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The landscape of non-coding mutations in cancer progression and immune
evasion is largely unexplored. Here, we identify transcrptome-wide somatic
and germline 3’ untranslated region (3’-UTR) variants from 375 gastric cancer
patients from The Cancer Genome Atlas. By performing gene expression
quantitative trait loci (¢QTL) and immune landscape QTL (ilQTL) analysis, we
discover 3’-UTR variants with cis effects on expression and immune landscape
phenotypes, such as immune cell infiltration and T cell receptor diversity.
Using a massively parallel reporter assay, we distinguish between causal and
correlative effects of 3’-UTR eQTLs in immune-related genes. Our approach
identifies numerous 3-UTR eQTLs and ilQTLs, providing a unique resource for
the identification of immunotherapeutic targets and biomarkers. A prioritized
ilQTL variant signature predicts response to immunotherapy better than
standard-of-care PD-L1 expression in independent patient cohorts, showcasing
the untapped potential of non-coding mutations in cancer.

Immune evasion is a key hallmark of tumorigenesis and cancer
progression'. The central role of immune evasion in the development
and maintenance of the disease is reflected in the remarkable efficacy
of cancer immunotherapies. The US Food and Drug Administration
(FDA) recently approved the use of immune checkpoint inhibitors
(ICls), such as anti-PD-1 or PD-L1 monoclonal antibodies (mAb), as
third-line treatments against advanced cancers of different types,
including gastric cancer®*. Despite the celebrated successes of cancer
immunotherapy, only a small subset of patients still benefits, while the
differences in clinical response even in tumors having similar histo-
pathological types warrant the development of better biomarkers and
means for patient stratification’.

During tumor progression, cell populations with immune evasion
properties, sometimes acquired through mutations, are clonally
expanded®. The importance of coding germline and somatic mutations
as drivers of immune escape has been extensively documented and is a
domain of intense research’. However, less is known about the con-
tribution of non-coding variants to immune evasion and tumorigenesis®,

Messenger RNA 3’ Untranslated Regions (3’-UTRs) are primary
sites for post-transcriptional regulatory events’. These processes
account for ~60% of the variation in protein expression, while ~20% of
germline expression quantitative trait loci (eQTLs) are located in 3’
UTRs’, which are more conserved than other noncoding loci, sug-
gesting selective pressure'®. 3-UTRs are the most common targets of
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key regulatory molecules such as RNA binding proteins (RBPs) and
microRNAs (miRNAs).

miRNAs are potent post-transcriptional regulators and are impli-
cated in the control of numerous cellular mechanisms" as well as of all
cancer hallmarks”, hence their role in cancer immune surveillance has
become a research hotspot”. miRNAs have been found to efficiently
regulate Programmed death ligand 1 (PD-L1), other B7 family members,
cytokines and numerous immune genes™*. On the other hand, RBPs have
been shown to regulate mRNA processing, localization, interactions, and
stability®, while different RBPs such as Mex3B", Mex3C”, and HNRNPR'®
have been shown to regulate key antigen presentation mechanisms.

However, tumors mutate, truncate, or edit their 3’UTRs to escape
this tight regulatory control**%, Unfortunately, the current reliance
of variant-calling pipelines on whole exome sequencing (WES) data,
which do not include probes for 3’-UTR regions, has resulted in a lack
of understanding of the role of 3’-UTR variants in cancer progression.
Small-scale, targeted studies have identified individual 3’-UTR somatic
mutations that associate with changes in cis-gene expression and
immune phenotypes, especially for PD-L1**°. For instance, a common
somatic mutation in the PD-L1 3-UTR has been shown to disrupt miR-
570 binding leading to increased expression®.

RNA sequencing (RNAseq) has been shown to be an alternative
variant detection source”. The Pan-Cancer Analysis of Whole Genomes
(PCAWG) database contains the largest collection of cancer patient
samples with whole genome sequencing (WGS) data to date®. In
PCAWG (n=1188), out of the 87 samples without a driver alteration
identified at the DNA level and available RNAseq data, every sample
had an RNA-level alteration identified; indicating that driver alterations
could have revealed themselves in RNA, rather than DNA%. Until today,
no study has leveraged the rich transcriptomic data from The Cancer
Genome Atlas (TCGA) to identify mutations across this vast resource.

Here, we perform a comprehensive mutational analysis on raw
RNAseq data from hundreds of stomach adenocarcinoma (STAD)
samples in TCGA to identify 3’-UTR germline and somatic single-
nucleotide variants (SNVs) as well as short insertions-deletions
(indels)®. By performing a quantitative trait loci (QTL) analysis, we
identify cis-acting gene expression QTLs (cis-eQTLs), as well as variants
associated with changes in immune phenotypes, herein termed
immune landscape QTLs (ilQTLs). We design and implement a mas-
sively parallel reporter assay (MPRA) to validate at scale cis-eQTLs in
immune-related genes directly affecting post-transcriptional stability
and abundance of respective genes. MPRAs have been utilized suc-
cessfully in the past for the functional validation of non-coding var-
iants, such as promoter and UTR germline variants®, while this assay is
specifically enriched in somatic 3’-UTR mutations. We also investigate
the translational potential of the identified 3’-UTR variants and speci-
fically their ability to predict outcomes across diverse cohorts of ICIL.
Utilizing the prioritized ilQTLs, we establish a polygenic risk score
(PRS) that proves more accurate in predicting response to checkpoint
inhibition in melanoma and gastric cancer patients than PD-L1
expression, providing direct support of the potential utility of UTR
variants in predictive modeling in immunotherapy. In this work, we
establish the tools and apply them to unbiasedly identify
transcriptome-wide 3’-UTR variants associated with changes in cis-
gene expression and immune phenotypes in cancer and lay the foun-
dations for similar 3’-UTR-focused studies in other cancer types.

Results

Characterization of the somatic and germline 3’-UTR variant
landscape in gastric adenocarcinoma

Apart from the 1188 PCAWG samples overlapping with TCGA, WGS
data are not available for -90% of TCGA subjects, limiting large scale 3’-
UTR variant investigations. Specifically for gastric cancer, only
40 samples comprise WGS data. The only study to date which

attempted to analyze 3’-UTR variants in TCGA in non-WGS samples®,
mistakenly considered that 3’-UTR regions were captured in the WES
probe sets used in the study*>**. We now know that these regions are
not covered in the TCGA WES kits*®, with only 0.31% of 3'UTR regions
being targeted in the TCGA STAD cohort.

