
Article https://doi.org/10.1038/s41467-024-48069-8

Network properties determine neural
network performance

Chunheng Jiang1,2,5, Zhenhan Huang 1,2,5, Tejaswini Pedapati3, Pin-Yu Chen 3,
Yizhou Sun 4 & Jianxi Gao 1,2

Machine learning influences numerous aspects of modern society, empowers
new technologies, from Alphago to ChatGPT, and increasingly materializes in
consumer products such as smartphones and self-driving cars. Despite the
vital role and broad applications of artificial neural networks, we lack sys-
tematic approaches, such as network science, to understand their underlying
mechanism. The difficulty is rooted in many possible model configurations,
each with different hyper-parameters and weighted architectures determined
by noisy data. We bridge the gap by developing a mathematical framework
that maps the neural network’s performance to the network characters of the
line graph governed by the edge dynamics of stochastic gradient descent
differential equations. This framework enables us to derive a neural capaci-
tance metric to universally capture a model’s generalization capability on a
downstream task and predict model performance using only early training
results. The numerical results on 17 pre-trained ImageNet models across five
benchmark datasets and one NAS benchmark indicate that our neural capa-
citance metric is a powerful indicator for model selection based only on early
training results and is more efficient than state-of-the-art methods.

Deep neural networks (DNNs) have emerged as a crucial component of
artificial intelligence (AI) and have successful applications in various
domains, including computer vision, natural language processing,
speech recognition, robotics, and more1–4. Despite these remarkable
achievements, neural networks are often criticized as black boxes and
remain challenging to comprehend due to their nonlinear and com-
plex nature5. Increasing research is developing more interpretable
DNN architectures, such as those based on attention mechanisms or
interpretable features6–8. Nevertheless, neural network training is
complex and affected by various factors such as noisy training data,
neural architecture, loss function, and optimization algorithms,
remaining a critical challenge to uncover the black box of DNNs9,10.

The training process is an iterative update of the synaptic con-
nection weights11,12. The straightforwardway is tomodel the process as
a discrete dynamical system, which provides a theoretical foundation
for analyzing convergence rates and generalization error bounds13–16.

However, existing approaches have primarily focused on the macro-
scopic and collective behavior of neurons in neural networks17–19,
without explicitly examining the individual interactions between
trainable weights or synaptic connections and their co-evolution dur-
ing training.

Transfer learning is a widely used and effective technique in deep
learning that leverages pre-trainedmodels to solve numerous complex
problems. One application is the large language model ChatGPT,
which is well-versed in using transfer learning for question
answering20,21. However, selecting the optimal pre-trained model for a
given task remains challenging because thoroughly training each
candidate is computationally expensive and time-consuming, pro-
moting an urgent need for an efficient predictive measure based only
on early training results.

A comprehensive understanding of neural dynamics is the critical
step to addressing these challenges, ultimately leading to optimal

Received: 1 August 2023

Accepted: 17 April 2024

Check for updates

1Network Science and Technology Center, Rensselaer Polytechnic Institute, Troy, NY, USA. 2Department of Computer Science, Rensselaer Polytechnic
Institute, Troy, NY, USA. 3IBM Thomas J.Watson ResearchCenter, YorktownHeights, NY, USA. 4Department of Computer Science, University of California, Los
Angeles, CA, USA. 5These authors contributed equally: Chunheng Jiang, Zhenhan Huang. e-mail: gaoj8@rpi.edu

Nature Communications | (2024) 15:5718 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0005-4115-3825
http://orcid.org/0009-0005-4115-3825
http://orcid.org/0009-0005-4115-3825
http://orcid.org/0009-0005-4115-3825
http://orcid.org/0009-0005-4115-3825
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1812-6843
http://orcid.org/0000-0003-1812-6843
http://orcid.org/0000-0003-1812-6843
http://orcid.org/0000-0003-1812-6843
http://orcid.org/0000-0003-1812-6843
http://orcid.org/0000-0002-3952-208X
http://orcid.org/0000-0002-3952-208X
http://orcid.org/0000-0002-3952-208X
http://orcid.org/0000-0002-3952-208X
http://orcid.org/0000-0002-3952-208X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48069-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48069-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48069-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48069-8&domain=pdf
mailto:gaoj8@rpi.edu

neural network design. We fill the gap by adopting a microscopic
perspective to investigate the edge dynamics of synaptic connections
induced by stochastic gradient descent (SGD)11 through differential
equations. The proposed new approach forms an associated network
of edges and models neural network training as a networked dyna-
mical system over these edges. However, solving the nonlinear net-
worked edge dynamics poses significant computational challenges,
given themillions of weights in convolutional neural networks, such as
MobileNet22 (16 millions of weights) and VGG161 (528 millions of
weights). To overcome this limitation, we use the network reduction
approach (GBB reduction) proposed by Gao et al. to decouple the
neural network system, which enables us to map the neural network’s
performance to its network characters23,24. Our analysis advances sev-
eral critical problems in AI, such as learning curve prediction, model
selection, and zero-shot learning. Specifically, our universal approach
significantly improves the relative ranking prediction of pre-trained
models by 9.1% to 65.3% using early training statistics from as few as
five epochs. These findings demonstrate the effectiveness of our fra-
mework in finding the best predictive model and have significant
implications for neural network architecture design and search in
various applications.

Results
Map from a neural network to an associated graph of edges
The critical step is to map an artificial neural network to a networked
dynamical system so thatwe can use the corresponding approaches to
analyze them. We built a mapping scheme ϕ:GA↦GB, from a neural
network GA to an associated graph GB. The topology of the edges
(synaptic connections) follows a well-defined line graph proposed by
Nepusz and Vicsek25, and nodes of GB are edges of GA. More precisely,
each node in GB is associated with a trainable parameter in GA. For an
MLP, each edgehas a trainableweight, and the edge set ofGA is also the
synaptic connection of GB. For a CNN, this one-to-one mapping from
neurons on layer ℓ to layer ℓ + 1 is replaced by a one-to-many mapping
because of weight sharing, e.g., a parameter in a convolutional filter is
repeatedly used in forward propagation and associated with multiple
pairs of neurons from the two neighboring layers. Since the error
gradients flow in a reversed direction, we reverse the corresponding
links of the proposed line graph for GB. Specifically, given any pair of
nodes in GB, if they share an associated intersection neuron in FP
propagation routes, a link with a reversed direction will be created for
them. Fig. 1a demonstrates the mapping of an example MLP. We have
the topology of GB in place, but the weights of links in GB are not yet
specified. To make up for these missing components, we reveal the
interactions of synaptic connections from SGD, quantify the interac-
tion strengths and then define the weights of links in GB accordingly
(see Methods section for detailed derivation).

