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Heterogeneity in strategy use during
arbitration between experiential and
observational learning

Caroline J. Charpentier 1,2 , Qianying Wu 1, Seokyoung Min1, Weilun Ding1,
Jeffrey Cockburn 1 & John P. O’Doherty 1

To navigate our complex social world, it is crucial to deploy multiple learning
strategies, such as learning from directly experiencing action outcomes or
fromobservingother people’s behavior. Despite theprevalenceof experiential
and observational learning in humans and other social animals, it remains
unclear how people favor one strategy over the other depending on the
environment, and how individuals vary in their strategy use. Here, we describe
an arbitration mechanism in which the prediction errors associated with each
learning strategy influence their weight over behavior. We designed an online
behavioral task to test our computational model, and found that while a
substantial proportion of participants relied on the proposed arbitration
mechanism, there was some meaningful heterogeneity in how people solved
this task. Four other groups were identified: those who used a fixed mixture
between the two strategies, those who relied on a single strategy and non-
learners with irrelevant strategies. Furthermore, groups were found to differ
on key behavioral signatures, and on transdiagnostic symptom dimensions, in
particular autism traits and anxiety. Together, these results demonstrate how
large heterogeneous datasets and computationalmethods can be leveraged to
better characterize individual differences.

As humans, we learn about the world around us by seeking and inte-
grating information from multiple sources. On the one hand, we
heavily rely on our own past experience to predict the future. Experi-
ential learning (EL) is such that actions that were rewarded in the past
tend to be repeated, while actions that were punished in the past tend
to be avoided. EL can be relied on to solve many reinforcement
learning problems, from learning simple associations between stimu-
lus, action and reward (model-free learning) to complex cognitive
maps (model-based learning) and exploitation/exploration trade-
offs1–4. On the other hand, as a social species with sophisticated
social skills that allow us to make collective decisions and function in
society, humans can learn from observing others5–7. Such observa-
tional learning (OL) is thought to confer the evolutionary advanta-
geous ability to assess the consequences of actions available in the

environment without having to directly experience the potentially
negative outcomes of those actions. OL is prevalent across many
domains, from basic sensory-motor learning8–10 to complex strategic
decision-making11,12, from aversive13,14 to reward learning15–18, and can
even extend to learning from non-human agents19 or from replayed
actions18.

Depending on the uncertainty of the environment, a given strat-
egy may become more reliable to deploy at different points in times2,
consistent with a “mixture of experts” framework in which different
expert systems take the lead in guiding behavior when their predic-
tions are most reliable20. Evidence for such uncertainty- or reliability-
based arbitration between learning strategies, as well as its neural
correlates, has been provided within each domain. In EL, people
dynamically arbitrate between model-free and model-based
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learning21,22. In OL, recent evidence suggests a similar arbitration
mechanism between imitation – the tendency to repeat other people’s
choices – and emulation – the tendency to infer their goals18, as well as
between cooperative and competitive learning during strategic
interactions23. Yet, whether and how people may engage dynamic
arbitration processes across domains – that is, between EL and OL –

remains unclear. How people integrate experiential and social infor-
mation during learning has been the focus of a lot of research in the
past two decades. Multiple studies have shown that not only are
decisions influenced by both sources of information24,25, but experi-
ential and social learning signals co-exist in the brain and can be
integrated to predict decisions15,26–33. However, these studies have not
directly assessed the possibility of a dynamic arbitration mechanism
between the two learning domains. In other words, it remains unclear
whether the weight attributed to each strategy before making a deci-
sion varies depending on the environment.

Here, we designed and optimized a novel task that probes both EL
and OL and manipulates uncertainty in each strategy’s predictions to
promote dynamic arbitration. We collected data in two independent
online studies, to test the predictions that when outcomes are more
predictable, EL should be favored, and when inferences from the
observed agent’s actions are more reliable, OL should be favored. A
second goal of this study was to characterize heterogeneity in the
strategies participants deploy during learning. Given the recent
explosion (partly driven by COVID-19) of online data collection, it has
become clear that, despite attention checks, performance in online
studies tends to be noisier than in the lab, most likely because of the
uncontrolled environment, lack of direct interaction between partici-
pant and experimenter, and larger possible distractions34,35. However,
online studies allow for the collection of large-scale datasets in shorter
timeframes, often exhibiting good replicability of in-lab findings36,
thus providing increased power for a more thorough characterization
of individual differences and of their relevance to psychopathology.
Therefore, in addition to probing the dynamic arbitration framework
described above, we also investigated the possibility that not all par-
ticipants relied on this computational model to solve the task37.
Though such heterogeneity is likely to exist in any study sample
(online and in-person studies, clinical and general populations, etc), it
is not usually well characterized in existing studies, given that sample
sizes are too small or that most computational modelling approaches
tend to select a “winning”model and apply it to all participants. Here,
we predicted that different groups of people might rely on different
strategies and set out to characterize this heterogeneity. Specifically,
we tested for the possibility that in addition to dynamic arbitration,
some individuals might combine the two strategies in a less flexible
way, such as by relying on an unchanging allocation between the two
strategies (without dynamically arbitrating), or that some might
instead predominantly rely on a single strategy (either EL-only; or OL-
only) to solve the task, while others might use irrelevant heuristics,
such as preferring a given action (left versus right) or a given stimuli
throughout. We also tested whether groups that are solely defined
based on model-fitting would differ from each other in meaningful
ways in their behavior on the task and in transdiagnostic symptom
dimensions.

Recent literature in computational psychiatry has shown that
anxiety is associated with difficulties in adapting to volatility and chan-
ges in uncertainty38–40, increased exploration to reduce uncertainty41,
and faster learning from negative outcomes42,43. Social anxiety has also
been found to be associated with excessive deliberation44 and with
suboptimal learning45. Finally, autism has been linked to deficits in
behavioral adaptation during social inference46, specifically suboptimal
flexibility and lower mentalizing sophistication47, overestimation of the
volatility of sensory environment48, reduced implicit causal inference
about sensory signals49, and enhanced observational learning in the
aversive domain50. Therefore, we hypothesized that individual

differences in subclinical traits related to anxiety, autism and social
anxiety are likely to be sensitive to the computational heterogeneity in
strategy use during EL, OL, and the arbitration between them.

In this work, we show that there is substantial heterogeneity in
how participants solve this task, and that individuals can be reliably
characterized by the computational model that best explains their
behavior. We additionally validate this heterogeneity by demonstrat-
ing marked differences in key behavioral markers across groups, as
well as differences in subclinical transdiagnostic traits related to aut-
ism and anxiety.

Results
Behavioral evidence for learning and mixture of strategies
Two groups of participants (Study 1: N = 126, Study 2: N = 493, see
Methods for details) performed a novel task online designed to sepa-
rately quantify experiential and observational learning tendencies
during behavior (Fig. 1). In the task (160 trials), participants learnwhich
of two tokens (orange or blue) is more likely to yield a reward, which
can be achieved by observing another player choose between two
boxes (identified by unique fractals superimposed on each box) to
obtain a token, or through direct experience of the outcome asso-
ciated with the chosen token (Fig. 1A). Importantly, participants were
instructed that the other player knew which token was more valuable
at any point in time and were instead learning which of the two boxes
was more likely to yield the valuable token. By observing the other
player’s choices, one can thus infer which token color they were tar-
geting as having the highest value. To promote continuous learning, as
well as push the balance between EL and OL and test our proposed
uncertainty-based arbitration mechanism, we manipulated the token
reward probability (including reversals as well as periods of low vs high
uncertainty) and the box-to-token transition probability (also alter-
nating between periods of low and high uncertainty), depicted by blue
and orange lines, respectively, in Fig. 1B. We also manipulated the
variance in the rewardmagnitude so that in someblocks, when a token
was rewarded, the variance inmagnitudewas high, and in other blocks
the variance was low (see Methods for details). While this did not
directly affect the reliability of EL predictions – that is, the ability to
predict the occurrence of a reward remained the same – we hypo-
thesized that high variance may constitute a form of (task-irrelevant)
uncertainty and tested whether it played a role in the arbitration
process, whereby EL may be weighed less in the high variance
condition.

We first examined mean behavioral accuracy (probability of
choosing the more valuable token, calculated across all trials). Accu-
racywas0.582 ( ± 0.087 SD) in Study 1 and0.604 ( ± 0.083 SD) in Study
2, significantly above chance level of 0.5 (Study 1: t(125) = 10.67,
P <0.001, d = 0.94, 95% CI [0.067, 0.097]; Study 2: t(492) = 26.08,
P <0.001, d = 1.25, 95% CI [0.097, 0.111]). Behavioral evidence for
learning behavior was then obtained by calculating trial-by-trial accu-
racy for the first 8 trials after a reversal in token values. There was a
clear increase in accuracy throughout those 8 trials, from 0.528
directly after a reversal to 0.60 in Study 1 and from 0.544 to 0.619 in
Study 2. This increase, modelled as a linear main effect of trial in a
mixed-effect linear model predicting accuracy (lme4 package in R,
including a random intercept, followed by Type III ANOVA), was sta-
tistically significant (Study 1: F(1,875) = 33.03, P <0.001, ηp

2 =0.036,
95% CI [0.0067, 0.014], Fig. 2A; Study 2: F(1,3423) = 96.14, P <0.001,
ηp

2 = 0.027, 95% CI [0.007, 0.011], Fig. 2B).
We then classified whether participants’ choice on each trial was

consistent with experiential learning and with observational learning
(see Fig. 1C, D for an illustration). Out of the trials where the two
strategies predicted different choices according to this classification,
we then calculated the proportionof choices consistentwithOL (vs EL)
as an indexof preference for oneor the other strategy.MeanOL choice
propensity was 0.515 ( ± 0.095) in Study 1 (Fig. 2C) and 0.493 ( ± 0.107)
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in Study 2 (Fig. 2D), not significantly different from 0.5 (both d <0.16,
P >0.08, Study 1: BF10 = 0.436, Study 2: BF10 = 0.163). This implies that
both OL and EL strategies were relied on approximately equally across
participants and across studies, although there was also substantial
individual variability in the degree of engagement of these two stra-
tegies, with some participants exhibiting a clear preference for one
strategy or the other.

To more formally assess whether participants used a mixture of
the two strategies during the task, we ran amixed-effects general linear
model (ME-GLM) predicting choice on each trial from the outcome of
the past trial (signature of EL) and from the partner’s past choice
(signature of OL). We found that both effects were significant, both in
Study 1 (EL fixed effect: estimate = 0.357 ± 0.051 (SE), t(19862) = 6.94,

P <0.001;OLfixedeffect: estimate =0.216 ± 0.026 (SE), t(19862) = 8.21,
P <0.001; Fig. 2E) and in Study 2 (EL fixed effect: estimate =
0.519 ±0.025 (SE), t(77960) = 20.74, P <0.001; OL fixed effect: esti-
mate = 0.241 ± 0.012 (SE), t(77960) = 19.60, P <0.001; Fig. 2F), indica-
tive of hybrid behavior between OL and EL (see Table S1A for all
statistics).