To call variants, we utilized RNAseq data, which has been shown to
be a powerful modality for such analyses”-*®. Sequencing data from 375
gastric cancer patients (Supplementary Data 1), including 375 primary
gastric cancer samples and 40 matched controls, were analyzed fol-
lowing a comprehensive approach using GATK best practices®
(Fig. 1A) and led to the identification of thousands of expressed var-
iants and indels per sample (Supplementary Fig. 1A, B). Analysis of the
distribution of called variants along the length of the 3’-UTR revealed
that the RNAseq-derived calls matched the distribution of WGS calls
from PCAWG (Fig. 1B). As expected, analysis of the distribution of
TCGA WES-derived variants along the length of the 3’-UTR showed that
most variants fall in the beginning of the 3’-UTR, proximal to coding
sequences, likely representing sequences captured by coding region
probes (Fig. 1B). The majority of 3’-UTR variants distally to the stop
codon are missed by the WES-based variant calling analysis, due to lack
of targeting probes.

Out of 5,431,118 variants identified across the genome by the
RNAseq GATK analysis post-filtering, 3,283,340 (60.5%) overlapped
with germline variant calls identified from blood samples from the
same patients. The remaining 2,147,778 variants (39.5%) were treated
as “likely somatic” calls. Of the likely somatic calls, 1,429,039 variants
(66.5%) intersected with common RNA editing events identified in the
GTEx database®. Samples deemed as ultramutated by TCGA, based on
WES-derived variant calls, exhibited high frequency of RNAseq-derived
somatic SNVs (Fig. 1C). We also reanalyzed all TCGA STAD RNAseq
samples using Strelka2*, an orthogonal variant calling algorithm, and
identified a ~90% concordance (Fig. 1D).

High-throughput capture of known functional variants in
PD-L13-UTR

We initially evaluated whether our high-throughput approach could
capture the functional impact of the small number of 3’-UTR SNVs that
have been previously associated with changes in PD-L1 expression in
gastric cancer, such as the polymorphisms rs2297136” and rs4143815%,
or non-small cell lung cancer, such as rs4742098%. Indeed, our analysis
identified all three variants and when comparing PD-L1 expression in
samples with or without the 3’-UTR variants, we observed significantly
increased expression levels in patients carrying the alternative allele, as
expected based on the literature (Fig. 2).

Prioritization of 3’-UTR germline variants and somatic muta-
tions controlling cis gene expression in gastric adenocarcinoma
We prioritized transcriptome-wide 3’-UTR variants associated with cis-
gene expression changes in gastric cancer. We investigated variants
that were present in 5 or more samples, corresponding to 1.3% or
higher minor allele frequency (MAF) in the tested population
(2,917,776 total variants, 68,4%/1,994,516 germline, 31.6%/923,260
somatic, in which 67.2%/620,419 overlapping with editing sites). We
performed an eQTL analysis® with the dosage of each variant as the
genotype variable and the inverse quantile-normalized expression of
the corresponding gene as the phenotype variable. To remove
unwanted variation from the model, we used sex, age, along with the
top 5 genetic principal components (PCs, Supplementary Fig. 2A) and
expression surrogate variables (SVs)*° as covariates (a simplified ver-
sion of the formula is captured in Fig. 3A).

With a cutoff of a nominal p value of 1e-7, we identified ~3000 cis-
eQTLs in protein-coding genes, accounting for 75% of all eQTLs
(Fig. 3B). Out of the 3133 exonic (CDS/UTR) variants in protein coding
genes, 1845/58.9% were germline, and 1288/41.1% were somatic
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Fig. 2 | Analysis of PD-L1 3’-UTR variants in TCGA STAD. Normalized PD-L1
expression (log2(read count+1)) in patients carrying the alternative allele (Alt) vs
patients homozygous for the reference allele (Ref). For all three SNPs studied, Alt
patients show higher levels of PD-L1 expression than Ref patients. Boxplot lines
represent the median and upper or lower quartiles, while whiskers define the 1.5x
interquartile range. Significance was assessed by two-tailed Student’s ¢ test.
rs2297136 (nAlt =236, nRef =139, p =1.42e-8), rs4143815 (nAlt =163, nRef =212,
p=101e-4), rs4742098 (nAlt =101, nRef =274, p = 0.00173). Figure data are pro-
vided in the Source Data file. *P< 0.05, *P< 0.01, **P< 0.001, ***P< 0.0001.

(254 overlapping with editing sites). 27.6% of the identified eQTLs
overlapped with eQTLs from the Genotype-Tissue Expression project
(GTEXx), identified using healthy stomach tissue samples (90.6% over-
lapping germline eQTLs). Interestingly, we found that the highest
percentage (60%) of all significant cis-eQTLs in protein-coding genes
reside in the 3-UTR genic region (Fig. 3C), reflecting the importance of
3’-UTR cis-acting elements in controlling gene expression, often post-
transcriptionally*. Comparing the number of 3-UTR variants to the
average relative length of the 3’-UTR in protein coding genes®
revealed a significant enrichment (Supplementary Fig. 2B, C) (chi-
square p value <1le-5). Enrichment of eQTLs in the 3-UTR among
exonic sequences has also been reported in other studies, including
analyses of normal-tissue eQTL variants from GTEx***‘. Somatic
eGenes, where the lead eQTL was somatic, included important gastric
cancer oncogenes, such as KRAS, CCDN1, and CCND2 among others®,
genes involved in antigen generation, processing, or presentation
(e.g., APOBEC3B, CANX, CTSS), and cytokines/chemokines or other key
immune regulators (e.g., STAT1, CXCLS5, CXCL9, TNFRSF9). Using cell
compartment marker sets derived from a gastric cancer single cell
atlas*®, we observed that the eQTLs of somatic-only variants were
enriched in tumor/epithelial cell markers (all somatic: Storey’s
g value=119e-13, somatic-only: Storey’s g value=5.72e-8). This
enrichment was diminished for germline-only eQTLs (Storey’s
g value = 0.025).