Figure 1b shows how to use our approach to predict the perfor-
mance of a pre-trained neural network model based on transfer
learning. The output layer of each pre-trainedmodel is replaced with a
three-layer neural capacitance probe (NCP) unit with (1) a dense layer
of size 256 and (2) a dense layer of size 128. Each of these dense layers
follows (3) a batch normalization26, and (4) is followed by a dropout
layer with a dropout probability of 0.4. Before fine-tuning, we initialize
the NCP unit using Kaiming Normal initialization27. See Supplementary
Note 3 for details about the three layers in NCP.

Neural network model selection with the neural capaci-
tance βeff(t)
We evaluate 17 pre-trained ImageNet models implemented in Keras28,
including AlexNet, VGGs (VGG16 & 19), ResNets (ResNet50, 50V2, 101,
101V2, 152, 152V2), DenseNets (DenseNet121, 169, 201), MobileNets
(MobileNet & MobileNetV2), Inceptions (InceptionV3 & InceptionRes-
NetV2) and Xception, to measure the performance of our approach.
Furthermore, we used four benchmark datasets, CIFAR10, CIFAR100,

SVHN, Fashion MNIST of size 32 × 32 × 3, and one Kaggle challenge
dataset, Birds of size 224× 224 × 3, and split the original train/test.
Also, 15K original training samples are set aside to validate our
approach on each dataset. We set a batch size of 64 and a learning rate
of 0.001, fine-tuning each modified pre-trained model for T = 50
epochs. As shown in Algorithm 1, the NCP does not involve fine-tuning
and is merely used to calculate the neural capacitance βeff(t), which
varies as the number of epochs t changes. To keep the notation suc-
cinct, we use βeff to represent βeff(t). According to Theorem 1 (see
Methods section on the property of the neural capacitance), when the
model converges, βeff→0. Indirectly, the model’s predictability can be
determined by the relation between the training βeff and the validation
accuracy I. Since both βeff and I are available during fine-tuning, we
collect a set of data points of these two in the early phase as the
observations and fit a regularized linear model I = h(βeff; θ) with Baye-
sian ridge regression29, where θ are the associated coefficients. The
estimated predictor I = h(βeff; θ

*) makes prediction of the final accuracy
of models by setting βeff = 0, i.e., I* = h(0; θ*), see Fig. 1c an example in
row 3 of Fig. 2. One can either retain or remove the NCP and fine-tune
the selected model to fully train the best model.

To control the randomness, we repeat 20 times of the fine-tuning
experiments for each model and analyze the average result. As shown
in Fig. 2, the pre-trainedmodels are converged after the fine-tuning on
CIFAR10. For eachmodel, we collect the validation accuracy (blue stars
in row 1) and βeff on the training set (green squares in row 2) during the
early stage of fine-tuning as the observations (e.g., green squares in
row 3 marked by the green box for five epochs), then use these
observations topredict the test accuracy unseenbefore thefine-tuning
terminates. The blue lines are estimated h(⋅ ; θ), the true test accuracy
at T and the predicted accuracy are marked as red triangles and blue
stars, respectively. Both the estimates and predictions are accurate.
For better illustration, learning curves are visualized on a log scale.

The relative rank of these candidates is more important than their
exact values of predicted accuracy inmodel selection. Thus,wechoose
Spearman’s rank correlation coefficient ρ to evaluate and compare
different approaches. We calculate ρ over the ground truth test accu-
racy at epoch T and all pre-trained models’ predicted accuracy I*. In
Fig. 3a, we report the ground truth and predicted accuracy for each
model on CIFAR10, as well as the overall ranking performance mea-
sured by ρ. It indicates that β-based ranking is reliable with ρ >0.9. We
also report the complete results on all five datasets in Fig. 4. The
numerical results indicate that the approach is general for different
datasets.

The estimation quality of h determines how well the relation
between I and βeff is captured. Besides the regression method, the
starting epoch t0 of the observations also plays a role in the estimation.
As shown in Fig. 3b, we evaluate the impact of t0 on ρ of our approach.
As expected, when fixing the length of learning curves, a higher t0
usually produces a better ρ. Since our ultimate goal is to predict with
the early observations, t0 should also be constrained to a small value.
To make the comparisons fair, we view t0 as a hyper-parameter, and
select it according to the Bayesian information criterion (BIC)30, as
shown in row 3 of Fig. 2.

Impact of size of training set
It is important to understand scalability and the performance sensi-
tivity to training set sizes. Thus,we further split theCIFAR10, which has
50K original training and 10K testing samples, into 35K for training and
15K for validation. In studying the dynamics of neural network training,
it is essential to understandhowvarying the training size influences the
effectiveness of our approach. We select the first {10,15,20,25,30}K of
the original 50K samples as the reduced-size training set and the last
10K samples as the validation set to fine-tune the pre-trained models
for 50 epochs. As shown in Fig. 3c, we can use a training set of size as
small as 25K to achieve similarperformance to that uses all 35K training

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 2

samples. It has an important implication for efficient neural network
training, because the size of the required training set can be sig-
nificantly reduced (around 30% in our experiment) while maintaining
similar model ranking performance. Note that the true test accuracy
used in computing ρ is the same test accuracy for the model trained
from 35K training samples and it’s shared by all the five cases
{10,15,20,25,30}K in our analysis.

Comparison with other approaches
For comparison analysis, we considered two families of predictors:
learning curve (LC) based predictors, and transferability measures
(TMs) as the baselines. (i) LC predictors. Chandrashekaran and Lane31

treated the current LC as an affine transformation of previous LCs.
They built an ensemble of transformations employing previous LCs
and the first few epochs of the current LC to predict the final accuracy

of the current LC. Baker et al.32 proposed an SVM-based LC predictor
using features extracted from previous LCs, including the architecture
information such as the number of layers, parameters, and training
techniques such as learning rate and learning rate decay. A separate
SVM is used to predict the accuracy of an LC at a particular epoch.
Domhan et al.33 trained an ensemble of parametric functions that
observe the first few epochs of an LC and extrapolate it. Klein et al.34

devised a Bayesian neural network to model the functions that Dom-
han formulated to capture the structure of the LCs more effectively.
Wistuba and Pedapat35 trained a transfer learning-based predictor on
LCs generated from other datasets. It is a neural network-based pre-
dictor that leverages architecture and dataset embedding to capture
the similarities between the architectures of various models and also
the other datasets that it was trained on. (ii) Transferability measures.
As an alternative estimation of thefinal performanceof neural network