Uncertainty-driven behavioral changes in strategy
We next examined whether participants flexibly switched between OL
and EL depending on the variations in uncertainty. First, we classified
trials as low versus high OL uncertainty trials and low versus high EL
uncertainty trials depending on the recent trial history (Fig. 1B, see
Methods for details). Those trials broadly overlapped with the low vs

Fig. 1 | Observational learning (OL) & Experiential learning (EL) task design.
AOn each trial, participants first observe another agent choose between two boxes
represented by fractal images, then observewhich tokenwas obtainedby the agent
from the chosen box. Then participants choose for themselves between the two
tokens and receive an outcome (from0 – no reward – to 99 points) associated with
the chosen token. From the ‘observe’ part of the trial, participants can learn from
observation which token the other agent is trying to get. From the ‘play’ part of the
trial, participants can learn from directly experiencing the outcomes associated
with each token. B Example time course of probabilities, condition and block
changes, and reversals. The task contained 8 blocks of 20 trials each. Each block
started with a new pair of boxes (fractals), which had a transition probability
towards their corresponding tokenof either 0.8 or 0.6, depictedby the orange line.

Within each block there was one reversal in the valuable token, depicted by the
magenta triangles, with the blue line representing the reward probability asso-
ciated with the orange token ( = 1 – P(reward | blue token)). While the lines repre-
sent EL and OL uncertainty conditions, for behavioral analyses, we defined key
uncertainty trials as follows: EL uncertainty (blue points) was deemed low on trials
where past outcome-action-outcome sequencewas consistent, and high otherwise.
OL uncertainty (orange points) was deemed low if the past two box-token transi-
tions were consistent, and high otherwise. Finally, reward magnitude was con-
sidered low if the past outcome magnitude was equal to or below 25 points, and
high otherwise. C, D Illustration of the trial definitions used to classify trials as
consistent with EL (C) and consistent with OL (D).

Article https://doi.org/10.1038/s41467-024-48548-y

Nature Communications |         (2024) 15:4436 3



high uncertainty conditions that were defined by design (larger pro-
portion of low OL uncertainty trials in low compared to high OL
uncertainty conditions: Study 1: t(125) = 30.3, Study 2: t(492) = 61.1;
larger proportion of low EL uncertainty trials in low compared to high
EL uncertainty conditions: Study 1: t(125) = 52.2, Study 2: t(492) = 91.5;
all Ps<0.001), but were defined to capture trial-by-trial variations in
uncertainty. We hypothesized those variations would be more repre-
sentative of how dynamic changes in uncertainty were experienced by
participants, given that actual changes in uncertainty were not cued,
which would lead to a lag in information integration when considering
the blocked conditions. Indeed, we found that uncertainty trials were
stronger predictors of choice throughout the task than uncertainty
conditions (Table S2). We then calculated the breakdown of OL choice
propensity as defined above (illustrated in Fig. 1C, D, data shown in
Fig. 2C, D) across these uncertainty trial types and tested their sig-
nificance in a linear mixed-effects model predicting OL (vs EL) choice
propensity for each participant from OL uncertainty trial type, EL
uncertainty trial type, and their interaction. We found that the main
effect of both factors was significant, both in Study 1 (effect of OL
uncertainty trial type: F(1,833) = 32.64, P <0.001, ηp

2 =0.038, 95% CI

[0.014, 0.107]; effect of EL uncertainty trial type: F(1,833) = 39.31,
P <0.001, ηp

2 =0.045, 95% CI [−0.186, −0.093]; Fig. 3A) and in Study 2
(effect of OL uncertainty trial type: F(1,3234) = 149.88, P <0.001,
ηp

2 = 0.044, 95% CI [0.056, 0.105]; effect of EL uncertainty trial type:
F(1,3234) = 268.27, P <0.001, ηp

2 = 0.077, 95% CI [−0.196, −0.148];
Fig. 3B). Moreover, there was also a significant interaction between EL
and OL uncertainty trial types (Study 1: F(1,833) = 4.31, P = 0.038,
ηp

2 = 0.005, 95% CI [0.0038, 0.135]; Study 2: F(1,3234) = 9.896,
P =0.0017, ηp

2 = 0.003, 95% CI [0.021, 0.090]), such that the effect of
OL uncertainty was stronger when EL uncertainty was low. For com-
parison, the same analysis conducted on uncertainty conditions
instead of trials is shown in Fig. S1.

Note that by design, and as explained above, we manipulated the
variance in rewardmagnitude,with the prediction that high variance in
reward magnitude may reduce the tendency to rely on EL, and there-
fore indirectly promote OL. However, in Study 1 we found that reward
magnitude variance had no effect on OL vs EL choice propensity
(t(125) = 0.73, P = 0.46, d =0.065, BF10 = 0.129), which was also found
to be the case in Study 2 (t(492) = 1.68, P =0.095, d = 0.076,
BF10 = 0.203). Instead, whether the magnitude itself was high or low

Fig. 2 | Behavioral signatures of learning and strategy use. A, B Behavioral evi-
dence for learning behavior for Study 1 (A) and Study 2 (B), calculated as the mean
accuracy (choice of correct token) for each of the first 8 trials following a reversal in
token values, then averaged across participants. Error bars represent SEM.C,D The
proportion of choices consistent with observational learning (OL) versus experi-
ential learning (EL) was calculated out of the trials where OL and EL made different
predictions (according to the definitions depicted in Fig. 1. C,D For Study 1 (C) and
Study 2 (D). Each dot depicts an individual participant. E, F Main effects of past

outcome (EL effect, blue) andof past partner’s action (OL effect, orange) on current
participant’s choice were quantified in a mixed-effects generalized linear model
(ME-GLM), for Study 1 (E) and Study 2 (F). Bars represent the fixed effect coefficient
estimates; error bars represent the standard error associated with those estimates;
stars represent the significanceof thefixed effects obtained fromtheME-GLM(two-
sided, all P <0.001); andeachdot is an individualparticipant (randomeffect); Study
1: N = 126 independent participants (A, C, E); Study 2: N = 493 independent parti-
cipants (B, D, F).
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(defined as higher or lower than the mean expected reward of 25
points, see yellow dots on Fig. 1B), had a strong effect, with a lower
propensity to rely on OL (therefore, higher propensity to rely on EL)
when reward magnitude was high than low (Study 1: t(125) = 6.08,
P <0.001, d = 0.54; Study 2: t(492) = 15.63, P <0.001, d = 0.70). There-
fore, we used magnitude, rather than variance, as a condition to
examine arbitration, but because those predictions were not part of
our initial uncertainty-driven arbitration hypothesis, weopted to focus
the analyses on the effects of OL and EL uncertainty trial types only in
the main text, and we present the additional findings related to mag-
nitude as a supplementary analysis in Fig. S2.

We then ran two separate ME-GLMs (one for each manipulation)
to specifically quantify the effect of EL and OL uncertainty trial types
on each strategy separately. In the previous analyses, we found effects
of both manipulations on OL vs EL choice propensity in the expected
direction, however, looking only at this behavioral metric we cannot
disentanglewhether, for example, OL uncertainty impacts behavior by
increasing OL, decreasing EL, or both. WithME-GLMs quantifying both
OL and EL effects we can address this. Each ME-GLM included four

predictors of choice on each trial (both as fixed and random effects):
past outcome for low and high uncertainty trials, and past partner
action for low and high uncertainty trials (see Table S1B, C for statis-
tics). The resulting random effects were then compared in a 2-by-2
ANOVA, revealing significant interactions between the strategy (OL vs
EL effect) and the manipulation of interest, both in Study 1 (strategy *
OL uncertainty: F(1,375) = 31.06, P < 0.001, ηp

2 = 0.076, 95% CI [0.284,
0.594]; strategy * EL uncertainty: F(1,375) = 99.87, P <0.001, ηp

2 = 0.21,
95% CI [−0.574, −0.385]; Fig. 3C) and in Study 2 (strategy * OL uncer-
tainty: F(1,1467) = 176.00, P < 0.001, ηp

2 =0.107, 95% CI [0.409, 0.551];
strategy * EL uncertainty: F(1,1467) = 752.21, P <0.001, ηp

2 =0.339, 95%
CI [−0.720, −0.624]; Fig. 3D). Crucially, the interactions were driven
by a stronger effect of uncertainty trial type on the relevant strategy.
In high OL uncertainty trials, the tendency to rely on OL was reduced
more strongly than the tendency to rely on EL (Fig. 3C, D left).
And interestingly, high EL uncertainty trials impacted the reliance on
both strategies in opposite directions, that is, not only were they
associated with a reduction in EL but also with an increase in OL
(Fig. 3C, D right).

Fig. 3 | Behavioral signature of uncertainty-driven arbitration between
experiential (EL) and observational learning (OL). A, B The proportion of OL
choices was computed like in Fig. 2C,D, but separately for each of 4 trial types
definedbyOLuncertainty (lowor high) and ELuncertainty (lowor high), for Study 1
(A) and Study 2 (B). SeeMethods for details about how uncertainty trial types were
defined, and Fig. 1B for an illustration. Each dot is an individual participant; error
bars represent SEM. C, D Separate mixed-effects generalized linear models (ME-
GLM) were run to quantify the effect of each uncertaintymanipulation on EL (blue)

and OL (orange) separately. Both fixed and random effects of past partner’s action
and past outcome, for high and low uncertainty trials, were included into the ME-
GLM, allowing us toquantify each effect for lowandhighOLuncertainty trials (left),
and low and high EL uncertainty trials (right), for Study 1 (C) and Study 2 (D). Data
represent the fixed effect coefficient estimates for each uncertainty trial type; error
bars represent the standard error associated with those estimates; and each dot is
an individual participant (randomeffect); Study 1:N = 126 independent participants
(A, C); Study 2: N = 493 independent participants (B, D). See Table S1 for statistics.
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Computational modelling: heterogeneity in strategy use
To assess whether participants’ behavior was better explained by a
single unitarymodel, or whether different individuals deploy different
strategies,wefit a set offive parsimoniousmodels to eachparticipant’s
data. Specifically, themodels included both single strategymodels (EL
only, OL only), amixturemodel that combines the two strategies using
a fixed weight, a dynamic arbitration model in which the weight varies
dynamically depending on the reliability of each strategy, and finally, a
baseline model that captures irrelevant, non-leaning strategies (see
Methods for details and equations).We first testedwhether themodels
were uniquely identifiable by calculating a confusionmatrix (Fig. S3A).
This analysis showed that all five models can be perfectly separated
from each other, such that data generated by any given model is best
explained by thatmodel (exceedance probability of 1 relative to all the
other models). Parameter recovery analyses were also performed for
each model, consistently showing high correlations between actual
and recovered parameters (Fig. S3B–F).