Overlapping the 3’-UTR cis-eQTLs with databases of predicted
and experimentally supported miRNA and RBP binding sites showed
that around 90% of the variants reside in functionally relevant reg-
ulatory elements (Fig. 3D)"*. However, by performing a
permutation-based test against randomly sampled 3'UTR regions,
only predicted miRNA binding sites and not RBPs were identified as
significantly enriched in the eQTL loci (p = 0.0002). Finally, gene-set
enrichment analysis (GSEA) of the top significant 3-UTR cis-eQTLs
revealed enrichment in immune-related pathways (Fig. 3E), indicat-
ing that 3’-UTR variants could have an impact on immune pheno-
types in gastric cancer.

Massively parallel reporter assay validation of cis-eQTLs
residing in cancer immunoediting genes

Considering the significant enrichment of immune-related pathways in
the top 3’-UTR cis-eQTLs as well as the importance of immune escape
in cancer progression and as a target for novel therapeutics, we pro-
ceeded with a functional validation of prioritized 3’-UTR eQTLs on a
compiled list of immune-related genes (Supplementary Data 2, Meth-
ods). The manually curated list incorporates immune checkpoint and
known or suspected immunomodulatory genes, MHC machinery,
genes used in signatures for response to immunotherapy**=?, and
significant hits from hypothesis-free CRISPR-Cas9 screens for CD8+ T-
Cell effector function®* and in vivo screening of transplantable
tumors in mice treated with ICI*°.

We selected the top 749 variants (478 somatic, 135 potential
editing sites) that resided in 299 prioritized genes based on the cura-
ted list described above (Supplementary Data 3). We developed and
performed a massive parallel reporter assay (MPRA) in two gastric
cancer cell lines to assess the effect of each variant on the post-
transcriptional stability of a reporter gene (Fig. 4A, Methods). Briefly, a
reporter plasmid library containing barcoded reference and alter-
native alleles for the 749 eQTL variants was transfected into AGS and
SNU719 cells. The effect of the variant on post-transcriptional
expression of the reporter was assessed by barcode quantification
from amplicon sequencing of RNA extracted from transfected cells.

The two cell lines used in the MPRA assay yielded similar out-
comes (Supplementary Fig. 3A, B). Approximately 15% of eQTLs (128
variants) showed a significant causative effect on the expression of the
reporter (FDR-adjusted p value < 0.05) in at least one of the two cell
lines (Supplementary Data 4). A subset of genes with causal regulatory
variants (Fig. 4B, Supplementary Data 4) are involved in antigen pro-
cessing and presentation (e.g., HLA genes, CTSB, CTSS, LGMN, CIITA,
TAPBP) as well as RNA-editing enzymes such as ADAR.

Uncovering transcriptome-wide 3’-UTR variants regulating the

gastric adenocarcinoma immune landscape

3’-UTR regions not only regulate gene expression, but can also influ-
ence mRNA localization, protein-protein interactions and other post-
transcriptional, translational and post-translational functions*.
Therefore, 3’-UTR variants can affect immune phenotypes in cancer
independently of their effect on expression. To unbiasedly associate
3-UTR variants with changes in the immune landscape of gastric
cancer, we performed an immune landscape (il)QTL analysis using a
similar model as above (Fig. 3A), focusing on immune phenotypes
instead of cis-gene expression as the dependent variable. Immune
phenotypes for the TCGA STAD cohort were obtained from the Cancer
Research Institute (CRI) iAtlas project and included expression-based
immune cell infiltration estimates, TCR/BCR entropy and leukocyte
ratio calculated by combined imaging, methylation, and expression-
based analyses®.

A total of 1715 ilQTLs were identified, with 159 (9.3%) identified as
germline. Among the remaining 90.7%/1,556 “likely somatic” ilQTLs,
370 intersected with common RNA editing events. For almost all
immune features, the majority of ilQTLs resided in the 3-UTR region of
protein-coding genes and a large percentage of those were predicted
to reside in regions of miRNA/RBP binding (Fig. 5), similarly to eQTLs.
By performing the permutation analysis for CD8+ T cell ilQTLs, as in
eQTLs, they were found to be enriched in predicted (p=0.002), and
experimentally validated (p = 0.005) miRNA binding sites as well as in
experimentally supported RBP binding loci (p=0.002). CD8+ T cell
ilQTLs were also significantly more frequent to be of somatic origin, as
compared to germline (Somatic CD8+ T cell ilQTLs: 95.58%, 2.3e-165,
two-sided Fisher’s exact test). Significant ilQTLs, the majority of which
of somatic origin, were identified in immune-relevant genes, including
B2M, HLA genes, CANX, LDHA, PSMB2, and HNRNPR, which are known
to affect the tumor immune landscape®’°*®. The top hits also
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the enrichment of each gene-set. Figure data are provided in the Source Data file.

included WARS®* and APOBEC3C®*, which were only recently implicated
in tumor immunity, showing the potential of this approach for prior-
itization of novel cancer-specific immunotherapeutic targets.

We focused on CD8+ T cell ilQTLs since the level of CD8+T cell
infiltration in a tumor is an important determinant of cancer

immunotherapy response®. We identified significant CD8+T cell
fraction QTL variants in 467 genes. GSEA analysis showed that the most
enriched “cellular component” gene sets in the topmost significant
CD8+T cell infiltration QTL variants are the ribosome and ribosomal
subunits (Supplementary Fig. 4). In addition, immunoregulatory
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while red dots represent likely somatic variants. Figure data are provided in the
Source Data file.

CRISPR hits (Supplementary Data 2) were enriched in significant
CD8+ T cell ilQTL 3-UTR variants compared to all 3’-UTR variants (1.42-
fold increase, one-sided Fisher’s exact test p value = 0.0057), showing
concordance between the two orthogonal approaches of key gene
prioritization. In addition, only 5% of those ilQTLs overlapped with
eQTLs, showing the ability of ilQTLs to capture associations beyond
gene expression regulation.