Fig. 1 | Illustration of our framework. a An example multilayer perceptron (MLP)
GA ismapped to a directed line graphGB, which is governed by an edge dynamicsB.
Each node (dichromatic square) of GB is associated with a synaptic connection
linking two neurons (in different colors) from different layers of GA. b A diagram of
transfer learning from the source domain (left stack) to a target domain (right
stack). The pre-trainedmodel ismodified by adding additional layers, i.e., installing
a neural capacitance probe (NCP) unit, on top of the bottom layers. The NCP is
frozen with a set of randomly initialized weights, and only the bottom layers are

fine-tuned. c Observed partial learning curves (green line segments) of validation
accuracy over the early-stage training epochs and the corresponding neural capa-
citance metric βeff during fine-tuning. The predicted final accuracy at βeff→0 (red
dot) is used to select the best one froma set ofmodels. Themetric βeff relies onGB’s
weighted adjacency matrix P, which itself is derived from the reformulation of the
training dynamics. Topredict the performance, a lightweight βeff of the NCP is used
instead of the heavyweight one over the entire network on the right stack of (b).

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 3

models, some transferability measures (TMs) are developed36–47, and
many of them are training-free metrics for assessing the performance
of neural networks. Notably, our approach has access to some obser-
vations collected from early training, and therefore our prediction
mechanism is more similar to the learning curve prediction than those
TM-based approaches that are designed as a surrogate of the trans-
ferability without fine-tuning or re-training. In addition to LC-based
predictors, we compared ourmethod with training-free NASmethods.
The result is shown in the Supplementary Note 8. Direct comparison

on the prediction performance (indicated by the ranking correlation)
is not desirable since training-free NAS methods do not require train-
ing while our proposed method requires training of the model to
compute βeff.

We select several LCpredictors, such as twoheuristic rules the last
seen value (LSV)48 and the best-seen value (BSV), BGRN32, CL31, as well
as three representative TMs: NCE36, LEEP37 and LogME38 as the base-
lines. As shown in Table 1 and Supplementary Fig. S1, using a few
observations, e.g., only 5 epochs, our approach can achieve from 9.1%

Fig. 3 | The sensitivity analysis of theneural capacitance’s predictive capability.
aOur βeff based prediction of the validation accuracy versus the true test accuracy
at epoch 50 of seven representative pre-trained models. Each shape is associated
with one type of pre-trained models. Distinct models of the same type are marked
in different colors. Because the accuracy of AlexNet is much lower than others, we

exclude it for better visualization. Its predicted accuracy is 0.871, and the true test
accuracy is 0.868. If it is included, ρ =0.93 > 0.92.b Impacts of the starting epoch t0
of the observations and (c) the number of training samples on the ranking per-
formance of our βeff based approach.

Fig. 2 | Learning curves of five representative pre-trainedmodels. βeff. The first
row shows the Accuracy as a function of Epoch t and the second row denotes the β
as a function of Epoch t. A regularized linear model h(⋅ ; θ) (blue curve in row 3) is
estimated with Bayesian ridge regression using a few of observations of βeff on

training set and validation accuracy I during early fine-tuning. The starting epoch t0
of observations affects the fit of h, and is automatically determined according to
BIC, and the true test accuracy at epoch 50 is predicted with I* = h(0;θ*).

Fig. 4 | The validation accuracy prediction of pre-trained models on all five
datasets. The validation accuracy based on βeff is strongly correlated with the true
test accuracy of these models after fine-tuning for T = 50 epochs. The Spearman’s
ranking correlation ρ is used to quantify the performance in model selection. Each

shape is associated with one type of pre-trained models. Distinct models of the
same type are marked in different colors. To be noted, each includes AlexNet in
computing ρs.

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 4

up to 65.3% relative improvements over the best baseline on CIFAR10,
SVHN, Fashion MNIST, and Birds. On CIFAR100, NCE achieves mar-
ginally better performance than ours with 10 observations. Moreover,
since each pre-trained model produces one learning curve per run, we
also report our ranking performance and the baselines based on
learning curves collected in individual runs (Supplementary Fig. S2).

Running time analysis
Our approach is efficient, especially for large and deep neural net-
works. Different fromthe training task that involves a full FP andBP, i.e.
Ttrain = TFP + TBP, computing βeff only requires to compute the adja-
cency matrix P according to Eq.(7) on the NCP unit, Tβeff

=TNCP.
Although the computation is complicated, the NCP is lightweight. The
computing cost per epoch is comparable to the training time per
epoch (see Supplementary Fig. S3). Let Tβeff

= c×T train. If c > 1, i.e., Tβeff

is higher than Ttrain, vice versa. Considering the required epochs, our
approach needs k observations, and takes Tours = k ×Tβeff

. To obtain
the ground-truth final accuracy by running K epochs, it takes
Tfull =K × Ttrain. If Tfull > Tours, our βeff based prediction is cheaper than
“just training longer". It indicates that K ×T train � k ×Tβeff

=
ðK � c× kÞ×T train >0, saving us K − c × k more training epochs.

We perform a running time analysis of the two tasks with
4 ×NVIDIA Tesla V100 SXM2 32GB, and visualize the related times in
Supplementary Fig. S3. On average c =Tβeff

=T train ≈ 1:3, computing βeff
takes 1.3 times of the training per epoch. But the efforts are paying off,
as we can predict the final accuracy by observing only k = 10 of K = 100
full training epochs, Tours is only 13% of Tfull. When the observations are
used for LC prediction, the heuristics directly take one observation
(last or best) as the predicted value, so they are mostly computation-
ally cheap but have sub-optimal model ranking performances. BGRN
and CL requiremore computational time because both need training a
predictor with a set of full learning curves from other models. Our
approach also estimates a predictor but does not need any external
LCs. Next, we assume that each model only observes k = 5 epochs and
conduct a running time analysis of these approaches over LC predic-
tion, including estimating a predictor. As shown in Supplementary
Table S1, our approach applies Bayesian ridge regression to efficiently
estimate the predictor I = h(βeff; θ), taking comparable time as BGRN,
significantly less than CL. Nevertheless, it performs best in model
ranking. In contrast, the most expensive CL, does not perform well,
sometimes even worse.