Model fitting to data was performed using hierarchical Bayesian
inference inMatlab’s cbm toolbox51, both for eachmodel separately to
ensure reliable parameter estimates and including all five models as a
set for Bayesianmodel comparison. Model frequencies from the latter
analysis, as well as AIC and out-of-sample model predictive accuracy
averaged across participants (see Methods for details) are reported in
Table 1. Overall, those findings suggest that there was no clear and
consistent winner. In both studies, the AIC values suggest a marginal
advantage for the fixed mixture model, while out-of-sample accuracy
slightly favored the dynamic arbitration model. Additionally, the
model frequency values suggest somewhat of an even split, with no
model exhibiting a frequency higher than 33%, with Study 1 showing
the largest frequency for the observational learning model (31.1%) and
Study 2 for the fixed mixture model (32.4%). Therefore, we reasoned
that not every participant’s data may be best explained by a single
model across the group as a whole, and that instead, the data may be
better analyzed by taking into account the best-fitting model for each
participant. To do that, we relied on the individual model frequency
values (model responsibility values provided as an output of cbm
hierarchical Bayesian inference) to classify participants into five
groups based on each participant’s highest responsibility value. Group
sizes are provided in Table 1, consistent with our hypothesized het-
erogeneity in strategy use.

Posterior predictive checks
Posterior predictive checks were performed on the models using
participants’ best-fitting parameters. We first demonstrated the clear
dissociation between the EL and OL models, showing that eachmodel
generates choices consistent with its predictions, and that our beha-
vioral signature of interest was recovered by each model as expected
depending on participants’ preferred strategy (Fig. S4). Throughmore
in-depth simulations, we then proceeded to generate data from each

model using participants’ best-fitting parameters, and ran the mixed-
effects GLMs shown in Fig. 2E, F (signature of hybrid EL/OL behavior)
and in Fig. 3C, D (effect of EL and OL uncertainty trial types) on the
model-generated data. First, examining the effect of past outcome (EL
effect) andof past partner’s action (OL effect) on choice (Fig. 4A, B),we
found that as expected, the EL effect was well recovered by the EL
model and both arbitration models, while the OL effect was well
recovered by the OL model and both arbitration models. The baseline
model was not able to recover any EL or OL learning effect. Correla-
tions between the data and the model predictions across individuals
confirmed this result (Fig. 4C, D), with the EL model accurately pre-
dicting the EL but not OL effect, the OL model accurately predicting
theOL but not EL effect, and the dynamic arbitrationmodel accurately
predicting both effects. Second, we predicted that the uncertainty
effects, i.e. the extent to which each strategy use varies with EL and OL
trial uncertainty, should be appropriately recovered by the dynamic
arbitrationmodel, since this is the onlymodel that explicitly modulate
strategy weights based on uncertainty. And indeed, we found that the
interactions between strategy use and uncertainty in data generated
by the dynamic arbitration model (Fig. 4E–H right) matched those
observed in the data (Fig. 4E–H left), with the model showing a clear
effect of OL trial uncertainty on the OL effect (Fig. 4E, G) and of EL trial
uncertainty on the EL effect (Fig. 4F, H). Correlations between the data
andmodel predictions across individuals also showed strong recovery
for the effect of uncertainty on the corresponding strategy (change in
EL effect for low vs high EL uncertainty trials – data vs model predic-
tions: Study 1: R(126) = 0.795, P <0.001, Study 2: R(493) = 0.870,
P <0.001; change in OL effect for low vs high OL uncertainty trials –

data vs model predictions: Study 1: R(126) = 0.867, P <0.001, Study 2:
R(493) = 0.886, P < 0.001; Fig. S5A–D). Interestingly,we also found that
when running that same posterior predictive check analysis with the
condition definition of OL and EL uncertainty (instead of the trial
definition), the predictions of the dynamic arbitration model were not
as strongly correlatedwith the data (change in EL effect for low vs high
EL uncertainty condition – data vs model predictions: Study 1:
R(126) = 0.588, P <0.001, Study 2: R(493) = 0.712, P <0.001; change in
OL effect for low vs high OL uncertainty condition – data vs model
predictions: Study 1: R(126) = 0.633, P < 0.001, Study 2: R(493) = 0.593,
P <0.001; Fig. S5E–H). This further validates the uncertainty trial
definitions shown in Fig. 1B. Finally, we also found that dynamic arbi-
tration weight values extracted for each participant from the dynamic
arbitration model varied as predicted according to these trial defini-
tions (Fig. S6).

Group differences in learning, mixture of strategies and
arbitration
To assess the behavioral relevance of this classification of participants
in groups according to each individual best-fitting model and to fur-
ther characterize the underlying heterogeneity, we calculated the

Table 1 | Summary of model fits

Study 1 Study 2

Model Npar AIC OOS acc Frequency Nbest (%tot) AIC OOS acc Frequency Nbest (%tot)

Baseline 4 215.7 0.521 0.205 25 (19.8) 219.8 0.511 0.159 83 (16.8)

Experiential learning 3 207.7 0.539 0.147 21 (16.7) 204.9 0.552 0.060 24 (4.9)

Observational learning 2 197.2 0.569 0.311 40 (31.8) 194.8 0.575 0.190 95 (19.3)

Fixed mixture 6 191.0 0.593 0.115 14 (11.1) 186.0 0.607 0.324 160 (32.5)

Dynamic arbitration 6 191.2 0.595 0.222 26 (20.6) 187.1 0.608 0.267 131 (26.6)

Eachof thefivemodels (Npar = number of parameters)was fitted to participants datafirst usingMatlab’s cbm toolbox. Using individualmodel-fitting,we computed themeanAICaswell asmean out-
of-sample accuracy (OOS acc) across participants. OOS accuracy was calculated for each individual by fitting the model on 7 task blocks and using the best-fitting parameters to calculate the
likelihood of predicting the participant’s choices in the remaining block (then iterating across all 8 blocks). We then used cbm’s hierarchical Bayesian inference fitting across all five models to
compute model frequency. Selecting the best-fitting model for each individual participant (highest model responsibility), we then calculated the number and proportion of participants for whom
each model explains their data best (Nbest column).
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behavioral metrics shown in Figs. 2, 3, and compared them across
groups, separately for each study. We also performed posterior pre-
dictive checks on the data split by actual groups, or by randomly
assigning participants into groups, to ensure our behavioral differ-
ences between groups were appropriately recovered by themodels. In
all statistical analyses, we additionally controlled for individual differ-
ences in gender, age, education level and cognitive ability scores (from
the ICAR) to ensure those factors could not explain any differences
between groups (see Table S4 for all mixed-effect models equations
and statistics). We note that there were some group differences in
some of these variables (see Fig. S7 for details), hence the necessity to
ensure our results were robust to controlling for them. Note also that

the sample size in those analyses was slightly reduced, given missing
data (N = 125 in Study 1 because of one participant missing ICAR score;
and N = 489 in Study 2 because of four participants missing educa-
tion level).

First, we found that calculating the five models’ out-of-sample
accuracy separately for each group confirmed that each group was
best fit by its respective model (Fig. 5A, B). Then, to compare the
learning curves (Fig. 5C, D, Table S4A), we ran a linear mixed effect
model predicting accuracy from the interaction between trial since last
reversal (varying from 1 to 8) and group, controlling for the covariates
of no interest described above and with a random intercept. We found
a significant interaction between trial and group (Study 1:

Fig. 4 | Posteriorpredictive checksof strategy-specific effects.Themixed-effects
generalized linear model (ME-GLM) predicting choice from past outcome
(experiential learning (EL) effect, blue) and past partner’s action (observational
learning (OL) effect, orange) was run on choice data generated with each of the 5
models, using participants’ best-fit parameters. A, B Plotted are boxplots of the
resulting individual random effects for Study 1 (A) and for Study 2 (B). Random
effects obtained on the actual data are shown on the left-most box plot for com-
parison. Horizontal lines represent the median, boxes represent the inter-quartile
range, whiskers range from the minimum to maximum value excluding outliers,
which are shown as individual dots. C, D Individual random effects obtained from
participants’ data (x-axis) and from model-generated data (y-axis) are shown for

Study 1 (C) and for Study 2 (D), together with the best-fit linear regression line and
correlation coefficient R, for the EL model (left), OL model (middle) and dynamic
arbitration model (right). E–H To ensure the dynamic arbitration model can
reproduce the effect of uncertainty on behavior, we ran the ME-GLM on partici-
pants’ choices and on choices generated by the dynamic arbitration model sepa-
rately for low and high OL uncertainty (Study 1: E, Study 2:G) and for low and high
EL uncertainty (Study 1: F, Study 2: H). Data depicts the fixed effect coefficient
estimates for low and high uncertainty (solid lines: data, dashed lines: model pre-
dictions); error bars are the standard error of the ME-GLM coefficients; dots are
individual random effects from the data. Study 1: N = 126 independent participants
(A, C, E, F); Study 2: N = 493 independent participants (B, D, G, H).
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F(4,875) = 13.49, P < 0.001, ηp
2 = 0.058; Study 2: F(4,3423) = 18.81,

P <0.001, ηp
2 =0.022), suggesting learning differences between

groups, such that people in the baseline group essentially show no
learning, while those in the dynamic arbitration group show the stee-
pest learning curve (95% CI for the effect of trial in the dynamic arbi-
tration group compared to the baseline group: Study 1: [0.021, 0.042];
Study 2: [0.006, 0.017]). Learning curves generated from the four
learning models with completely hypothetical parameters (i.e. not the
best-fitting parameters) confirmed that learning occurs in those
models, and that the dynamic arbitration model produced the fastest
learning (Fig. S8A). Examining learning curves generated from each
group’s best-fitting model (using individual participants’ best-fitting
parameters within that group) showed an almost perfect match to the
data (solid vs dashed lines in Fig. 5C, D), which was not observed when
group membership was randomly shuffled (Fig. S8B, C).

To compare the GLM betasmeasuring EL and OL contributions to
behavior (Fig. 6, Table S4B), we ran a linear mixed effect model pre-
dicting the mixed effect GLM coefficient values from the interaction
between effect type (past outcome versus past partner action) and
group, also controlling for covariates and with a random intercept. We
found a significant interaction between effect type and group (Study 1:
F(4,125) = 25.55, P <0.001, ηp

2 =0.450; Study 2: F(4489) = 73.73,
P <0.001, ηp

2 =0.376). The interaction was mostly explained by dif-
ferent drivers of behavior in the ExpLearn and ObsLearn groups.