Functional 3’-UTR cis-eQTL and ilQTL variants in ADAR

Significant functional variants were identified in all our high through-
put investigations (eQTLs, ilQTLs, MPRA validated variants) in the
Adenosine Deaminase RNA Specific (ADAR) gene. ADAR encodes an
enzyme that catalyzes A-to-l editing in RNA and has been implicated in
promoting cancer hallmarks in multiple cancer types, including breast,
thyroid and gastric malignancies®*’. In the CRISPR screen by Manguso
et al.*® for genes that sensitize tumors to immunotherapy in mouse

models, ADAR is the 4th most enriched out of ~20,000 genes. ADAR
downregulation has also been shown to induce inflammatory signaling
in gastric cancer specifically®®. To investigate the immunoediting role
of ADAR in gastric cancer further, we queried the iAtlas portal”’, where
CNVs on ADAR were reported to exhibit high effect sizes on Leukocyte
Fraction (Amp: p=10"* to 10° (multiple groups)), Lymphocyte Infil-
tration Score, (Amp: p=10"%/Del: p=10~), and CD8+T Cell content
(Del: p=10"*). Moreover, ADAR harbored multiple 3"-UTR eQTL and
ilQTL variants in gastric cancer (Fig. 6A), while we also found ADAR to
be significantly overexpressed in responders (n = 55) compared to non-
responders (n=80) to immune-checkpoint inhibitors, in a cohort
consisting of gastric cancer and melanoma patients (Fig. 6B)°**"*7°, By
meta-analyzing additional studies through the tumor immunotherapy
gene expression resource (TIGER), we saw that ADARI overexpression
is a common feature for response to checkpoint inhibition (Supple-
mentary Fig. 5). On the other hand, Manguso and colleagues showed
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Fig. 5 | Identification and characterization of 3’-UTR immune-related ilQTLs in
TCGA STAD. Left-hand side of dashed black line: distribution of significant ilQTLs
along genic regions (S'UTR, CDS or 3’-UTR), showing enrichment in 3’-UTR variants.
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Right-hand side of dashed line: overlap of 3-UTR ilQTLs with databases for miRNA
response elements (MRE) and RBP binding sites. Figure data are provided in the
Source Data file.

that loss of ADARI overcomes resistance to PD-1 checkpoint blockade
caused by inactivation of antigen presentation by tumor cells in mouse
models of resistance®.

Through our QTL and MPRA analysis, we identified a somatic 3'-
UTR cis-eQTL variant (chrl:154583325, T-to-C) in ADAR (Fig. 6A) with
causal effects on post-transcriptional regulation (Supplementary
Fig. 6A, B). ADAR variants including (chr1:154583325, T-to-C) were also
found as ilQTLs for multiple immune features (Fig. 6A). Based on a meta-
analysis of RNA cross-linking and immunoprecipitation (CLIP) data from
the POSTAR2 project*’, this ADAR variant is predicted to overlap with
multiple RBP (Supplementary Table 1) and miRNA (Supplementary
Table 2) binding sites. One of those RBPs, TARDBP (Supplementary
Table 3), has been studied for its ability to regulate gene expression, pre-
mRNA editing, mRNA localization, and microRNA processing through
binding on canonical GU-rich motifs or non-canonical sequences, with
3'UTRs being commonly targeted regions”. TARDBP has been shown to
directly regulate ADARI expression in liver cancer and leukemia cell line
models™. Indeed, correlation analysis in gastric cancer patients from
TCGA revealed a strong association in the expression of the two genes
(Fig. 6C), suggesting that the regulation axis between TARDBP and
ADAR could be functional in gastric cancer as well.

3’-UTR variants as an effective means for immunotherapy
response prediction

We next sought to investigate the translational potential of 3-UTR
ilQTL variants and their ability to predict therapeutic outcomes to
cancer immunotherapy. To this end, we analyzed the cohort of
responders (R) vs non-responders (NR) to ICls described above>*~"¢7°,
where tumors were subjected to whole transcriptome sequencing thus
enabling the detection of 3’-UTR variants.

We separated the samples into a training (n = 68, 39.7% Respon-
ders) and a test (n = 67, 40% Responders) set and selected 28 TCGA 3'-
UTR ilQTL variants that were enriched in the R vs NR samples of the
training set (one-sided Fisher’s exact test g value < 0.05, Supplemen-
tary Table 4). The variants were used to devise a Polygenic Risk Score
(PRS) for the potential prediction of response to ICI (Methods).

The orthogonal test subset was completely insulated from both the
variant selection (TCGA STAD) and directionality (training set). When
the selected variants were tested on the orthogonal test set (n=67),
the PRS was significantly increased in the responders (Wilcoxon rank
sum test, p value = 0.00071, Fig. 7A), and exhibited a higher area under
the receiver operating characteristic curve (AUC, ROC) than PD-L1
expression (Fig. 7B), as well as against tumor mutational burden (TMB)
or microsatellite instability (MSI) as calculated from WES data (Sup-
plementary Fig. 7). Importantly, the information captured by the PRS
score is a predictor independent of PD-L1 expression, and their com-
bination, as well as potentially the integration of the expression or
mutational status of additional genes, can be leveraged to further
increase the prognostic accuracy of the model (Supplementary Fig. 8).
The ilQTL PRS also shows higher generalizability in the test set as
compared to standard PRS models generated with the top 3’-UTR or
genic variants selected for their ability to predict response in the
training set, showing the translational potential of 3’-UTR variants
prioritized through the ilQTL analysis in a large discovery cohort
(Supplementary Fig. 9). This proof-of-concept application showcases
that non-coding variants can be used to predict immunotherapy
treatment outcomes in cancer.

Discussion

The increasing ease and lower cost of deep genome sequencing
technologies will eventually allow the unbiased identification of non-
coding variants with high confidence through the analysis of WGS data.
However, the small number of currently available cancer samples with
combined WGS and RNAseq data prohibits the use of WGS variant
calling data for analyses that require high statistical power, such as
QTL analysis. By repurposing RNAseq data available for hundreds of
gastric adenocarcinoma patients in TCGA*’, we deeply investigated 3’-
UTR somatic and germline variants in cancer. The use of RNAseq data
allowed the identification of variants not only in the coding region of
genes, but also in YUTR /3-UTR sequences and non-coding genes like
long non-coding RNAs (IncRNAs), which are omitted from standard
WES assays, such as those performed for TCGA. To our knowledge, the
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Fig. 6 | Identification of causal 3’-UTR eQTLs and ilQTLs in ADAR. A Plot showing
the distribution of CDS and 3-UTR eQTLs and ilQTLs for the ADAR gene. The y-axis
represents the nominal eQTL p value for each variant. The exon where the 3’-UTR is
found is colored orange. B A cohort of gastric cancer and melanoma patients was
classified into responders (R, n=80) vs non-responders (NR, n =55) according to
response efficacy with anti-PD-1immunotherapy. Primary cancer RNAseq data from
these patients were analyzed. Differential gene expression analysis revealed
increased expression of ADAR in R compared to NR (two-sided Wilcoxon rank sum
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test, Benjamini Hochberg FDR correction). Boxplot lines represent the median and
upper or lower quartiles, while upper whiskers represent the max and min. Gastric
and Melanoma cancer types are colored with grey and red, respectively.