Discussion
In Network Science, a fundamental objective is to comprehend the
functioningof a networkbasedon its structurewithbroad applications
in many fields. This work attempts to advance our understanding of
the functioning of artificial neural networks through a grasp of

complex networks. Recently, some prior works explore the neural
network SGD training dynamics, regarding the global convergence49,
system identification50,51, as well as deep neural network
generalization52. For example, Goldt et al.53 formulated the SGD
dynamics of over-parameterized two-layer neural networks with a set
of differential equations. Furthermore, some exciting phenomena54

emerge during the early phase of neural network training, such as
trainable sparse sub-networks emerge55, gradient descentmoves into a
small subspace56. Moreover, there exists a critical effective connection
between layers57. Inspired by the insights gained from studying the
neural network training dynamics through a networked dynamical
systems lens, we developed a theoretically sound framework for
improving neural network model selection.

Our work presents a novel perspective of neural network model
selection by directly exploring the dynamical evolution of synaptic
connections during neural network training. Our framework refor-
mulates SGD-based neural network training dynamics as an edge
dynamics B to capture the mutual interaction and dependency of
synaptic connections. Accordingly, a networked system is built by
converting a neural network GA to a line graph GB with the governing
dynamics B, which induces a definition of the link weights in GB.
Moreover, a topological property βeff of GB is developed and shown to
be an effective metric in predicting the ranking of a set of pre-trained
models based on early training results.

There are several important directions that we intend to explore
in the future, including: (i) Simplify the adjacency matrix P to capture
the dependency and mutual interaction between synaptic connec-
tions, e.g., approximate gradients using local information58, (ii) extend
the proposed framework to more neural architecture search (NAS)
benchmarks59–62 to select the best subnetwork, and (iii) design an
efficient algorithm to optimize neural network architectures directly.

Methods
Dimension reduction of networked systems
Real-world complex systems, such as plant-pollinator interactions63

and the spread of COVID-1964, are commonly modeled using
networks65,66. Consider a network G = (V, E) with nodes V and edges E.
Let n = ∣V∣ be the number of nodes in the network, the interactions
between nodes can be formulated as a set of differential equations

_xi = f ðxiÞ+
X

j2V
Pijgðxi, xjÞ,8i 2 V , ð1Þ

where xi is the state of node i in the system. For instance, in an eco-
logical network, xi could represent the abundance of a particular
species of plant, while in an epidemic network, it could represent the
infection rate of a person. The adjacency matrix P encodes the

Table 1 | A comparison between ours and the baselines in model ranking

Dataset CIFAR10 CIFAR100 SVHN Fashion MNIST Birds

LLC 5 10 5 10 5 10 5 10 5 10

Ours 0.93 0.98 0.77 0.80 0.84 0.88 0.95 0.89 0.74 0.79

BSV 0.86 0.89 0.55 0.80 0.74 0.78 0.53 0.60 0.52 0.61

LSV 0.85 0.87 0.55 0.80 0.73 0.70 0.49 0.45 0.48 0.45

BGRN 0.74 0.78 0.45 0.60 0.63 0.65 0.57 0.59 0.53 0.52

LC 0.85 0.85 0.50 0.58 0.44 0.10 0.55 0.61 0.50 –

LogME 0.593 0.716 −0.400 0.010 0.132

LEEP 0.635 0.593 0.338 0.159 −0.243

NCE 0.743 0.816 0.152 −0.029 0.049

Imprv (%) 9.1 10.2 −5.7 −2.0 12.4 13.3 65.3 49.2 40.1 30.6

The notation LLC represents the length of the learning curve, and Imprv represents the relative improvement of our approach to the best baseline. The TMs are evaluated based on https://github.
com/thuml/LogME repository. Due to the failure of the https://github.com/tdomhan/pylearningcurvepredictor supporting package of LC, there is a missing ρ at LLC of 10, which does not affect our
conclusions.

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 5

https://github.com/thuml/LogME
https://github.com/thuml/LogME
https://github.com/tdomhan/pylearningcurvepredictor

interaction strength between nodes, where Pij is the entry in row i and
column j. The functions f(⋅) and g(⋅ , ⋅) capture the internal and
external impacts on node i, respectively. Typically, these functions are
nonlinear. Let x = (x1, x2,…, xn). For a small network, given an initial
state, one can run a forward simulation for anequilibrium state x*, such
that _x*i = f ðx*

i Þ+
P

j2VPijgðx*i ,x*
j Þ=0.

However, when the size of the system goes up to millions or even
billions, it will pose a big challenge to solve the coupled differential
equations. The problem can be efficiently addressed by employing a
mean-field technique23,24, where a linear operatorLPð�Þ is introduced to
decouple the system. Specifically,LP depends on the adjacencymatrix
P and is defined asLPðzÞ= 1T Pz

1T P1
, where z 2 Rn. Let δin = P1 and δout = 1TP

be the in- and out-degrees of nodes. For a weighted G, the degrees are
weighted as well. Applying LPð�Þ to δin, it gives

βeff =LPðδinÞ=
1TPδin

1Tδin

=
δout

T

δ in
1Tδin, ð2Þ

which proves to be a powerful metric to measure the resilience of
networks, and has been applied to make reliable inferences from
incomplete networks67,68. We use it tomeasure the predictive ability of
a neural network, whose training in essence is a dynamical system. For
an overview of the related technique, see Supplementary Note 6.

Neural network training is a dynamical system
Conventionally, training a neural network is a nonlinear optimization
problem. Because of the hierarchical structure of neural networks, the
training procedure is implemented by two alternate procedures:
forward-propagation (FP) and back-propagation (BP), as described in
Fig. 1a. During FP, data goes through the input layer, hidden layers, up
to the output layer, which produces the predictions of the input data.
The differences between the outputs and the labels of the input data
are used to define an objective function C, a.k.a training error function.
BP proceeds to minimize C, in a reverse way as did in FP, by propa-
gating the error from the output layer down to the input layer. The
trainable weights of synaptic connections are updated accordingly.