Specifically, as expected, people in the ExpLearn group relied more
strongly on past outcome (EL effect) than past partner action (OL
effect) to guide behavior (paired two-tailed t-test– Study 1: t(20) = 3.16,
P =0.005, d =0.706, 95% CI [0.084, 0.410]; Study 2: t(23) = 4.27,
P <0.001, d = 0.89, 95% CI [0.179, 0.514]), while behavior in the
ObsLearn group was more strongly driven by past partner action than
past outcome (Study 1: t(39) = 3.60, P <0.001, d =0.577, 95% CI =
[0.052, 0.184]; Study 2: t(94) = 3.07,P = 0.003,d = 0.316, 95%CI [0.020,
0.092]). We also found a main effect of group (Study 1:
F(4,125) = 40.74, P < 0.001, ηp

2 = 0.566; Study 2: F(4,489) = 106.4,
P <0.001, ηp

2 =0.769), driven as expected by overall weakest EL and
OL effects in the baseline group, consistent with no learning, but also
by overall strongest EL andOL effects in the dynamic arbitration group
(95%CI of DynArb vs Baseline group difference: Study 1: [0.889, 1.196],
Study 2: [0.750, 0.900]). The latter can be explained by higher overall
accuracy in the dynamic arbitration group, combined with positive
correlations between accuracy and strength of both EL and OL effects
(Accuracy & EL effect: Study 1: R(126) = 0.662, P < 0.001, Study 2:
R(493) = 0.723,P <0.001; Accuracy&OLeffect: Study 1: R(126) = 0.895,
P <0.001, Study 2: R(493) = 0.896, P < 0.001). Additionally, posterior
predictive checks confirmed that pattern of GLM effects between
groups, wherebyGLMeffects frommodel-generated datamatched the
datawell when split by actual groups (darker coloredbars in Fig. 6), but
not when split by randomly shuffled groups (grey bars in Fig. 6).

Fig. 5 | Model out-of-sample predictive accuracy and learning curves by group.
A, B We computed out-of-sample accuracy for each participant across blocks
(leaving one block out) and for each of the five models, in Study 1 (A) and Study 2
(B). The top row of the heatmap shows the average predictive accuracy for each
model, while the bottom five rows show the breakdown for each group. C,DMean

learning curves (similar to Fig. 2A, B) were computed from participants’ data
separately for each group (solid lines, see Table S4A for statistics), and frommodel-
generated data using each group’s best-fitting model (dashed lines), in Study 1 (C)
and Study 2 (D). The shaded area represents standard errors across participants
within each group.
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Finally, we compared the behavioral signatures of arbitration by
highlighting group differences that dissociate participants expressing
a fixedmixture versus a dynamic arbitration between strategies. Based
on thebreakdownofOL choicepropensity per trial type (shownonFig.
S2A, B), we computed a behavioral index of arbitration as the differ-
ence inOL choice propensity between trialswhereOL is expected tobe
most preferred (trials with lowOLuncertainty, high ELuncertainty, low
reward magnitude) and trials where EL is expected to be most pre-
ferred (trials with highOL uncertainty, low EL uncertainty, high reward
magnitude). This difference is depicted with the green arrow on Fig.
S2A, B. We then calculated this index separately for each group and
found a significant effect of group on arbitration index in a linear
model controlling for all covariates (Study 1: F(4,112) = 17.13, P <0.001,
ηp

2 = 0.380, Fig. 7A; Study 2: F(4,465) = 80.55, P <0.001, ηp
2 =0.409,

Fig. 7B). Specifically, arbitration was found to be maximal in the
dynamic arbitration group and significantly larger than in the fixed
mixture group (Welch two-sample t-test assuming unequal variance;

Study 1: t(17.23) = 4.74, P <0.001, d = 1.70, 95% CI [0.252, 0.656]; Study
2: t(277.44) = 7.15, P < 0.001, d =0.836, 95% CI [0.172, 0.303]), sug-
gesting a behavioral dissociation between the two arbitration groups,
whereby dynamic arbitration is associated with a more extreme var-
iation in strategies according to the conditions of the environment.

To further examine the effect of each uncertainty trial type on
each strategy separately, we also analyzed how the random effects of
past outcome (EL) and past partner action (OL), estimated separately
for each uncertainty trial type (and shown on Fig. 3C, D), differed
between groups. For each trial type (OL uncertainty, EL uncertainty),
we ran a linear mixed model predicting the random effect from an
interaction between uncertainty trial type (high, low), strategy (EL, OL)
andgroup, controlling for covariates and including a random intercept
(Table S4C, D). We found a significant 3-way interaction for each
manipulation, and for both Study 1 (Fig. 7C: OL uncertainty * strategy *
group, F(4,375) = 20.22, P <0.001, ηp

2 = 0.177; Fig. 7D: EL uncertainty *
strategy * group, F(4,375) = 19.90, P <0.001, ηp

2 = 0.175) and Study 2

Fig. 6 | Group differences in single strategy use and associated model predic-
tions. The main effects of past outcome (EL effect, A, C) and the effect of past
partner’s action (OL effect, B, D) on choice (previously shown in Fig. 2E-F) are now
calculated separately for each group for Study 1 (A-B, NBaseline = 25, NExpLearn = 21,
NObsLearn = 40, NFixArb = 14, NDynArb = 26) and Study 2 (C, D, NBaseline = 83,
NExpLearn = 24, NObsLearn = 95, NFixArb = 160, NDynArb = 131). Light colored bars repre-
sent the mean mixed-effects generalized linear model (ME-GLM) coefficients from
participants’ data (see Table S4B for statistics), whereby each dot is an individual

participant (random effect). Dark colored bars represent the ME-GLM coefficients
from data generated by each of the 5 models using participants’ best-fitting para-
meters, then showing themean effect for each group using that group’s best-fitting
model. Grey bars similarly represent the mean ME-GLM coefficients from model-
generated data, but after assigning participants into the 5 groups at random then
using each group’s corresponding model. Error bars represent standard errors of
the ME-GLM coefficients.
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(Fig. 7E: OL uncertainty * strategy * group, F(4,1467) = 33.50, P <0.001,
ηp

2 = 0.084; Fig. 7F: EL uncertainty * strategy * group, F(4,1467) = 97.38,
P <0.001, ηp

2 =0.210). This showed that the influence of uncertainty
trials on the signature of EL vs OL further varied across groups. More
specifically, OL uncertainty trials primarily influenced the effect of past
partner action (OL signature) and did so more strongly for individuals
in the ObsLearn and arbitration groups. In contrast, EL uncertainty
trials primarily influenced the effect of past outcome (EL signature)
and did so more strongly for individuals in the dynamic arbitration
group, compared to all other groups. This last result is particularly
noteworthy as it suggests that it ismostly EL arbitration (i.e. arbitration
driven by EL uncertainty) that differentiates between the fixed and
dynamic arbitration groups, rather than OL arbitration (i.e. arbitration
driven by OL uncertainty), which seems to be exhibited in both arbi-
tration groups.

Relevance of groups for psychopathology
Having established that the groups defined based on model-fitting
displayed the expected differences in behavioral signatures of interest
(learning, reliance on OL vs EL, and arbitration), we set out to explore
whether the five groups also differed inmeaningful ways on a range of
transdiagnostic symptom dimensions. Given our hypothesized link
between strategy used and symptom dimensions relevant to anxiety,
social anxiety, and autism, we collected four questionnaires (State-
Trait Anxiety Inventory, Beck Depression Inventory, Liebowitz Social
Anxiety Scale, and Social Responsiveness Scale, see Methods for
details). To extract underlying symptom dimensions and reduce col-
linearity between summary scores on those scales, we first ran a factor
analysis on the individual item scores from the questionnaires, pooled
across the two studies to ensure sufficient power to run the factor
analysis (N = 568). We first determined the optimal number of factors

Fig. 7 | More extreme signatures of arbitration in the dynamic
arbitration group. A, B An index of arbitration was calculated as the difference in
the propensity to choose according to observational (OL) vs experiential (EL)
learningbetween trialswhereOLshould bemost favored and trialswhereEL should
bemost favored– seegreenarrowson Fig. S2A, B for an illustration. This arbitration
index was then calculated and averaged separately for each group, in Study 1
(A, NBaseline = 25, NExpLearn = 21, NObsLearn = 40, NFixArb = 14, NDynArb = 26) and Study 2
(B, NBaseline = 83, NExpLearn = 24, NObsLearn = 95, NFixArb = 160, NDynArb = 131). Sig-
nificance was assessed through a linear regression predicting arbitration index
from group and controlling for covariates, followed by a two-sided t-test to spe-
cifically compare the dynamic arbitration and fixed mixture groups (A:
t(17.23) = 4.74, 95% CI [0.252, 0.656], P <0.001; B: t(277.44) = 7.15, 95% CI [0.172,
0.303], P <0.001). Each dot is an individual participant. C–F The random effects
obtained from the analyses presented in Fig. 3C, D were averaged separately for
each group, for Study 1 (C, D) and Study 2 (E, F), thus showing the effect of OL

uncertainty trial type (C, E) and EL uncertainty trial type (D, F) on theGLMeffects of
past partner action (OL effect; top) and past outcome (EL effect; bottom). See
Table S4C, D for GLM statistics. For eachmanipulation, the differencebetween high
and low uncertainty trials is also depicted, allowing for a direct comparison of each
arbitration signature between groups. Error bars represent SEM for each group.
Two-sided t-tests were run to specifically test whether the dynamic arbitration
group (magenta lines) exhibited a more extreme signature of arbitration than the
fixed arbitration group (blue lines), with significant differences observed in the
effect of OL uncertainty on OL in Study 1 (t(32.38) = 2.81, 95% CI [0.103, 0.644],
P =0.008, C), the effect of EL uncertainty on both strategies in Study 1 (OL:
t(37.02) = −5.39, 95%CI [−0.323, −0.147], P <0.001,D top; EL: t(36.29) = 4.86, 95%CI
[0.196, 0.476], P <0.001, D bottom), and in Study 2 (OL: t(261.11) = −11.08, 95% CI
[−0.458 −0.273], P <0.001, F top; EL: t(288.18) = 4.67, 95% CI [0.103, 0.253],
P <0.001, F bottom).
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by running the factor analysis from 1 to 20 factors and selected the
number of factors among this set that provided the lowest BIC (Fig.
S9A). We found that 8 factors provided the best-fitting solution
(BIC = −59393, BIC difference from other number of factors > 14,
Tucker-Lewis index =0.745, RootMeanSquare Error ofApproximation
= 0.042, fit = 0.967). The factor loadings suggest the following trans-
diagnostic symptom interpretation associated with each factor (Fig.
S9B). Factor 1 reflecteddepressive symptoms,with highest loadings on
all BDI items, as well as some of the STAI-Trait items such as failure,
unhappiness, and dissatisfaction. Factor 2 reflected heightened social
anxiety, loading on a majority of items from the LSAS. Factor 3
reflected autism-like traits, loading on a majority of items from the
SRS. Factor 4 reflected state anxiety symptoms, loading mostly on
STAI-State items. Factor 5 reflected poor social responsiveness, load-
ing specifically on positively scored SRS items. Factor 6 loaded on
items from both SRS and LSAS that reflect social group avoidance.
Factor 7 reflected trait anxiety, loadingmostly on STAI-Trait items that
relate to disturbing or obsessive thoughts. Finally, Factor 8 reflected
traits associated with performance anxiety, loading most strongly on
LSAS items such as acting, speaking up, reporting to a group, etc.
Factors were allowed to correlate given the oblimin rotation, but cor-
relations between factors remained low enough to ensure unique
variance attributed to each factor, ranging from R(568) = 0.08 to
R(568) = 0.56 (Fig. S9C). These correlations were overall much lower
than the correlations between the questionnaire scores, ranging from
R(568) = 0.45 (between STAI-State and LSAS) to R(568) = 0.82
(between STAI-Trait and BDI), thus justifying the factor analysis
approach to better identify separate symptom dimensions.