C Correlation analysis between ADAR and TARDBP log2 TPM normalized expression
performed using TIMER v2.0 (timer.cistrome.org). Data from 415 STAD patients are
included and the Spearman’s correlation coefficient (rho) and p value are reported.
A linear regression line is shown in blue; the gray shaded area represents the
standard error of the regression. Figure data are provided in the Source Data file.

only study that attempted to characterize 3’-UTR somatic variants
from TCGA transcriptome-wide was by Wu et al.*>. However, they
mistakenly considered that the exome capture used in TCGA was the
lllumina TruSeq Exome Enrichment Kit, which also targets 3’-UTRs,
instead of the actual assays performed, where UTRs are not included

and low coverage statistics are reported if the UTR regions are con-
sidered in the metrics®. Our analysis shows that 3"-UTR somatic var-
iants are spread across the 3’-UTR regions as also supported by WGS
assays (Fig. 1B) and not proximally to the CDS as previously reported®,
which was evidently due the TCGA WES not targeting 3-UTR regions.
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Fig. 7| ilQTL polygenic risk score for predicting response to immunotherapy in
melanoma and gastric cancer patients. A Comparison of the polygenic risk score
(PRS) distribution in the non-responder (NR, n=40) and responder (R, n=27)
groups of the testing population (two-sided, Wilcoxon rank sum test,
Benjamini-Hochberg FDR correction). Boxplot lines represent the median and
upper or lower quartiles, while upper whiskers represent the max and min.
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Gastric and Melanoma cancer types are colored with grey and red, respectively.
B A receiver operator characteristic (ROC) curve showing the ability of the PRS
score and PD-L1 expression classifications to distinguish between R and NR patients
in the testing population. An Area Under the Curve (AUC) score is reported for both
classifiers. Figure data are provided in the Source Data file.

Despite the success of RNAseq data capturing variants in regions
not covered by standard WES assays, the ability of this approach is
confined to the expression space of the tumor of interest, since low (or
no) expression directly inhibits variant calling. To address specificity
concerns while maintaining high sensitivity, we followed GATK best
practices for RNAseq data by deduplicating identical reads and by
following through with variants identified in at least 1.3% of the
population tested.

Our study reveals the importance of 3-UTR variants in driving cis-
gene expression in cancer and provides a framework for incorporating
3’-UTR variant-calling data in TCGA and other cohorts. We prioritized
functional variants by performing a transcriptome-wide cis-eQTL
analysis in the TCGA STAD cohort and identified significant variants
across 1117 eGenes. 27.6% of the identified eQTLs overlapped with
eQTLs identified from healthy stomach tissue from the GTEX con-
sortium, with 90.6% of the overlapping significant variants being
germline. This points not only to the difference between germline
variants and somatic mutations but mostly to the regulatory divide
between healthy and neoplastic tissue. A recent study comparing
eQTLs generated with different combinations of germline/tumor var-
iants and healthy/neoplastic tissue gene expression, concluded that
the variation in the eQTLs they observed could be almost entirely
attributed to the difference in the source material; highlighting further
the genomic, epigenetic, transcriptomic, and regulatory differences
observed between healthy and neoplastic tissue’. Around 90% of the
3-UTR eQTLs overlap with putative or experimentally-supported
miRNA and RBP binding sites, providing a potential functional rele-
vance for those variants, with only 1.6% and 1.83% of somatic and
germline variants colocalizing on the same microRNA and RBP binding
site, respectively. The enrichment in immune-related pathways in the
topmost significant 3-UTR cis-eQTLs indicates the importance of 3’-
UTR variants in controlling cancer immunogenicity. Since 3-UTR
regulatory roles go beyond post-transcriptional gene expression reg-
ulation and include localization, translation rate control, and even
protein-protein interactions and liquid organelle formation*,

we performed a transcriptome-wide ilQTL analysis. In this analysis as
well, the majority of significant variants resided in 3-UTR regions. This
investigation shows that 3’-UTR variants can be associated with
immune phenotype changes in an unbiased hypothesis-free manner.
We discovered significant 3’-UTR ilQTL variants in widely studied
immunoregulatory genes, such as ADAR and STATI. One of the ADAR
ilQTLs overlapped with multiple RNA binding sites, including TARDBP,
an RNA binding protein and known regulator of ADAR expression in
liver cancer and leukemia.

In addition to validating previously described 3’-UTR eQTLs, our
approach also identified 3’-UTR variants and genes that have not been
previously linked to immune-related functions in cancer. We utilized a
massively parallel reporter assay (MPRA) to streamline validation
across hundreds of candidate 3'UTR variants, with 15% exhibiting
functional effects, even though the eQTLs were detected in patient
samples and the MPRA assay was performed in gastric cancer cell lines,
where the relevant RNA binding proteins, microRNAs and their targets
might not exhibit conserved stoichiometry. The validation rate is
comparable to the MPRA assay performed in Griesemer et al.*>. Inter-
estingly, among the significant hits from the MPRA assay, there were
multiple genes encoding ribosomal subunits. Pathway analysis in the
top significant CD8+ T cell infiltration QTL variants revealed an overall
enrichment in ribosome-related proteins (Supplementary Fig. 4). Pre-
vious work has shown that changing the expression of ribosomal
subunits can affect MHC class | presentation efficiency and the anti-
genic profile of a cell in the context of Influenza A virus infection,
without altering translation efficiency’®, raising the question whether
alteration of ribosomal proteins could have a similar phenotypic effect
in cancer.

Finally, to investigate the clinical relevance of our ilQTL analysis,
we showed that non-coding 3-UTRilQTL variants can predict response
rates to immunotherapy treatments (Fig. 7A). In this study, we exploit
the space of non-coding variants and show that a signature of ilQTL
variants has stronger predictive power for drug response than PD-L1
expression in a cohort of melanoma and gastric cancer patients
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(Fig. 7B). This is a direct application of non-coding mutations to pre-
dict response to immunotherapy, providing a potentially strong
incentive to start including these important regulatory regions in WES
investigations while the community waits to horizontally adopt WGS in
somatic samples.