LetGAbe a neural network,w be the flattenedweight vector ofGA,
and z be the activation values. As a whole, the training of a neural
networkGA canbe describedwith two coupled dynamics:A onGA, and
B on GB, where nodes in GA are neurons, and nodes in GB are the
synaptic connections. The coupling relation arises from the strong
inter-dependency between z and w: the states z (activation values or
activation gradients) ofGA are the parameters ofB, and the statesw of
GB are the trainable parameters of GA. If we put the whole training
process in the context of networked systems, A denotes a node
dynamics because the states of nodes evolve during FP, and B
expresses an edge dynamics because of the updates of edge weights
during BP13,69,70. Mathematically, we formulate the node and edge
dynamics based on the gradients of C:

ðAÞdz=dt ≈hAðz,t;wÞ= � ∇zCðzðtÞÞ, ð3Þ

ðBÞdw=dt ≈hBðw,t; zÞ= � ∇wCðwðtÞÞ, ð4Þ

where t denotes the training step. Let að‘Þi be the pre-activation of node
i on layer ℓ, and σℓ(⋅) be the activation function of layer ℓ. Usually, the
output activation function is a softmax. The hierarchical structure of
GA exerts some constraints over z for neighboring layers, i.e.,
zð‘Þi = σ‘ðað‘Þi Þ,1≤ i≤n‘,81≤ ‘<L and
zðLÞk = expfaðLÞk g=

P
j expfaðLÞj g,1≤ k ≤nL, where nℓ is the total number of

neurons on layer ℓ, and GA has L + 1 layers. It also presents a
dependency between z and w, e.g, when GA is an MLP without bias,

að‘Þi =wð‘ÞTi zð‘�1Þ, which builds a connection from GA to GB. It is obvious,
given w, the activation z satisfying all these constraints, is also a fixed
point of A. Meanwhile, an equilibrium state of B provides a set of
optimal weights for GA.

Themetric βeff is a universalmetric to characterize different types
of networks, including biological neural networks71. Because of the
generality of βeff, we analyze how it looks on artificial neural networks,
which are designed to mimic the biological counterparts for general
intelligence. Therefore, we set up an analog system for the trainable
weights. To the end,webuild a line graph for the trainableweights, and
reformulate the training dynamics in the same form as the general
dynamics (Eq. (1)). The reformulated dynamics reveals a simple yet
powerful property regarding βeff, which is utilized to predict the final
accuracy of GA with a few observations during the early phase of the
training.

Quantify the interaction strengths of edges
In SGD, each time a batch of samples is chosen to update w, i.e.,
w w� α∇wC, where α >0 is the learning rate. When desired con-
ditions are met, training is terminated. Let
δð‘Þ = ½∂C=∂zð‘Þ1 , � � � ,∂C=∂zð‘Þn‘

�T 2 Rn‘ (in some literature δ(ℓ) is defined as
gradients with respect toa(ℓ), which does not affect our analysis) be the
activation gradients, and σ 0‘ = ½σ0‘,1, � � � ,σ0‘,n‘

�T 2 Rn‘ be the derivatives
of activation function σ for layer ℓ, with σ0‘,k = σ

0
‘ðað‘Þk Þ,1≤ k ≤n‘,1≤ ‘≤ L.

To understand how the weights W(ℓ) affect each other, we explicitly
expand δ(ℓ) and have δð‘Þ =W ð‘ + 1ÞT ðW ð‘+ 2ÞT ð� � � ðW ðL�1ÞT ðW ðLÞT ðzðLÞ�
yÞÞ � σ 0L�1Þ � � �Þ � σ 0‘+ 2Þ � σ 0‘+ 1Þ, where⊙ is the Hadamard product. We
find that W(ℓ) is associated with all accessible parameters on down-
stream layers, and the recursive relation defines a high-order hyper-
network interaction72 between anyW(ℓ) and the other parameters. With
the fact that x⊙ y =Λ(y)x, where Λ(y) is a diagonal matrix with the
entries of y on the diagonal, we have δð‘Þ =W ð‘+ 1ÞTΛðσ 0‘+ 1Þ
δð‘ + 1Þ =W ð‘+ 1ÞTΛðσ 0‘+ 1ÞW ð‘+ 2ÞTΛðσ 0‘+ 2Þ � � �W ðL�1ÞTΛðσ 0L�1ÞW(L)T(z(L) − y).
For a ReLU σℓ(⋅), σ 0‘ is binary depending on the sign of the input pre-
activation values a(ℓ) of layer ℓ. If að‘Þi ≤0, then σ0‘ðað‘Þi Þ=0, blocking a BP
propagation route of the prediction deviations z(L) − y andgiving rise to
vanishing gradients.

We intended to build direct interactions between synaptic con-
nections. It can be done by identifying which units provide direct
physical interactions to a given unit and appear on the right-hand side
of its differential equation B in Eq.(3), and howmuch such interactions
come into play. There are multiple routes to build up a direct inter-
action between any pair of network weights from different layers, as
presented by the product terms in δ(ℓ). However, the coupled interac-
tion makes it an impossible task, which is well-known as a credit
assignment problem51,73. We propose a remedy. The impacts of all the
other units onW(ℓ) is approximated by direct, local impacts fromW(ℓ+1),
and the others’ contribution as a whole is encoded in the activation
gradient δ(ℓ+1). Moreover, we have the weight gradient (Supplementary
Note 1)

∇W ð‘Þ =Λðσ 0‘Þδð‘Þzð‘�1ÞT =Λðσ 0‘ÞW ð‘+ 1ÞTΛðσ 0‘+ 1Þδð‘+ 1Þzð‘�1ÞT , ð5Þ

which shows the dependency ofW(ℓ) onW(ℓ+1), and itself can be viewed
as an explicit description of the dynamical system B in Eq.(3). Put it in
terms of a differential equation, we have

dW ð‘Þ

dt
= � Λðσ 0‘ÞW ð‘+ 1ÞTΛðσ 0‘+ 1Þδð‘+ 1Þzð‘�1ÞT ≜ FðW ð‘+ 1ÞÞ: ð6Þ

Because of the mutual dependency of the weights and the activation
values, it is hard to make an exact decomposition of the impacts of
different parametersonW(ℓ). But, in the gradient∇W ð‘Þ ,W

(ℓ+1) presents as

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 6

an explicit term and contributes the direct impact on W(ℓ). To capture
such direct impact and derive the adjacency matrix P for GB, we apply
Taylor expansion on ∇W ð‘Þ and have

Pðl,l + 1Þ =∂2C=∂W ð‘Þ∂W ð‘ + 1Þ, ð7Þ

which defines the interaction strength between each pair of weights
from layer ℓ + 1 to layer ℓ. For a detailed derivation of P on MLP and
general neural networks, see Supplementary Notes 2 and 3. Let
w = (w1,w2,…) be a flattened vector of all trainable weights of GA.
Given a pair of weightswi andwj, one from layer ℓ1, another from layer
ℓ2. If ℓ2 = ℓ1 + 1, the entry Pij is defined according to Eq.(7), otherwise
Pij =0. Considering the scale of the trainable parameters inGA, P is very
sparse. LetW(ℓ+1)* be the equilibrium states (SupplementaryNote 3), the
training dynamics Eq.(6) is reformulated into the form of Eq.(1), and
gives the edge dynamics B for GB:

_wi = f ðwiÞ+
X

j

Pijgðwi,wjÞ, ð8Þ

with f ðwiÞ= Fðw*
i Þ and gðwi,wjÞ=wj �w*

j . The value of weights at an
equilibrium state fw*

j g is unknown, but it is a constant and does not
affect the computing of βeff.