To assess whether the five groups, defined based on their
learning strategy on the task, differed on those 8 symptom dimen-
sions, we ran a linear mixed-effects model predicting the factor
scores (each factor representing a symptom dimension) from an
interaction between symptom dimension and group, including a
random intercept, and controlling for gender, age, education, ICAR
score, as well as study group (given that we pooled data from both
studies). We found a significant interaction (F(28,3948) = 2.38,
P < 0.001, ηp

2 = 0.017, Fig. 8A–E, Table S5A), suggesting that the
groups differed in their symptom dimensions. For comparison
purposes, results from the same analyses with the 5 questionnaire
summary scores, instead of the 8 separable symptom dimensions,
are shown in Table S5B.

Post-hoc tests using R’s emmeans function to compute marginal
means highlighted the following drivers of the interaction. First, we
examined differences in symptom dimensions within each group,
using Tukey method p-value adjustment for comparing a family of 8
estimates (the number of symptom dimensions), revealing significant
effects in two of the groups. In the baseline group (Fig. 8A), individuals
were characterized by high autistic traits, poor social responsiveness,
and low trait anxiety (autistic traits vs trait anxiety: estimate=0.527,
t(3983) = 4.47, P =0.002, d = 0.648, 95% CI [0.364, 0.933]; social
responsiveness vs trait anxiety: estimate=0.411, t(3983) = 3.49,
P =0.012, d =0.506, 95% CI [0.221, 0.790]). In the dynamic arbitration
group (Fig. 8E), individuals were characterized with the opposite pat-
tern, that is low autistic traits, good social responsiveness, but high
trait anxiety (autistic traits vs trait anxiety: estimate = −0.340,
t(3983) = −3.51, P =0.011, d = −0.418, 95% CI [−0.652, −0.185]; social
responsiveness vs trait anxiety: estimate = −0.300, t(3983) = −3.10,
P =0.041, d = −0.369, 95% CI [−0.603, −0.135]). Second, we ran the
complementary analysis, examining differences between groups for
each symptom dimension, using Tukey adjustment for the 5 groups.
We found differences in autistic traits between the baseline and fixed
arbitration groups (t(3070) = 3.37, P =0.007, d =0.509, 95% CI [0.213,
0.805], Fig. 8A vs D), and between the observational learning and the
fixed arbitration group (t(3095) = −2.73, P = 0.049, d =0.381, 95% CI
[0.108, 0.655], Fig. 8C vs D). Groups also differed on trait anxiety,

specifically between the baseline and dynamic arbitration groups
(t(2847) = 4.05, P < 0.001, d =0.642, 95%CI [0.331, 0.953], Fig. 8A vs E).

Overall, this suggests that the five model-based groups can be
differentially characterized along two symptom dimensions: autistic
traits and trait anxiety (Fig. 8F). We note that the two symptom
dimensions were positively correlated across participants
(R(568) = 0.16, P < 0.001, Fig. 8G), such that on average across the
entire sample, individuals with high autistic traits also tend to score
high on trait anxiety. Yet, we find that groups, especially the baseline
and dynamic arbitration groups, differ significantly on these dimen-
sions, suggesting thatourmodel-based classification can help separate
symptom dimensions that tend to coexist in the population.

Discussion
Our aim in this study was two-fold: first, to test a computational
account of reliability-driven arbitration between two domains, namely
experiential learning (EL) and observational learning (OL); and second,
to characterize the heterogeneity in strategy use, both in key sig-
natures of behavior and in transdiagnostic symptom dimensions
relevant to affective and social function.

To address the first aim, we designed a task in which the reliability
of EL and OL were manipulated by means of changes in uncertainty
conditions, resulting in key trials that could be clearly classified as high
EL reliability trials, low OL reliability trials, and vice versa. Behavioral
findings indicated that people clearly modulated their behavior in an
expected way according to the reliability of each strategy, favoring EL
when EL reliability was high andOL reliability was low, and favoring OL
when OL reliability was high and EL reliability was low. Computational
modelling confirmed this finding, showing that those participants who
were best fit by our proposed dynamic arbitration model also exhib-
ited the greatest reliability-driven modulation of behavior. Reliability
in our model was defined using absolute prediction errors associated
with each strategy as an index of uncertainty (or unreliability). This
arbitration signal is consistent with the algorithmic and neural imple-
mentation of mixture of experts models in the literature20, though
future work is needed to further explore whether other implementa-
tions of reliability could perform better. In particular, this could be
achieved through more optimized task designs that fully allow dis-
tinguishing between different reliability computations, which was
outside the scope of the current study. Our analyses do however
provide insights into how this dynamic arbitration mechanism differs
from a fixed mixture model, which was originally proposed in early
investigations of model-based/model-free arbitration during EL52,53.
Not only did model recovery analyses show that the two arbitration
schemes can be clearly differentiated, but behavioral signatures
associated with eachmodel pointed towardsmore ‘extreme’ signature
of uncertainty-driven arbitration between EL and OL. In sum, a learner
using a fixed mixture model will still be sensitive to trial-by-trial
changes in uncertainty, since those variations will be captured in the
value difference, and hence in the choice probabilities; however, using
the proposed dynamic arbitration mechanism helps push this sensi-
tivity to the extreme, leading to improved performance. Consistent
with cross-domain arbitration, and with previous literature showing
that humans do integrate social and experiential information when
learning and making decisions15,26–32,54, our findings also suggest that
the fixed and dynamic arbitration groups (a substantial proportion of
our sample) performed this task by integrating the predictions of both
EL and OL. Only one of these studies in particular demonstrated the
possibility of a dynamic, volatility-driven, arbitration between indivi-
dual and social learning54. Although the individual learning used in that
study was similar to our EL model in the current study (outcome of a
binary lottery), the social learning component was quite different
(learning from advice, rather than learning from observing another
person’s choices). Our findings thus further extend the concept of
arbitration, via a reliability-weighted mixture of experts20, to apply
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Fig. 8 | Groupdifferences in transdiagnostic symptomdimensions. A–EA factor
analysis on the questionnaire items yielded 8 factors representing separate
symptom dimensions. Plotted are violin plots of the factor scores for each of the 5
groups (bars represent the mean, white dot represent the median, thicker grey
error bars represent the interquartile range): (A) baseline group (N = 96), (B)
experiential learning group (N= 38), (C) observational learning group (N = 125), (D)
fixed arbitration group (N = 165), (E) dynamic arbitration group (N = 144). A linear
mixed-effects model was run to test the significance of a factor*group interaction
(seeTable S5A for statistics), suggesting that factor scores differ significantly across
groups, while controlling for gender, age, education level, cognitive ability and
studygroup. Pairwise two-sided t-tests were run on the resultingmarginalmeans to

characterize the differences between factors within each group, using the Tukey
method to correct formultiple comparisons. Significant differenceswere observed
in the Baseline group (autism vs trait anxiety: t(3983) = 4.472, P <0.001; social
responsiveness vs trait anxiety: t(3983) = 3.487, P =0.012; A) and in the DynArb
group (autism vs trait anxiety: t(3983) = −3.508, P =0.011; social responsiveness vs
trait anxiety: t(3983) = −3.095, P =0.042; E). F,G Follow-up analyses focusing on the
two factors that account for the largest group differences: autism (factor 3) and
trait anxiety (factor 7). F Mean and standard errors for the two factors by group
indicate a dissociation between the two symptom dimensions. G Scatter plot with
histograms of the two factor scores, colored by group, with a regression line across
all participants (N = 568, two-sided Pearson’s correlation: R = 0.16, P <0.001).
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across observational and experiential domains, rather than within-
domain only (e.g. ref. 21 for EL; ref. 18 for OL). This dichotomy goes
beyond the well-known model-based/model-free arbitration21,22,55

given that the OL strategy is implemented in the absence of outcomes,
that is by simply inferring the current goal from observing the other
agent’s actions. In that sense, outcomes cannot be used to reinforce
cached values (like inmodel-free learning or in the EL strategy here) or
to build a model of the world (model-based learning).

Overall, our model comparison also suggests that OL as its own
strategy was favored relative to EL. It is possible that the OL and EL
strategies aren’t matched in terms of complexity, working memory
demands, or cognitive processes at play, and that OL may require
additional demands on the learner’s part. That said, our finding that
across both studies participants tend more towards using OL com-
pared to EL mitigate this concern about complexity differences.
Additionally, our focus on an arbitration mechanism does mean that
the strategies being arbitrated have to be dissociable and rely on
separable computations, in order to best characterize how arbitration
is governed. Our task achieved this dissociation, with OL and EL
updates taking place at different timepoints in the trial, OL and EL
predictions being only weakly correlated, and OL and EL uncertainty
trials being separable. As part of our study design, we decided to focus
on uncertainty as the main factor driving the reliability of each strat-
egy. We manipulated uncertainty across different blocks, with EL
uncertainty levels varyingwithin eachOLuncertainty block to allow for
the possibility of slower learning during OL. The data did not confirm
this (if anything learningwas faster duringOL than EL), suggesting that
future designs could better ensure uncertainty periods are symme-
trical across strategies. That said, the uncertainty conditions were not
used in the analyses since we identified that our specific trial-by-trial
definitions of uncertainty were better predictors of choice than the
uncertainty conditions, thus mitigating the design asymmetry con-
cern. We note, however, that our trial definition of uncertainty was
based on the immediately preceding sequence of trials and could have
involved a more sophisticated definition of uncertainty over longer
timescales. In addition, it is possible that other factors than uncertainty
could drive arbitration. For example, OL reliability may be influenced
by observing different partners who vary in performance and/or
expertise, or by manipulating the social context (cooperative versus
competitive interaction, incentive for the partner to deceive the par-
ticipant or to act with a different goal inmind). EL reliability could also
vary as a function of stakes being manipulated in a more meaningful
way than in the current design, or by increasing or decreasing the
ability to experientially sample the tokens and their outcomes.
Another interesting question would also be to assess how the reliance
on each strategy, and arbitration between them, may vary in response
to more naturalistic and ecologically valid ways of implementing the
strategies in the task. Future work is needed to better characterize the
role these factors may play in cross-domain arbitration.