Methods

Cell culture

The AGS (ATCC CRL-1739) cell line was purchased from ATCC and the
SNU-719 (KCLB-00719) cell line was purchased from the Korean Cell
Line Bank (KCLB). AGS and SNU719 cells were maintained in RPMI-1640
(ThermoFisher Scientific, #11875093) with 10% FBS (ThermoFisher
Scientific, A5256801). All cell lines were incubated at 37°C and 5% CO,.
The cell lines were verified by the vendors with STR profiling and they
were tested for mycoplasma contamination at regular intervals using
the MycoAlert Mycoplasma Detection Kit (Lonza, #LT07-318).

RNAseq variant calling

Raw RNAseq data for 375 TCGA STAD primary cancer and 40 matched
normal samples were obtained from Genomic Data Commons (GDC)
following NIH dbGAP approval”. Reads were mapped against the
human genome (hg38) using STAR’®. Mapped reads were deduplicated
and short variants/indels were called using Mutect2 following GATK
(v4.1.4.0) best practices™. The Mutect2 output was converted to a
gVCF format by using region coverage statistics. Since Mutect2 cannot
perform genotype calling and does not distinguish between homo-
zygous reference and no-call regions, HaplotypeCaller was also run in
parallel by following GATK best practices for RNA””. For samples
lacking a Mutect2 call at a specific variant position, HaplotypeCaller
was used to distinguish whether the lack of a Mutect2 call was because
of no coverage in that region or a homozygous reference genotype. A
mutation was characterized as likely somatic by calculating the pos-
terior probability of the event, while using variant call statistics, clon-
ality in tumor samples, matched healthy tissues, and gnomAD
variants’® as priors. Calls were filtered using the FilterMutect2 tags
“base_qual”, “map_qual”, “n_ratio” and “slippage”. Only biallelic variants
present in at least 5 out of the 375 (>1.3%) samples were pursued fur-
ther. Variants that were present in at least 2 out of the 40 matched
normal samples comprised the Panel of Normals (PoN). Strelka2*® was
also run following the same preprocessing steps as for GATK callers.

Germline variant calling

Affymetrix SNP array 6.0 data from blood samples for all TCGA STAD
patients analyzed in this study were downloaded from GDC. The SNP
array data were converted to a VCF format using birdseed2vcf (https://
github.com/ding-lab/birdseed2vcf), and then whole-genome variant
calls were imputed using Minimac4 and the 1000 Genomes Phase 3
project as a reference on the Michigan Imputation Server’’. Somatic
variants were further intersected against GTEx RNA editing events
from REDIportal V2.0%.

eQTL analysis

Gene-level expression in TCGA STAD samples was calculated using
Salmon v0.91 and Ensembl genome annotation v775°%, A linear model
was utilized to call eQTLs with FastQTL* following best practices®. In
brief, gene expression across libraries was normalized using trimmed
mean of m-values as implemented in edgeR*’. Genes were selected
based on an expression threshold of 1 read in at least 80% of the sam-
ples. An inverse quantile normal transformation was performed on the
expression values prior to their inclusion into the linear model.
Mutect2/HaplotypeCaller alternative allele dosage was utilized as gen-
otype input, while age at diagnosis, sex and the top 5 genetic principal
components (gPCs) and expression surrogate variables (SVs) were
included as covariates®**, as follows: gene expression -Alt Dosage+age
+sex+gPCl+gPC2+gPC3+gPC4+gPC5+SV1+SV2+SV3+SV4+SVS5. Genetic

PCs were calculated using SmartPCA® on WES-derived germline var-
iants from the same TCGA STAD patients, obtained from Huang et al.%.

Following the nominal run of FastQTL*, for each gene we selected
variants that mapped in cis (within the genomic coordinates of the
gene) and calculated a per-gene FDR-adjusted g value for each variant.
Genes that contained at least one variant with a g value lower than 0.05
were defined as eGenes. A nominal threshold was defined for each
eGene based on the highest nominal p value that corresponded to a g
value < 0.05. The distribution of the threshold nominal p value in all
eGenes is shown in Supplementary Fig. 10. The median threshold
nominal p value (le-7) was applied horizontally, across all eGenes, to
describe significant calls (final cutoff: g value <0.05 and nominal p
value <le-7). eQTL calls were mapped to transcript annotations
(Gencode v32) and relative genomic locations (SUTR, CDS, 3’-UTR)
were assigned using annotatr®”. Only eQTLs with significant cis effects
were retained for further analysis. Variant annotation for potential
overlap with post-transcriptional regulatory regions was performed
using the GenomicRanges package in R (v1.38.0)%. Experimentally-
supported miRNA binding site coordinates were obtained from
TarBase", predicted miRNA binding sites were acquired from microT-
CDS*, and CLIP-based predictions of RBP binding sites were obtained
from the POSTAR2 database®’.

ilQTL analysis

Immune data per sample were obtained from the CRI iAtlas
project”’. QTL analysis was performed with FastQTL, using the
same genotype and covariate data as above, while using quantile-
normalized immune profile estimates as phenotypes. ilQTL
selection as well as genomic and regulatory annotation were
performed as for eQTLs.

Enrichment and over-representation analyses

For pathway enrichment/over-representation analyses, the top 500
eGenes, ranked based on their lowest nominal p value, were investi-
gated by pathway enrichment analysis using ClusterProfiler (v3.12.0)%.
Pathway information was obtained from the Gene Ontology
Resource’ and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway database’. Plots were generated in R using ggplot2 (v3.3.3).
One-sided Fisher’s exact test was utilized to evaluate cell type-specific
enrichment of eQTL genes against the reference marker gene sets from
the gastric cancer single-cell atlas established by Sun et al.*¢, corre-
sponding to individual cell types or subtypes.

Locus permutation analyses were performed with RegioneR"
utilizing a resampling (n=5000) permutation test. As a sampling
space, all 3’UTR regions were split into 50 bp segments using a walking
window of step =1 (n=39,142,309 windows). All evaluated regulatory
regions from microT, TarBase, and POSTAR were included in the
sampling space.