Property of the neural capacitance
According to Eq.(7), we have the weighted adjacency matrix P of GB in
place. The matrix P encodes rich information of the network, such as
the topology, the weights, the gradients, and the training labels
indirectly. Nowwequantify the total impact that a trainable parameter
(or synaptic connection) receives from itself and the others, corre-
sponding to the weighted in-degrees δin = P1. Applying LPð�Þ to δin, we
get a “counterpart” metric βeff =LP ðδinÞ to measure the predictive
ability of a neural networkGA, as the resiliencemetric (Eq. (2)) does to a
general networkG. IfGA is anMLP, we can explicitlywrite the entries of
P and βeff. For details of how to derive P and βeff of an MLP, see Sup-
plementary Note 2. Moreover, we prove in Theorem 1 below that asGA

converges, ∇ð‘ÞW vanishes, and βeff approaches zero (see Supplemen-
tary Note 4).

Theorem 1. Let ReLU be the activation function of GA. When GA con-
verges, then βeff = 0.

To be noted that a small value is added to the denominator of
Eq.(2) to avoid a possible 0/0.

Algorithm 1. Implement NCP and Computeβeff(t)
Input: Pre-trained source model F s = fF ð1Þs ,F ð2Þs g with bottom F ð1Þs

and output layerF ð2Þs , target datasetDt, maximum epoch T
1: Remove F ð2Þs from F s and add on top of F ð1Þs an NCP unit U with
multiple layers (Fig. 1b)

2: Randomly initialize and freeze U
3: Train target model F t = fF ð1Þs ,Ug by fine-tuning F ð1Þs on Dt for

epochs of T
4: Obtain P from U according to Eq.(7)
5: Compute βeff with P according to Eq.(2)

For an MLP GA, it is possible to derive an analytical form of βeff.
However, it becomes extremely complicated for a deepneuralnetwork
with multiple convolutional layers. To realize βeff for deep neural
networks in any form, we take advantage of the automatic differ-
entiation implemented in TensorFlow74. Considering the number of
parameters, it is still computationally prohibitive to calculate a βeff for
the entire GA.

Therefore, we seek to derive a surrogate from a partial of GA.
Specifically, we insert a neural capacitance probe (NCP) unit, i.e., put-
ting additional layerson topof thebeheadedGA (excluding theoriginal

output layer), and estimate the predictive ability of the entire GA using
βeff of the NCP unit. Therefore, we call βeff a neural capacitance.

Bayesian ridge regression
Ridge regression introduces an ℓ2-regularization to linear regression,
and solves the problem

argminθðy� XθÞT ðy� XθÞ+ λ k θk22, ð9Þ

where X 2 Rn×d , y 2 Rn, θ 2 Rd is the associated set of coefficients,
the hyper-parameter λ > 0 controls the impact of the penalty term
k θk22. Bayesian ridge regression introduces uninformative priors over
the hyper-parameters, and estimates a probabilistic model of the
problem in Eq.(9). Usually, the ordinary least squares method posits
the conditional distribution of y to be a Gaussian, i.e.,
pðyjX ,θÞ=N ðyjXθ,σ2IdÞ, where σ > 0 is a hyper-parameter to be tuned,
and Id is a d × d identity matrix. Moreover, if we assume a spherical
Gaussian prior θ, i.e., pðθÞ=N ðθj0,τ2IdÞ, where τ >0 is another hyper-
parameter to be estimated from the data at hand. According to Bayes’
theorem, p(θ∣X, y)∝ p(θ)p(y∣X, θ), the estimates of themodel aremade
by maximizing the posterior distribution p(θ∣X, y), i.e.,
argmaxθ logpðθjX ,yÞ= argmaxθ logN ðyjXθ,σ2IdÞ+ logN ðθj0,τ2IdÞ,
which is a maximum-a-posteriori (MAP) estimation of the ridge
regression when λ = σ2/τ2. All θ, λ, and τ are estimated jointly during
the model fitting, and σ = τ

ffiffiffi
λ
p

. Based on the approach proposed by
Tipping29 and MacKay75 to update the parameters λ and τ, we estimate
I = h(βeff; θ) with scikit-learn76. We can summarize the application of
Bayesian ridge regression to our framework as follows:

• Inputs: {(βeff,k, Ik)∣k = 1, 2,…,K} is a set of observations, where βeff,k
is the proposed metric calculated from the training set, Ik repre-
sents the validation accuracy, K is the total number of observa-
tions collected from early stage of the model training.

• Output: I − h(βeff; θ) = 0, where θ is the fitting parameters in the
Bayesian ridge regression.

• Prediction: I* = h(0, θ) as per Theorem 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from this study are publicly available. (1) Pre-trained ImageNet
models in Keras28, (2) Benchmark datasets CIFAR10, CIFAR100, SVHN,
Fashion MNIST from Keras, (3) Kaggle challenge dataset Birds: https://
www.kaggle.com/gpiosenka/100-bird-specie.

Code availability
Code is publicly available at https://codeocean.com/capsule/
6480460/tree/v1.

References
1. Simonyan, K. & Zisserman, A. Very deep convolutional networks

for large-scale image recognition. Int. Conf. Learning Representa-
tion 1, 1–14 (2014).

2. Weiss, K., Khoshgoftaar, T. M. & Wang, D. A survey of transfer
learning. J. Big Data 3, 1–40 (2016).

3. Jia, Y. et al. Transfer learning from speaker verification to multi-
speaker text-to-speech synthesis. Adv. Neural Info. Processing Syst.
31, 1–11 (2018).

4. Guo, X. et al. Deep transfer learning enables lesion tracing of cir-
culating tumor cells. Nat. Commun. 13, 7687 (2022).

5. Alain, G. & Bengio, Y. Understanding intermediate layers using lin-
ear classifier probes. Int. Conf. Learn. Representation 1, 1–4 (2016).

6. Mnih, V., Heess, N., Graves, A. et al. Recurrent models of visual
attention. Adv. Neural Info. Process. Syst. 27, 1–9 (2014).

