1671 (1997).

44. Wu, Y., Deng, L., Li, G., Zhu, J. & Shi, L. Spatio-temporal back-
propagation for training high-performance spiking neural networks.
Front. Neurosci. 12, 331 (2018).

45. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag.
36, 51–63 (2019).

46. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep
network trainingby reducing internal covariate shift. In International
Conference on Machine Learning 448–456 (PMLR, 2015).

47. He, W. et al. Comparing snns and rnns on neuromorphic vision
datasets: similarities and differences. Neural Netw. 132,
108–120 (2020).

48. Wang, X., Girshick, R., Gupta, A. &He, K. Non-local neural networks.
In Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion, 7794–7803 (IEEE Computer Society, 2018).

49. Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. 42, 2011–2023 (2019).

50. Woo, S., Park, J., Lee, J.-Y. & Kweon, I. S. Cbam: convolutional block
attention module. In Proc. European Conference on Computer
Vision (ECCV) 3–19 (Springer International Publishing, 2018).

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 17

https://doi.org/10.36227/techrxiv.21837027.v1
https://doi.org/10.36227/techrxiv.21837027.v1

51. Li, G., Fang, Q., Zha, L., Gao, X. & Zheng, N. Ham: hybrid attention
module in deep convolutional neural networks for image classifi-
cation. Pattern Recognit. 129, 108785 (2022).

52. Guo, M.-H. et al. Attention mechanisms in computer vision: A sur-
vey. Computational Visual Media. 8, 331–368 (2022).

53. Deng, L. et al. Rethinking the performance comparison between
snns and anns. Neural Netw. 121, 294–307 (2020).

54. Fang, W. et al. Incorporating learnable membrane time constant to
enhance learning of spiking neural networks. In Proc. IEEE/CVF
International Conference on Computer Vision (ICCV) 2661–2671
(IEEE Computer Society, 2021).

55. Fang, W. et al. Deep residual learning in spiking neural networks. In
Advances in Neural Information Processing Systems Vol. 34 (eds
Ranzato,M., Beygelzimer,A., Dauphin, Y., Liang, P. &Vaughan, J.W.)
21056–21069 (Curran Associates, Inc., 2021).

56. Molchanov, P., Tyree, S., Karras, T., Aila, T. & Kautz, J. Pruning
convolutional neural networks for resource efficient inference. In
International Conference on Learning Representations (2017).

57. Yang, H. et al. Lead federated neuromorphic learning for wireless
edge artificial intelligence. Nat. Commun. 13, 1–12 (2022).

58. Yin, B., Corradi, F. &Bohté, S.M.Accurate andefficient time-domain
classification with adaptive spiking recurrent neural networks. Nat.
Mach. Intell. 3, 905–913 (2021).

59. Davies, M. et al. Advancing neuromorphic computing with loihi: a
survey of results and outlook. Proc. IEEE 109, 911–934 (2021).

60. Panda, P., Aketi, S. A. & Roy, K. Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual
connections, stochastic softmax, and hybridization. Front. Neu-
rosci. 14, 653 (2020).

61. Horowitz, M. 1.1 computing’s energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC) 10–14 (IEEE, 2014).

62. Wu, J. et al. Progressive tandem learning for pattern recognition
with deep spiking neural networks. IEEE Trans. Pattern Anal. Mach.
Intell. 44, 7824–7840 (2021).

63. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control
of attention in theprefrontal andposterior parietal cortices.Science
315, 1860–1862 (2007).

Acknowledgements
This work was partially supported by National Science Foundation for
Distinguished Young Scholars (62325603), Beijing Natural Science
Foundation for Distinguished Young Scholars (JQ21015), National Nat-
ural Science Foundation of China (62236009, U22A20103, 62332002,
62027804), andMajor Scientific and Technological Innovation Project of
Xianyang (No.L2023-ZDKJ-JSGG-GY-018). We would like to thank Dr.
Dylan Richard Muir and Dr. Sadique Sheik for their work on software
toolchain, and the other members of the chip design and software
toolchain design team. We also thank Huanhuan Gao (Xi’an Jiaotong
University), Hengyu Zhang (Tsinghua University), Jiakui Hu (Peking Uni-
versity), Yuhong Chou (Xi’an Jiaotong University) for the discussion of
algorithm design, and Prof. Huihui Zhou (Pengcheng Lab) and Prof.

Zhengyu Ma (Pengcheng Lab) for providing the computing resources,
and Baiyu Chen (Dalian University of Technology), Siyu Ding (Tsinghua
University), Siyuan Xu (Shanghai Jiaotong University) for the check and
revise of the manuscript.

Author contributions
M.Y., G.L., N.Q., G.Z., B.X., and Y.T. conceived the work. M.Y. is the
designer of the algorithm and carried out the simulation experiments.
N.Q. is the director of the hardware and software toolchain design team.
O.R., N.Q., T.D., M.D.M, C.N, S.S., and C.W. contributed to Speck man-
ufacturing and design. Y.X., T.H., M.Y., D.W., and W.F. carried out the
hardware implementation. All of the authors contributed to the discus-
sion of the experiment result analysis, and G.L. led the discussion. M.Y.
andG.L. wrote themanuscript, with additional contributions byO.R. The
whole project is supervised byG.L. All authors reviewed themanuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47811-6.

Correspondence and requests for materials should be addressed to
Guoqi Li.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47811-6

Nature Communications | (2024) 15:4464 18

https://doi.org/10.1038/s41467-024-47811-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Spike-based dynamic computing with asynchronous sensing-computing neuromorphic�chip
	Results
	An always-on sensing-computing neuromorphic SoC –�Speck
	Attention-based dynamic framework for�SNNs
	Evaluation of neuromorphic system in terms of dynamic computing

	Discussion
	Methods
	Design philosophy
	Eye-brain integrated hardware�design
	High-level brain mechanism mapping
	Chip�design
	Sensing-computing coupling
	The�sensor
	DVS pre-processing�core
	Network on�chip
	SNN�core
	Readout�core
	Asynchronous logic design methodology
	Chip fabrication
	Chip performance evaluation
	Power evaluation
	Latency evaluation
	Spiking neuron�models
	LIF spiking�neuron
	IF spiking�neuron
	M-IF spiking�neuron
	Synchronous training and asynchronous deployment
	Attention-based dynamic framework
	Step 1: Capture global information
	Step 2: Model long-range dependencies
	Step 3: Mask information
	Details of algorithm evaluation
	Datasets
	Training details
	Network structure
	Input time�window
	Theoretical energy consumption evaluation
	Comparison with previous methods
	Deployment of SNNs on�Speck

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