Cancer immunology-related genes

A collection of more than 2500 immune-related genes was manually
curated from the literature and experimental resources (Supplemen-
tary Data 2). Specifically, the list includes immune checkpoint and
immunomodulatory genes, genes involved in the MHC machinery and
microsatellite instability, cytokines and chemokines™*°, gene markers
for metabolic reprogramming’*°® and oncogenes or complexes that
can affect the tumor transcriptional and immune landscape, such as
EZH2-PRC2 chromatin remodeling complex members and BAF/PBAF
complex members” %, We also incorporated significant genes from
hypothesis-free CRISPR-Cas9 screens for CD8+ T-Cell effector
function®*** and in vivo screening of transplantable tumors in mice
treated with immunotherapy®. In addition, we included the Urea cycle
(GO:0000050) and Mismatch repair (GO:0006298) Gene Ontology
terms, the list of Human DNA repair genes from Lange et al.”’, and the
following entries from the Kyoto Encyclopedia of Genes and Genomes
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(KEGG): MAPK signaling pathway (hsa04010), PI3K-Akt signaling
pathway (hsa04151), Wnt signaling pathway (hsa04310), JAK-STAT
signaling pathway (hsa04630), Antigen processing and presentation
(hsa04612). Finally, the list comprises more than 250 genes from
signatures associated with response to ICI**>,

MPRA pool design

A MPRA was performed with eQTL variants in eGenes included within
the curated cancer-immunology gene list that had a nominal p-value
lower than 1e-5 (Supplementary Data 3). The nominal p value threshold
was higher than that for other downstream eQTL analyses to allow the
capture of causative effects by less common variants, such as rare
somatic eQTLs. A pool of 19220 150 bp-long oligonucleotides (oligos)
was synthesized commercially (Twist Biosciences). Each oligo con-
tained the reference or alternative allele of the eQTL variant in the
middle flanked by 50bp of reference transcriptomic sequence on
either side. In the case of eQTLs residing in alternative transcript iso-
forms, oligos were synthesized for all possible transcripts. For eQTLs
that were close to the end of the transcript a random sequence was
added to bring up the length of the sequence to 101 bp. The random
sequence was the same in all oligos and was selected to lack any pre-
dicted 7 or 8 bp-long RBP and miRNA-seed binding sites.

An 8 bp-long barcode was added at the 3’ end of the 101 bp-long
sequence. Each allele was represented by 10 unique barcodes. All 8 bp
barcodes that matched RBP or miRNA seed binding sites were
removed'**'”’, Finally, 20 bp sequences were added on either side of
the oligo that matched the 5’ and 3’-end sequences of the Xhol-/Notl-
digested psicheck2 vector (Promega, C8021) to allow cloning with the
NEBuilder HiFi DNA Assembly kit (NEB, E2621S).

Pool amplification and cloning

Amplification of the pool, prior to cloning, was performed using
0.5 uM of each of the PCR_lib_fwd and PCR_lib_rev primer pair (Sup-
plementary Data 5) with the NEB Next High-Fidelity 2x PCR Master Mix
(NEB, M0541L). The following PCR conditions were used: 98 °C for
30 sec, 20 cycles (98 °C for 10 sec, 63 °C for 10 sec, 72 °C for 15 sec),
72 °C for 2 min. The amplified oligo pool was introduced into a Xhol-/
Notl-digested psicheck2 vector using NEBuilder HiFi DNA Assembly kit
(NEB, E2621S), as per the manufacturer’s protocol. The assembly
reaction product was purified following a standard isopropanol pre-
cipitation protocol, as described in Joung et al.">. The purified plasmid
pool was transformed into Endura ElectroCompetent cells (Lucigen,
#60242-1) at 50 ng plasmid per 25 pl of bacteria ratio, following the
provider’s protocol. A total of 8 transformation reactions were pooled
together and plated onto large 15 cm LB Agar plates at 37 °C for 12 h. A
large enough number of colonies to ensure at least 500 colonies/oligo
representation was harvested directly from the LB Agar plates and the
plasmid pool was purified by performing at least 2 midipreps per 15 cm
LB Agar plate, using the Qiagen Plasmid Plus Midi kit (Qiagen, #12943).

MPRA transfection and library prep

SNU719 and AGS cells were seeded in 15 cm plates to achieve 80%
confluence the next day. Cells were transfected with 10 pg of the MPRA
plasmid library using TransIT-X2 reagent (Mirus Bio, MIR 6004) as per
the manufacturer’s protocol, aiming for a transfection efficiency of 50-
80%. Total RNA was collected 48 hr post-transfection using the miR-
Neasy mini kit (Qiagen, #217004). Genomic DNA was removed using
the Turbo DNA-free kit (ThermoFisher Scientific, AM1907) following
the manufacturer’s “Rigorous DNase treatment” protocol. Per repli-
cate, 15pg total RNA was reverse transcribed with SuperScript IV
Reverse Transcriptase (ThermoFisher Scientific, #18090010) using
oligo-dT primers. Amplicon sequencing libraries from cDNA or plas-
mid pool DNA were constructed through two PCR reactions, adapted
from Pinto et al.'®. In the first PCR round, 1:10 diluted cDNA was
amplified using 0.2 uM of the DT _barcodePE_Fv2 and 0.2 uM of an

equimolar mix of the DT _barcodePE_Rv2 primers (O to 6 random N,
Supplementary Data 5). The PCR reaction was performed with the NEB
Next High-Fidelity 2x PCR Master Mix (NEB, M0O541L) and the following
conditions: 98°C for 30sec, 10 cycles (98°C for 10sec, 63°C for
10 sec, 72 °C for 15sec), 72 °C for 2 min. Enough PCR reactions were
run to ensure that all the cDNA from each replicate was amplified. In
the second PCR reaction, 1:10 diluted PCR round 1 product was
amplified using 0.5 uM of a unique pair of multiplexing Illumina pri-
mers (PE_i5 and PE_index in Supplementary Data 5). The following PCR
conditions were used: 98 °C for 30 sec, 10 cycles (98 °C for 10 sec,
62 °Cfor10 sec, 72 °C for 15 sec), 72 °C for 2 min. For each replicate, the
second round PCR product was purified through gel extraction using
the Monarch Gel Extraction kit (NEB, T1020S). The quality of each
library was assessed by an Agilent Tapestation D1000 assay (Agilent).
An equimolar mix of all libraries was sent for single-end 150 bp
sequencing on an lllumina sequencer, with 20% PhiX spike-in to
increase library complexity. The mixed library was sequenced at a
depth to ensure at least 10M reads per replicate (>500 reads
per oligo).