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 7

https://www.kaggle.com/gpiosenka/100-bird-specie
https://www.kaggle.com/gpiosenka/100-bird-specie
https://codeocean.com/capsule/6480460/tree/v1
https://codeocean.com/capsule/6480460/tree/v1

7. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by
jointly learning to align and translate. Int. Conf. Learn. Representa-
tions 1, 1–15 (2014).

8. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 770–778 (2016).

9. Zeiler, M. D. & Fergus, R. Visualizing and understanding convolu-
tional networks. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceed-
ings, Part I 13, 818–833 (Springer, 2014).

10. Wang, H. et al. Deep active learning by leveraging training
dynamics. Adv. Neural Info. Processing Syst. 35,
25171–25184 (2022).

11. Bottou, L. Stochastic gradient descent tricks. In Neural networks:
Tricks of the Trade, 421–436 (Springer, 2012).

12. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

13. Mei, S., Montanari, A. & Nguyen, P.-M. A mean field view of the
landscape of two-layer neural networks. Proc. Natl. Acad. Sci. 115,
E7665–E7671 (2018).

14. Chang, B., Chen, M., Haber, E. & Chi, H. AntisymmetricRNN: A
dynamical system view on recurrent neural networks. In Interna-
tional Conference on Learning Representations (2018).

15. Dogra, A. S. & Redman, W. Optimizing neural networks via Koop-
man operator theory. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F. & Lin, H. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 33, 2087–2097 (Curran Associates,
Inc., 2020).

16. Feng, Y. & Tu, Y. Phases of learning dynamics in artificial neural
networks: in the absence or presence of mislabeled data. Machine
Learn.: Sci. Technol. 2, 1–11 (2021).

17. Hopfield, J. J. Neural networks and physical systemswith emergent
collective computational abilities. Proc. Natl. Acad. Sci. 79,
2554–2558 (1982).

18. Deng, Z. & Zhang, Y. Collective behavior of a small-world recurrent
neural system with scale-free distribution. IEEE Trans. Neural Netw.
18, 1364–1375 (2007).

19. Bau, D. et al. Understanding the role of individual units in a deep
neural network. Proc. Natl. Acad. Sci. 117, 30071–30078 (2020).

20. Radford, A. et al. Language models are unsupervised multitask
learners. OpenAI blog 1, 9 (2019).

21. Brown, T. et al. Languagemodels are few-shot learners. Adv. Neural
Info. Processing Syst. 33, 1877–1901 (2020).

22. Howard, A. G. et al. MobileNets: Efficient convolutional neural
networks for mobile vision applications. CoRR 1, 1–9 (2017).

23. Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in
complex networks. Nature 530, 307–312 (2016).

24. Zhang, H., Wang, Q., Zhang, W., Havlin, S. & Gao, J. Estimating
comparable distances to tipping points across mutualistic systems
by scaled recovery rates. Nat. Ecol. Evol. 6, 1524–1536 (2022).

25. Nepusz, T. & Vicsek, T. Controlling edge dynamics in complex
networks. Nature Physics 8, 568–573 (2012).

26. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating deep
network trainingby reducing internal covariate shift. In International
Conference on Machine Learning, 448–456 (PMLR, 2015).

27. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification.
In Proceedings of the IEEE International Conference on Computer
Vision, 1026–1034 (2015).

28. Ketkar, N. Introduction to Keras. InDeep learningwithPython, 97–111
(Springer, 2017).

29. Tipping, M. E. Sparse Bayesian learning and the relevance vector
machine. J. Machine Learn. Res. 1, 211–244 (2001).

30. Friedman, J. et al. The elements of statistical learning, vol. 1
(Springer series in statistics New York, 2001).

31. Chandrashekaran, A. & Lane, I. R. Speeding up hyper-parameter
optimization by extrapolation of learning curves using previous
builds. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 477–492 (Springer, 2017).

32. Baker, B., Gupta, O., Raskar, R. & Naik, N. Accelerating neural
architecture search using performance prediction. International
Conference on Learning Representations 1, 1–19 (2017).

33. Domhan, T., Springenberg, J. T. & Hutter, F. Speeding up automatic
hyperparameter optimization of deep neural networks by extra-
polation of learning curves. In Twenty-fourth International Joint
Conference on Artificial Intelligence (2015).

34. Klein, A., Falkner, S., Bartels, S., Hennig, P. &Hutter, F. Fast Bayesian
optimization of machine learning hyperparameters on large data-
sets. In Artificial Intelligence and Statistics, 528–536 (PMLR, 2017).

35. Wistuba, M. & Pedapati, T. Learning to rank learning curves. In
International Conference on Machine Learning, 10303–10312
(PMLR, 2020).

36. Tran, A. T., Nguyen, C. V. & Hassner, T. Transferability and hardness
of supervised classification tasks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 1395–1405 (2019).

37. Nguyen, C., Hassner, T., Seeger, M. & Archambeau, C. LEEP: A new
measure to evaluate transferability of learned representations. In
International Conference on Machine Learning, 7294–7305
(PMLR, 2020).

38. You, K., Liu, Y., Wang, J. & Long, M. LogME: Practical assessment of
pre-trainedmodels for transfer learning. In InternationalConference
on Machine Learning, 12133–12143 (PMLR, 2021).

39. Bolya, D., Mittapalli, R. & Hoffman, J. Scalable diverse model
selection for accessible transfer learning. Adv. Neural Info. Proces-
sing Syst. 34, 1–12 (2021).

40. Deshpande, A. et al. A linearized framework and a new benchmark
for model selection for fine-tuning. Computer Vision and Pattern
Recognition 1, 1–14 (2021).

41. Lin, M. et al. Zen-nas: A zero-shot nas for high-performance image
recognition. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 347–356 (2021).

42. Mellor, J., Turner, J., Storkey, A. & Crowley, E. J. Neural architecture
search without training. In International Conference on Machine
Learning, 7588–7598 (PMLR, 2021).

43. Tanaka, H., Kunin, D., Yamins, D. L. & Ganguli, S. Pruning neural
networks without any data by iteratively conserving synaptic flow.
Adv. Neural Info. Processing Syst. 33, 6377–6389 (2020).

44. Chen, W., Huang, W., Gong, X., Hanin, B. & Wang, Z. Deep archi-
tecture connectivity matters for its convergence: A fine-grained
analysis. Adv. Neural Info. Processing Syst. 35, 35298–35312 (2022).

45. Zhang, Z. & Jia, Z. Gradsign: model performance inference with
theoretical insights. In International Conference on Learning
Representations (ICLR, 2021).