To address our second aim of characterizing heterogeneity, we
leveraged the possibility of collecting large-scale datasets online. Our
modelling results revealed that no ‘winning’ model explained all (or a
majority of) participants’ data best; rather, different groups of parti-
cipants were found to rely on different strategies to solve this task.
Specifically, while a proportion of participants relied on our proposed
dynamic arbitration model, or on a fixed mixture of EL and OL, as
described above, some participants were also found to use a single
strategy (EL-only or OL-only), while a small proportion of participants
were best characterized by a baseline model incorporating irrelevant
non-learning strategies. Participants in each group were clearly char-
acterized by unique behavioral signatures. For example, participants
who relied primarily on EL (ExpLearn group) exhibited a stronger
effect of past outcomes on their current choice (signature of EL)
relative to the ObsLearn group, while the opposite group difference
was found when examining the effect of past partner’s action on

current choice (signature of OL). The extent to which those effects
differed between trials with high versus low EL andOL uncertainty was
also found to be more extreme in the Dynamic arbitration group,
compared to the fixed arbitration group. The dynamic arbitration
model was built to be the most advantageous strategy to solve this
task. We confirmed that this was the case using simulated data and
posterior predictive checks, showing stronger signatures of learning
and of both EL and OL strategy used in data generated by the dynamic
arbitration model compared to other models. This explained why
participants best fit by the dynamic arbitration models were overall
better learners, and reproduced the heterogeneity in behavioral pat-
terns observed across groups. Finally, none of these behavioral sig-
natures were present in the Baseline, non-learner group. While the
baselinemodel is not a relevant strategy to perform this task, including
thismodel in our set allowed us to characterize behavior above chance
for a substantial proportion of the participants (about 20% in Study 1
and 15% in Study 2) for whom actual learning models would have
performed at chance. Therefore, this enabled us to keep these parti-
cipants included in the analyses rather than excluding them for poor
performance, a common technique used to diminish the noise and
improve data quality in online studies35,56. We hope that thismethod of
characterizing non-learning behavior, rather than simply excluding
participants, will become more widespread in analyses of online
datasets going forward, especially when considering the relevance for
psychopathology, whereby ‘poor’ performance may be indicative of
symptoms of interest. Indeed, such task-based widespread exclusions
could lead to a reduction in the range of relevant symptomdimensions
that may be associated with the use of non-learner strategies. That
said, we do acknowledge that the interpretability of behavior in this
group is limited, given thatmore than one strategy was included in the
model and that those strategies aren’t necessarily reflective of under-
lying cognitive mechanisms. Contrary to the other groups for which
associations with symptom dimensions can be directly interpreted in
light of the theory-driven modelling approach, in this non-learning
group it remains more challenging to characterize what associations
might mean, whether they reflect a general deficit in learning, moti-
vational impairments, or reduced working memory capacity, among
others. Additionally, we note that depending on the sample, itmay still
be worth excluding participants who are not doing the task at all (e.g.,
high number of missed responses), repeatedly fail to pass a quiz the
instructions (i.e. possibly indicative of being a bot), or fail attention
checks during the questionnaires57.

Finally, in further characterizing the heterogeneity in strategy use,
we provide the first evidence that using such a strategy-based classi-
fication of participants carries relevance for psychopathology. We
reduced the dimensionality of the questionnaire items into 8 main
factors reflecting largely separate symptom dimensions relevant to
social dysfunction, autistic traits, anxiety (trait, state, social, perfor-
mance, avoidance), and depression. We find a significant interaction
between factor and group in predicting symptom severity (indexed by
higher values of factor scores), suggesting differences in symptom
dimensions between the groups. Specifically, consistent with some of
our predictions, we found that trait anxiety and autistic traits were the
two factors accounting for most of the group differences. The stron-
gest differences were between the Baseline group, characterized by
high autistic traits and low trait anxiety, and the Dynamic arbitration
group, exhibiting the opposite profile (low autistic traits and high trait
anxiety). Importantly, these differences remained significant when
controlling for additional covariates such as age, gender, education
level and cognitive ability. Known difficulties in behavioral adaptation
and flexibility during social inference in autism47,58,59 are consistent
with the observed group differences, such that those participants
relying on more optimal or advantageous strategies (arbitration) also
exhibit the lowest autism factor score, and those scoring high on
autistic traits are more likely to use an irrelevant, non-learner strategy
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during the task. Trait anxiety, on the other hand, has also been asso-
ciated with difficulties in adapting learning to changes in
uncertainty38–40, which would also lead to the prediction of reduced
reliance on dynamic arbitration in highly anxious individuals. Inter-
estingly, we see the opposite pattern (highest trait anxiety factor score
in the dynamic arbitration group). A few differences could account for
this. First, it is possible that the effect shown in the literature is specific
to volatility (i.e. frequency of the reward/transition probability rever-
sals), which was primarily manipulated in the studies cited above,
rather than changes in reward/transition probability itself, which was
manipulated in the present task. Second, this effect may be emerging
given that we are not only looking at trait anxiety summary score, but
at a factor representing a symptom dimension with only a subset of
questionnaire items. And indeed,when examininggroupdifferences in
mean summary score from the STAI-Trait questionnaire, therewere no
statistically significant difference (F(4,563) = 0.59, P =0.671,
ηp

2 = 0.004), suggesting that this effect may only emerge when other
correlated symptom dimensions (such as traits and symptoms asso-
ciated with depression) are controlled for. This finding of heightened
arbitration in anxiety could also be interpreted in light of a recent
study demonstrating that high anxiety is associated with increased
information-seeking in response to large changes in the
environment60, consistent with an ability to adapt behavior to chan-
ging contingencies, which is also needed during arbitration.

We also found no clear separability between the ObsLearn and
ExpLearn groups using the factor scores. Although the largest differ-
ences between those two groups appear to be driven by the state and
trait anxiety factors, those were not significant. This could be due to
the relatively low sample size of the ExpLearn group even after pooling
the two datasets (N= 38). Overall, having to pool the two datasets for
running the factor analysis and testing group differences in factor
scores is a possible limitation of the current study, which warrants
replication in future large-scale studies. However, it is worth noting
that this was necessary to ensure sufficient power for the factor ana-
lysis (as running the factor analysis on Study 1data onlywouldnot have
been possible), that this analysis of relevance for psychopathologywas
exploratory in nature, and that the study group was controlled for in
these analyses. We also note that as a clear strength of the study, all
other analyses characterizing heterogeneity in behavior andmodel fits
were replicated in two completely independent samples.

Taken together, our findings demonstrate the relevance of our
model-based grouping approach, whereby individual differences in
best-fitting model are leveraged, rather than assuming a ‘winning-
model-fits-all’ approach. This is consistent with previous work having
shown different learning strategies across individuals, for example
across age groups during development61,62, or between clinical and
non-clinical groups63. In the present study, we further emphasize the
potential of this approach for separating symptom dimensions (here,
autism and trait anxiety) that tend to coexist in the general population
(see the positive correlation in the current sample) and in the clinic,
whereby 40-70% of individuals with autism also meet criteria for at
least one anxiety disorder64,65. Large datasets combined with compu-
tationalmethods, such as the approach proposed in the current study,
are gaining importance to help characterize individual differences66

and pave the way towards individualized diagnoses and
treatment plans.

Methods
Participants
Participants were recruited online and anonymously through Prolific
Academic (https://www.prolific.co/) across two independent studies.
Study 1 (exploration sample) included 128 participants (56 females, 71
males, 1 non-binary; mean age = 32.84 years old ± 10.90 SD). Study 2
included 493 participants (290 females, 199males, 4 non-binary;mean
age = 28.48 years old ± 9.90 SD). Two participants were excluded from

Study 1 for missing more than 25% of trials. No participant in Study 2
met this exclusion criterion. Screening criteria applied included US as
country of residence, fluency in English, age between 18 and 65, no
literacy difficulty, normal or corrected-to-normal vision. Those criteria
were assessed through Prolific’s screening tools based on participants
self-report. All participants provided informed consent. After an initial
IRB review, the protocol used in both Study 1 and Study 2 was deemed
exempt from full IRB review by the Caltech Institutional Review Board,
due to being judged to be of minimal risk to participants and meeting
several other criteria required for an exempt status. In Study 1, parti-
cipants were paid $6.00 (US Prolific account) for their participation for
45minutes, as well as a performance- and attention-based bonus of up
to $2.00 (mean bonus = $1.09 ± 0.43 SD). In Study 2, participants were
paid in British Pounds (UK Prolific account), specifically £5 (around $7)
for 50min and up to £1.50 (around $2) bonus (mean bonus =
£0.78 ±0.40 SD).

Task
The task consisted of 8 blocks of 20 trials each. On each trial, partici-
pants first observed a partner choose between two boxes (represented
by a fractal image) for 2.5 s, thenwere shownwhichof two tokens (blue
or orange) the chosenboxdelivered for 1 s. It was then theparticipant’s
turn to choose directly one of the two tokens (in maximum 3 s) and
receive the associated outcome for 1 s (Fig. 1A). Box and token left/
right positions were randomized. Throughout the task, two prob-
abilities dynamically varied (Fig. 1B, orange and blue lines): the prob-
ability that each box yields an orange vs blue token, and the reward
probability associated with each token. The two boxes yielded oppo-
site probabilities of the two token types. Specifically, in the low
uncertainty condition the probabilities were 80/20 (one box yields
80% of orange tokens and 20% of blue token and the other box 80% of
blue tokens and 20% of orange tokens). In the high uncertainty con-
dition, the probabilitieswere60/40. Those probabilities were assigned
at the beginning of a block and kept constant throughout a block. On
each block a new pair of boxes (new fractals) were used. Participants
were not explicitly instructed about those contingencies; however,
they were told that “one box has a higher proportion of blue tokens;
the other one a higher proportion of orange tokens”. The reward
probability associated with each token also varied between periods of
low uncertainty (80/20 contingencies) and periods of high uncertainty
(60/40 contingencies). Participants were explicitly instructed that
sometimes a token is fake and won’t win any point, while sometimes it
is valuable; and that the proportion of valuable tokens is opposite
between the two tokens at any point in time, such that if 80% of orange
tokens are valuable, only 20% of blue tokens are valuable. While par-
ticipants did not know the contingencies, theywere instructed that the
partner knew the reward probability associated with each token. Par-
ticipants were also told that the proportion of valuable tokens was the
same for both players (such that what is inferred from the partner can
be applied to the self), and that this proportion would switch many
times during the task. In practice reversals occurred once per block, as
well as in-between blocks. This design resulted in OL uncertainty
blocks that lasted longer than EL uncertainty blocks, which was done
to account for the possibility that OL would be slower than EL (given
increased cognitive demands on the social inference process required
inOL). Finally, rewardmagnitudewas varied across blocks, such that in
some blocks, rewarded token magnitudes would range between 45
and 55 points and in other blocks between 1 and 99 points.