MPRA analysis

MPRA analysis was performed similarly to Mattioli et al.'®. Briefly,
barcode counts were calculated from raw reads and then normalized
per sample based on sequencing depth. For each sample, a barcode
RNA to DNA ratio was calculated by dividing the barcode counts in
each replicate to that in the plasmid pool library. The RNA to DNA
ratios were then log-transformed and quantile normalized across
samples. A two-sided Wilcoxon test was performed to compare bar-
code count ratios between reference and alternative allele oligos in
each replicate. To combine replicate p-values, the Stouffer’s method
was used, and Benjamini-Hochberg false discovery rate (FDR) correc-
tion was applied. Each oligo was represented by 10 barcodes, so to
obtain a per-oligo activity in each sample, the median activity was
calculated. Fold-change was defined as the ratio of the alternative to
the reference allele median activity.

ICI cohort analysis

Pre-treatment tumor RNAseq data were retrieved from four published
ICl studies (anti-PD1 or anti-CTLA4 treatment), of which three
addressed melanoma patients (n=90)°>""*° and one addressed gastric
cancer patients (n=45)"°. The combined cohort (n=135) included 55
responders and 80 non-responders to immunotherapy. Gene expres-
sion of pre-treatment tumor samples was quantified from RNAseq
reads using Salmon v0.91°°. To calculate differential expression of
ADAR between responders and non-responders, a Wilcoxon rank sum
test with continuity correction was performed. The ICI cohort was also
randomly split into a training (n = 68) and a testing set (n = 67) and the
Variant Calling and ilQTL pipelines were run on the pre-treatment
tumor RNAseq data. The 3’-UTR ilQTL variants enriched in ICI
responders in the training set (n=28, FDR-adjusted p value < 0.05)
were selected to comprise the PRS. The score is calculated as the
number of variants detected in the patient’s tumor sample, therefore
ranging from O to 28. All variants were present across the cohort in1or
more individuals, with 15 being present in the smaller gastric cancer
sub-population (n=45).

PD-L1 expression and the ilQTL signature were combined with a
multivariate linear model, and its performance was assessed in the test
set (n=67). For the PRS calculation of the 3’-UTR and CDS+ UTR
regions, a similar approach was followed as described above. The top
28 enriched variants based on the odds ratio per gene in 3’-UTR or
CDS +UTR in the R vs NR samples of the training set were selected
accordingly (one-sided Fisher’s exact test g value <0.05). Only the
most highly enriched variant per gene was included in the final models.
All PRS models (IQTL, ilQTL + PD-L1, 3’-UTR, Genic Variants) were
trained and tested on identical patient sets.
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Whole exome sequencing analysis

WES data for melanoma® and gastric cancer’® were downloaded from
SRA using the sra-toolkit and processed according to GATK best
practices using GATK 4.4', Briefly, FASTQ files were checked for
presence of contamination using FastQC 0.12.1'% and MultiQC 1.17',
and following inspection, were aligned using the Burrows-Wheeler
Aligner (BWA) 0.7.17"% using the BWA-MEM algorithm against the hg38
genome distributed by the GATK team (https://console.cloud.google.
com/storage/browser/genomics-public-data/resources/broad/hg38/
v0). The resulting SAM files were sorted and indexed using samtools
1.18'°, The files were then post-processed, marking duplicates and
running Base Quality Score Recalibration (BQSR). A panel of normals
was generated for each study using the healthy patient samples, which
was then used along with each tumor-normal WES pair to call muta-
tions using Mutect2, with gnomAD as a germline resource. To mini-
mize artifact calls and contamination, the read orientation artifact
workflow was followed before filtering the Mutect2 calls. To accelerate
runtime, intervals were used where available, utilizing the capture kit
information for each study. SnpEff v5.2"°, with the GRCh38.105 data-
base, was used to annotate the resulting VCF files, and then the TMB
was calculated with pyTMB v1.3", using a variant allele fraction of 0.05,
a MAF of 0.001, minimum depth of 20 and minimum alternative depth
of 2 to minimize noise, while filtering out low quality, non-coding,
synonymous and polymorphic calls against gnomAD’®, For the MSI
calculation, MSlsensor-pro v1.2.0"> was used by first scanning the
reference genome for microsatellite information and then running in
tumor-normal mode on the aligned reads with default parameters.

Statistics and reproducibility

All statistical analyses were performed using R or GraphPad Prism 8.
The QTL analysis was performed with 375 STAD patients for which
TCGA contained primary cancer RNAseq data. The MPRA assay
(Fig. 4A, B and Supplementary Figs. 3A, B and 6A, B) was independently
repeated three times in two gastric cancer cell lines. No statistical
method was used to predetermine sample size. No data were excluded
from the analyses. Randomization was utilized in the selection of the
training/testing sets for the predictive models as described in the
Methods section. The Investigators were not blinded to allocation
during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are derived from
publicly available datasets. Raw RNAseq, WES, and SNP array data for
gastric adenocarcinoma patients were obtained from The Cancer
Genome Atlas (TCGA) database at gdc.cancer.gov. The TCGA barcodes
of the STAD patients included in the study are provided in the Sup-
plementary Information. The PRS and predictive model analyses were
performed on a combined cohort of publically available melanoma
and gastric cancer pre-treatment RNAseq data obtained from the Gene
Expression Omnibus (GEO) database under accession codes
GSE115821%°, GSE78220°, and GSE91061%°, and the European Nucleo-
tide Archive (ENA) under accession PRJEB257807°. Matched WES data
for patients included in the PRS and predictive model analyses were
obtained from the Sequence Read Archive (SRA, https://www.ncbi.
nlm.nih. gov/sra) under accessions SRP067938 and SRP090294* and
from ENA under accession ERP1077347°. The raw MPRA amplicon
sequencing data generated in this study have been deposited in the
GEO database under accession code GSE261709. The remaining data
are available within the Article, Supplementary Information, or Source
Data file. Source data are provided with this paper.

Code availability

Computational analyses are described in detail in the methods section.
The majority of analyses have been performed utilizing publicly
available tools. Custom code utilized for the MPRA analysis has been
deposited at https://github.com/ivlachos/3UTR.
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