46. Li, G., Yang, Y., Bhardwaj, K. & Marculescu, R. Zico: Zero-shot nas
via inverse coefficient of variation on gradients. In International
Conference on Learning Representations (ICLR, 2023).

47. Patil, S. M. & Dovrolis, C. Phew: Constructing sparse networks that
learn fast and generalize well without training data. In International
Conference on Machine Learning, 8432–8442 (PMLR, 2021).

48. Klein, A., Falkner, S., Springenberg, J. T. & Hutter, F. Learning curve
prediction with Bayesian neural networks. In 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings (Open-
Review.net, 2017).

49. Tian, Y. An analytical formula of population gradient for two-layered
ReLU network and its applications in convergence and critical point
analysis. In International Conference on Machine Learning,
3404–3413 (PMLR, 2017).

50. Haykin, S.Neural Networks and Learning Machines (Pearson
Education India, 2010).

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 8

51. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G.
Backpropagation and the brain. Nat. Rev. Neurosci. 1–12 (2020).

52. Bhardwaj, K., Li, G. & Marculescu, R. How does topology influence
gradient propagation and model performance of deep networks
with densenet-type skip connections? In Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
13498–13507 (2021).

53. Goldt, S., Advani, M., Saxe, A. M., Krzakala, F. & Zdeborová, L.
Dynamics of stochastic gradient descent for two-layer neural net-
works in the teacher-student setup. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. & Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32 (Curran
Associates, Inc., 2019).

54. Frankle, J., Schwab, D. J. & Morcos, A. S. The early phase of neural
network training. Int. Conf. Learning Representations 1, 1–20 (2020).

55. Frankle, J., Dziugaite, G. K., Roy, D. M. & Carbin, M. Stabilizing the
lottery ticket hypothesis. Comput Vision Pattern Recogn 1,
1–19 (2019).

56. Gur-Ari, G., Roberts, D. A. & Dyer, E. Gradient descent happens in a
tiny subspace. Int. Conf. Learning Representations 1, 1–19 (2018).

57. Achille, A., Rovere, M. & Soatto, S. Critical learning periods in deep
networks. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (Open-
Review.net, 2019).

58. Jaderberg, M. et al. Decoupled neural interfaces using synthetic
gradients. In International Conference on Machine Learning,
1627–1635 (PMLR, 2017).

59. Ying, C. et al. NAS-Bench-101: Towards reproducible neural archi-
tecture search. In International Conference on Machine Learning,
7105–7114 (PMLR, 2019).

60. Dong, X., Liu, L., Musial, K. &Gabrys, B. NATS-Bench: Benchmarking
nas algorithms for architecture topology and size. IEEE Transac.
Pattern Anal. Machine Intelligence 7, 3634–3646 (2021).

61. Zela, A., Siems, J. & Hutter, F. NAS-Bench-1Shot1: benchmarking
and dissecting one-shot neural architecture search. In International
Conference on Learning Representations 1–12 (ICLR, 2020).

62. Li, C. et al. HW-NAS-Bench: hardware-aware neural architecture
search benchmark. In International Conference on Learning Repre-
sentations 1–14 (ICLR, 2021).

63. Waser, N. M. & Ollerton, J. Plant-pollinator interactions: from spe-
cialization to generalization (University of Chicago Press, 2006).

64. Thurner, S., Klimek, P. & Hanel, R. A network-based explanation of
why most covid-19 infection curves are linear. Proc. Natl. Acad. Sci.
117, 22684–22689 (2020).

65. Mitchell, M. Complex systems: Network thinking. Artificial Intelli-
gence 170, 1194–1212 (2006).

66. Barabási, A.-L. & Pósfai, M.Network Science (Cambridge University
Press, 2016).

67. Jiang,C.,Gao, J. &Magdon-Ismail,M. True nonlinear dynamics from
incomplete networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, 131–138 (2020).

68. Jiang, C., Gao, J. & Magdon-Ismail, M. Inferring degrees from
incompletenetworks andnonlinear dynamics. InProceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelli-
gence, 3307–3313 (2020).

69. Poggio, T., Banburski, A. & Liao, Q. Theoretical issues in deep net-
works. Proc. Natl. Acad. Sci. 117, 30039–30045 (2020).

70. Poggio, T., Liao, Q. & Banburski, A. Complexity control by gradient
descent in deep networks. Nat. Commun. 11, 1–5 (2020).

71. Shu, P. et al. The resilience and vulnerability of human brain net-
works across the lifespan. IEEE Trans. Neural Syst. Rehab. Eng. 29,
1756–1765 (2021).

72. Casadiego, J., Nitzan, M., Hallerberg, S. & Timme, M. Model-free
inference of direct network interactions from nonlinear collective
dynamics. Nat. Commun. 8, 1–10 (2017).

73. Whittington, J. C. & Bogacz, R. Theories of error back-propagation in
the brain. Trends Cogn. Sci. 23, 235–250 (2019).

74. Abadi, M. et al. TensorFlow: A system for large-scale machine
learning. In 12th USENIX symposium on operating systems design
and implementation (OSDI 16), 265–283 (2016).

75. MacKay, D. J. Bayesian interpolation. Neural Comput. 4,
415–447 (1992).

76. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J.
Machine Learning Res. 12, 2825–2830 (2011).

Acknowledgements
We acknowledge the support of the USA National Science Foundation
under grant #2047488, #2312501, and the Rensselaer-IBM AI Research
Collaboration.

Author contributions
C.J. and Z.H. designed experiments, conducted experiments, collected
and analyzed data. T.P. conducted experiments and reported perfor-
mance for baseline models. P.-Y.C. and Y.S. provided valuable insights
and expertise in deep learning models. J.G. supervised the project and
was the lead writer of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-48069-8.

Correspondence and requests for materials should be addressed to
Jianxi Gao.

Peer review information Nature Communications thanks Yuandong
Tian, and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024, corrected publication 2024

Article https://doi.org/10.1038/s41467-024-48069-8

Nature Communications | (2024) 15:5718 9

https://doi.org/10.1038/s41467-024-48069-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Network properties determine neural network performance
	Results
	Map from a neural network to an associated graph of�edges
	Neural network model selection with the neural capacitance βeff(t)
	Impact of size of training�set
	Comparison with other approaches
	Running time analysis

	Discussion
	Methods
	Dimension reduction of networked systems
	Neural network training is a dynamical�system
	Quantify the interaction strengths of�edges
	Property of the neural capacitance
	Bayesian ridge regression
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