Procedure
Participants were first asked to fill out demographic questions at the
beginning of the study, including age, gender, race, ethnicity and
highest level of education. Then, the instructions and practice for the
task contained two phases. Participants were first instructed about the
tokens and the boxes and played a short practice (12 trials) which
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helped them see the task from the perspective of the partner. Specifi-
cally, during this practice, they were explicitly told the proportion of
valuable tokens before the start of each trial (i.e. they knewwhich token
was more valuable), then had to choose between the two boxes to find
which one was more likely to yield the more valuable token. They were
then instructed that for the main task, they would not be told the per-
centage of valuable tokens anymore but would be able to observe the
choices of another player who possessed that information. They were
also informed that: “theother player is another participantwhoplayed a
longer version of the practice you just played, and nowwe are replaying
this person’s action back to you”. In practice the partner’s actions were
generated from a simple reinforcement learning model which updates
the value of each box according to its history of yielding the more
valuable token, and with an inverse temperature parameter of 10 (high
choice consistency) and learning rate of 0.8. In total, 16 different trial
lists were generated, and one was selected at random for each partici-
pant. A demonstration of the instructions, practice, and 10 example
trials of the task can be found at this link: https://obsexplearn.web.app/.

At the end of the task, the following questionnaireswere collected
from all participants to examine individual differences in cognitive
ability, as well as mood, anxiety and social traits. First, we collected a
measure of IQ through the International Cognitive Ability Resource67

(ICAR, https://icar-project.com/), a 16-item multiple-choice ques-
tionnaire assessing cognitive ability along four domains: letter and
number series, verbal reasoning, three-dimensional rotation, and
matrix reasoning. Participants then completed the State and Trait
Anxiety Inventory68 (STAI), the Beck Depression Inventory69 (BDI-II),
the Social Responsiveness Scale70 (SRS-2), and the Liebowitz Social
Anxiety Scale71 (LSAS-SR). To ensure participants paid attention, there
were three catch questions spread throughout the questionnaires: one
attention question in the BDI (“If you are paying attention, select the
last option”), one question to leave blank in the STAI, and one infre-
quency item in the SRS (“There are fifteen months in a year”). The task
and questionnaires were coded up into a HTML URL, using custom
Javascript code and plugins from jspsych versions 6.0.5. and 6.1.0.

Behavioral analysis
Data was analyzed using Matlab (R2020b) and R (version 4.1.2). As an
index of learning behavior, we computed the mean accuracy (i.e.
propensity to choose the more valuable token) across individuals for
the first 8 trials following a reversal in token value. If participants are
learning, accuracy should increase over the course of those trials
(Fig. 2A, B).We then focused on calculatingmodel-agnostic behavioral
signatures of EL and OL. To do that, we classified each trial as (1)
consistent with EL or not and (2) consistent with OL or not, using the
following definitions. A trial was deemed consistent with EL (Fig. 1C) if
the participant chose the token thatwas rewarded on the previous trial
or avoided the token that was previously unrewarded. A trial was
deemed consistent with OL (Fig. 1D) if the participant chose the token
obtained by the partner on the previous trial when the partner repe-
ated their choice (e.g. the partner chooses BoxA, gets an orange token,
repeats choice of Box A, then participant chooses orange); or if the
participant avoided the token obtained by partner on the previous trial
when the partner changed their choice (e.g. the partner chooses BoxA,
gets an orange token, switches to Box B, then participants chooses
blue). We calculated a behavioral index of the proportion of choices
consistent with OL (versus EL) out of all the trials where EL and OL
predicted different choices, according to the classification described
above. This measure (Fig. 2C-D) represents individual preferences for
OL versus EL in this task. To quantifywhether participants combine the
two strategies behaviorally, we ran a Mixed-Effects General Linear
Model (ME-GLM) predicting choice on each trial from two predictors:
the previous trial outcome (EL effect) and the partner’s last action (OL
effect) (Fig. 2E, F, Table S1A), with participant (sub) as a grouping

variable. The ME-GLM equation was as follows:

choice∼ 1 + out +pa+ ð1 + out +pajsubÞ ð1Þ

where choice = 1 if orange token is chosen
0 if blue token is chosen

�
,

out = outcome t � 1ð Þ if last token was orange
�outcome t � 1ð Þ if last token was blue

�
,

and pa = 1 if partner action is consistent with orange goal token
�1 if partner action is consistent with blue goal token

�

Note that out and pa regressors were only weakly correlated
(Study 1: R(125) = 0.262; Study 2: R(493) = 0.272), indicating low shared
variance (i.e. around 7 to 8%).

Finally, to examine arbitration behaviorally (i.e. the extent to
which the preferred strategy changes with OL uncertainty, EL uncer-
tainty and magnitude), we computed the breakdown in OL choice
propensity according to each trial type, focusing on EL and OL
uncertainty trials only (Fig. 3A, B), or further breaking down by mag-
nitude (Fig. S2A, B). OL uncertainty was considered low on trials for
which the past two partner’s box-to-token transitions were consistent,
and high otherwise. EL uncertainty was considered low on trials for
which the previous two choices and outcomes followedwhat would be
expected from a win-stay-lose-shift strategy (i.e., win-stay-win, win-
shift-loss, loss-stay-loss, loss-shift-win), and high otherwise. Finally,
rewardmagnitude was considered high if the last outcomemagnitude
was greater than 25 points, and low otherwise. High and low trials for
eachof the three variables are depictedbydotson Fig. 1B.Wealso ran a
series of ME-GLMs to assess the effect of each uncertainty trial type on
both EL and OL effects (see Fig. 3C, D for effects of EL and OL uncer-
tainty trial types, Fig. S2C, D for effects ofmagnitude, and Table S1B–D
for all ME-GLMs results). Specifically, eachME-GLM included the effect
of past outcome (EL effect) and of the partner’s last action (OL effect)
separately for low and high uncertainty or magnitude trials. The ME-
GLM equations were as follows, where pa represent the past partner
action regressor, out the past outcome regressor, both as defined
above, and sub is the grouping variable:

• Effect of OL uncertainty (Fig. 3C, D left, Table S1B):

choice∼ 1 + outOLulow + outOLuhigh +pa
OLu
low +paOLu

high

+ 1 + outOLulow + outOLuhigh +pa
OLu
low +paOLu

highjsub
� � ð2Þ

where outOLulow =
out if OL uncertainty is low
0 if OL uncertainty is high

�
,

outOLuhigh =
0 if OL uncertainty is low

out if OL uncertainty is high

�
,

paOLu
low =

pa if OL uncertainty is low
0 if OL uncertainty is high

�
,

paOLu
high =

0 if OL uncertainty is low
pa if OL uncertainty is high

�

• Effect of EL uncertainty (Fig. 3C, D right, Table S1C):

choice∼ 1 + outELulow + outELuhigh +pa
ELu
low +paELu

high

+ 1 + outELulow + outELuhigh +pa
ELu
low +paELu

highjsub
� � ð3Þ

where outELulow =
out if EL uncertainty is low
0 if EL uncertainty is high

�
,

outELuhigh =
0 if EL uncertainty is low

out if EL uncertainty is high

�
,

paELu
low =

pa if EL uncertainty is low
0 if EL uncertainty is high

�
,

paELu
high =

0 if EL uncertainty is low
pa if EL uncertainty is high

�
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• Effect of reward magnitude (Fig. S2C, D, Table S1D):

choice∼ 1 + outMag
low + outMag

high +pa
Mag
low +paMag

high

+ 1 + outMag
low + outMag

high +pa
Mag
low +paMag

highjsub
� � ð4Þ

where outMag
low =

out if reward magnitude is low
0 if reward magnitude is high

�
,

outMag
high =

0 if reward magnitude is low
out if reward magnitude is high

�
,

paMag
low =

pa if reward magnitude is low
0 if reward magnitude is high

�
,

paMag
high =

0 if reward magnitude is low
pa if reward magnitude is high

�

All trial-by-trial ME-GLMs predicting choice (Table S1) were run
using the fitglme function in MATLAB and included both fixed and
random effects of each predictor, as well as a fixed and random
intercepts. Effect sizes were calculated as Cohen’s d for t-tests (two-
tailed), and partial eta-squared ηp

2 for F-tests. Normality was not for-
mally tested, and equal variances were not assumed for t-tests. 95%
confidence interval (CI) are reported wherever possible. To provide
evidence for the null effect in the case of t-tests, Bayes Factors (BF10)
were calculated using R’s BayesFactor package72.

Computational models of individual strategies
A set of 5models representing different strategies were defined and fit
to the data. The rationale for this approach was to identify which
model is more likely to be used by each participant, in order to char-
acterize the heterogeneity in strategy use.

• Experiential learning (EL) model
EL wasmodelled as simple reinforcement learning of the reward
probability associated with each token, combined with a mag-
nitude boostingmechanism. Token values were initialized at 0.5
for each token. The value of the chosen tokenwas then updated,
with learning rate αexp and experiential reward prediction error
eRPE:

TokV exp ,ch tð Þ=TokV exp ,ch t � 1ð Þ+αexp*eRPEðtÞ ð5Þ

where eRPE tð Þ= 1� TokV exp ,ch t � 1ð Þ if reward
0� TokV exp ,ch t � 1ð Þ if no reward

�

The value of the unchosen token was inferred given the knowl-
edge that the reward probabilities of both tokens sum to 1:

TokV exp ,unch tð Þ= 1� TokV exp ,ch tð Þ ð6Þ
In parallel, the reward magnitudeM associated with each token
was tracked such that if a tokenwas rewarded,M was updated to
the reward value, whereas if a token was unrewarded, or
unchosen, M was decayed by 50% relative to its value on the
previous trial. This was implemented following behavioral ana-
lyses showing how previous reward magnitude enhanced
learning and following modelling analyses of Study 1 data to
establish the best-fitting ELmechanism (see Table S3 for details).
The probability of choosing orangewas then obtained through a
softmax of the value difference between the orange (or) and the
blue (bl) tokens:

Por
expðtÞ=

1

1 + e �βexp* TokVor
exp tð Þ�TokVbl

exp tð Þ
� �

�μ* Mor tð Þ�Mbl tð Þð Þ
� � ð7Þ

where βexp is the inverse temperature parameter and μ repre-
sents the magnitude boosting effect, i.e. the extent to which the
probability of choosing the orange (vs blue) token is influenced

by the past magnitude of rewards obtained with the orange (vs
blue) token.

• Observational learning (OL) model
OL was modelled through reinforcement learning of the transi-
tion probabilities between the partner’s choices and tokens. The
probability that the action performed by the partner leads to an
orange (vs blue) token was updated with learning rate αobs and
observational state prediction error oSPE:

ActVobs,ch tð Þ=ActVobs,ch t � 1ð Þ+ αobs*oSPEðtÞ ð8Þ

where oSPEðtÞ= 1� ActVobs t � 1ð Þ if orange token
0� ActVobs t � 1ð Þ if blue token

�

A counterfactual update of the value of the unchosen actionwas
also added, since instructions specified that one box had a
higher proportion of orange tokens and the other one a higher
proportion of blue tokens:

ActVobs,unch tð Þ=ActVobs,unch t � 1ð Þ � αobs*oSPEðtÞ ð9Þ
The partner’s goal (i.e., token values) were then directly inferred
from the action values, such that if the partner’s action has a 70%
chance of leading to an orange token, the assumption is that the
orange token has a 70% chance of being more valuable:

TokVobs tð Þ= ½ActVobs tð Þ, 1� ActVobs tð Þ� ð10Þ
Choice probability was then calculated as a softmax function of
the token value difference, with inverse temperature parameter
βobs:

Por
obsðtÞ=

1

1 + e �βobs * TokVor
obs tð Þ�TokVbl

obs tð Þ
� �� � ð11Þ

• Fixed mixture model
In this model, choice probabilities predicted by OL (Por

obs) and by
EL (Por

exp) were combined using a fixed weight parameter ωOL>EL,
which represents the probability of relying on OL over EL.

Por tð Þ=ωOL>EL*P
or
obs tð Þ+ ð1� ωOL>ELÞ*Por

exp tð Þ ð12Þ

• Dynamic arbitration model
In this model, ωOL>EL was no longer a free parameter estimated
for each participant but varied dynamically depending on the
reliability of each strategy. Unsigned prediction errors were
used as an index of how unreliable each strategy was, consistent
with the hypothesis that when a strategy is reliable it should
generate small prediction errors. Specifically, the reliability of
OL depended on the min-max normalized observational state
prediction error (scaled between −1 and +1):

ROL tð Þ= � 2 � oSPE tð Þ
�� ���min oSPEj jð Þ

max oSPEj jð Þ �min oSPEj jð Þ � 1
� 	

ð13Þ

Thismeans that when the state transitions between the partner’s
actions and tokenwere predictable (small prediction errors), the
reliability of OL was high, as inferring the goal token from
observing the partner’s actions was easier.
The reliability of EL (also scaling from −1 to +1) depended on the
min-max normalized experiential reward prediction error and
on the scaled outcome magnitude from the previous trial:

REL tð Þ= � eRPE t � 1ð Þ
�� ���min eRPEj jð Þ
max eRPEj jð Þ �min eRPEj jð Þ +

outcomeðt � 1Þ
100

ð14Þ

Article https://doi.org/10.1038/s41467-024-48548-y

Nature Communications |         (2024) 15:4436 16



EL was therefore most reliable when outcomes associated with
the chosen token were predictable (small prediction errors) and
higher in magnitude.
The arbitration weight was then calculated as a softmax of the
reliability difference between the two strategies, as well as a bias
parameter δOL>EL capturing the preference for OL over EL:

ωOL>ELðtÞ=
1

1 + e� ROL tð Þ�REL tð Þ+ δOL>ELð Þ ð15Þ

This dynamic weight could then be used to combine the two
strategies and calculate the choice probability, in a similar
fashion as the fixed mixture model:

Por tð Þ=ωOL>ELðtÞ*Por
obs tð Þ+ 1� ωOL>EL tð Þ� �

*Por
exp tð Þ ð16Þ

• Baseline strategies model

This model was added to the set to capture the behavior of ‘non-
learner’ participants who did not rely on EL or OL to learn and instead
used an irrelevant (but non-random) strategy. Specifically, four stra-
tegies were included in that model, captured by four separate para-
meters: a color bias (preference for orange over blue token), a left-
right bias (preference for left over right action), a sticky action bias
(tendency to repeat the past left or right action), and an action imita-
tion bias (tendency to repeat the partner’s left or right action).

Model fitting
Model fitting was done with the computational and behavioral mod-
eling (cbm) toolbox51 inMatlab (R2020b), using Laplaceapproximation
with a normal prior for each parameter withmean 0 and variance 6.25.
First, to ensure that the 5models could be appropriately dissociated, a
confusionmatrix was calculated by simulating data (N = 100 simulated
datasets) from each of the models and fitting the simulated data using
eachmodel, then calculating the exceedance probability through cbm
toolbox’s hierarchical Bayesian fitting (i.e. which model in the set can
explain the simulated datasets best; Fig. S3A). We then performed
parameter recovery for each of the fivemodels. To do sowegenerated
10 different datasets for each model and each participant, using their
best-fitting parameter estimates, then re-fit themodel to the generated
data, correlated the actual parameters used to generate data with the
recovered parameters and averaged the correlation coefficients across
the 10 iterations (Fig. S3B–F). All models were fit to each participant’s
data, first computing individual-level fits followed by hierarchical
Bayesian fitting to obtain more reliable parameter estimates. We
report the following three comparisonmetrics for all models (Table 1):
AIC, out-of-sample predictive accuracy (which was calculated by
leaving one block out, fitting the model on 7 blocks out of 8, and
predicting choice on the remaining block, then repeating and aver-
aging across blocks, see also Fig. 5A, B), and model frequencies from
the hierarchical fitting.

Posterior predictive checks
Finally, we performed several posterior predictive check analyses to
ensure the validity of each strategy’s behavioral signature, of the five
groups, and of the dynamic arbitration scheme. First, choice data was
generated from each participant’s best-fit parameters for the OL and
ELmodels, then the proportion of those choices consistent withOL (vs
EL) behavior was calculated for each generated choice set, averaged
across 1000 simulations, and comparedwith the participants data (Fig.
S4). Second, we generated choice data for all five models (also from
each participant’s best-fit parameters) and ran theME-GLMs (shown in
Fig. 2E, F) that estimate the main effects of past outcome (EL effect)
and past partner’s action (OL effect) separately on each model’s

generated choices. We report the main effects for the data next to the
model predictions (Fig. 4A, B) as well as correlations between the data
and model predictions across individuals for the EL, OL and dynamic
arbitration models (Fig. 4C, D). Third, to ensure that the dynamic
arbitration model could appropriately capture the effect of uncer-
tainty on each strategy, we ran the ME-GLMs (shown in Fig. 3C, D) that
estimate the EL and OL effects separately for low and high EL and OL
trial uncertainty on data generated by the dynamic arbitration model
and show the resultingME-GLMs individual estimates (randomeffects)
next to those estimated from the data (Fig. 4E–H). The correlations
between ME-GLM random effect estimates from participants data and
from model-generated data for this analysis were also computed,
separately for each effect and each uncertainty type (Fig. S5). Finally,
we extracted the trial-by-trial values of the arbitration weight
(ωOL>ELðtÞ) from the dynamic arbitration model, separately for each
uncertainty/magnitude trial types, to ensure that the model-predicted
weight values varied as expected with OL uncertainty, EL uncertainty
and reward magnitude (Fig. S6).

Group differences in behavior
We classified participants into five groups depending on which model
fit each participant best using individual model frequencies output by
hierarchical model-fitting as the metric for model comparison at the
individual level. We then calculated and plotted separately for each of
the five groups the different behavioral metrics of interest detailed
above (Behavioral analysis section): learning curves (Fig. 5D, E), EL and
OL ME-GLM effects (Fig. 6A, B), behavioral index of arbitration
(Fig. 7A, B), as well as the effects of EL uncertainty trials (Fig. 7D, F), OL
uncertainty trials (Fig. 7C, E), and magnitude (Fig. S2E, F) on strategy
use. These variables were averaged separately for each group, and the
effect of group was assessed using regression analyses in R (lme4
package), including a random intercept and controlling for gender,
age, education level, and cognitive ability (ICAR score), and followed
by type III analysis of variance (see Table S4 for equations and statis-
tics). We also performed some of the posterior predictive check ana-
lyses broken down by group to ensure that each group’s model (i.e. EL
for ExpLearn group, OL for ObsLearn group, and so on) can appro-
priatelypredict behavior in thatgroup, bothbyusing the actual groups
defined by the model frequencies as well as randomly shuffled groups
(where each participant is assigned to a group at random). We report
this analysis for the learning curves (Fig. 5F–I) and for the ME-GLM EL
and OL effects (Fig. 6C–F).

Careless exclusion
Before examining associations between behavioral tendencies on the
tasks and questionnaire scores, we excluded additional participants
who showed evidence of careless responding on the questionnaires,
similar to the approach used in a recent paper73, and recently recom-
mended as a way to avoid spurious possible associations with task
performance57. Specifically, we first excluded participants who failed
to correctly answer one or more catch questions and participants who
missed one or more questionnaires (data lost or study stopped before
the end). Second, we ran the Rpackage careless74 to assess randomand
inattentive responding on the questionnaires (excluding ICARwhich is
a separate measure of cognitive ability). We computed the intra-
individual response variability on the SRS and the STAI (both contain
reverse-coded questions, so responses should show some variability),
as well as even-odd consistency, psychometric synonym and antonym
scores averaged across all the questionnaires. Those measures were z-
scored, and participants excluded if any of these scores wasmore than
two standarddeviations from themean in the ‘unwanted’direction (i.e.
Z < −2 for intra-individual response variability, even-odd consistency
and psychometric synonym, and Z > 2 for psychometric antonym). In
total, out of 619 participants from both studies, 51 participants were
excluded, leaving a final pooled sample size of N = 568. Note that
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performance on the task was not different between these later exclu-
ded participants and all remaining participants, hence why they were
only excluded at this stage of the analysis.

Questionnaire factor analysis
To extract meaningful transdiagnostic symptom dimensions from the
questionnaire scores, we performed exploratory factor analysis
using the R package fa. Because of the exploratory nature of this
analysis, we pooled data from the two studies, thus performing the
factor analysis on the final pooled sample of 568 participants. Fol-
lowing some recommendations on exploratory factor analysis75, we
used theWeighted-Least Squarefittingmethod combinedwith oblimin
factor rotation. To determine the optimal number of factors, we ran
the factor analysiswith 1 to 20 factors and extractedBIC as a goodness-
of-fit criterion (Fig. S9A). We assessed the significance of group dif-
ferences in factor scores using lme4, modelling score as a function of a
factor-by-group interaction, controlling for study, gender, age, edu-
cation level, and ICAR score, and including a random intercept (Fig. 8,
Table S5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw (trial-by-trial) and summary (participant-level) data generated
in this study are available at: https://github.com/ccharpen/OL_EL_
behavior; and https://doi.org/10.5281/zenodo.1069503776.

Code availability
All code used in this study to run the experiment online, analyze the
data and generate the figures, tables and results reported in this
manuscript is available on the following repository: https://github.
com/ccharpen/OL_EL_behavior; and https://doi.org/10.5281/zenodo.
1069503776.
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