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A comprehensive benchmarking with
interpretation and operational guidance for
the hierarchy of topologically associating
domains

Jingxuan Xu1,8, Xiang Xu2,8, Dandan Huang3,4,8, Yawen Luo2, Lin Lin2,5,
Xuemei Bai2, Yang Zheng2, Qian Yang2, Yu Cheng1, An Huang1, Jingyi Shi1,
Xiaochen Bo 2 , Jin Gu 1,3,4,6,7 & Hebing Chen 2

Topologically associating domains (TADs), megabase-scale features of chro-
matin spatial architecture, are organized in a domain-within-domain TAD
hierarchy. Within TADs, the inner and smaller subTADs not only manifest cell-
to-cell variability, but also precisely regulate transcription and differentiation.
Although over 20 TAD callers are able to detect TAD, their usability in bio-
medicine is confined by a disagreement of outputs and a limit in under-
standing TAD hierarchy. We compare 13 computational tools across various
conditions and develop a metric to evaluate the similarity of TAD hierarchy.
Although outputs of TAD hierarchy at each level vary among callers, data
resolutions, sequencing depths, and matrices normalization, they are more
consistent when they have a higher similarity of larger TADs. We present
comprehensive benchmarking of TAD hierarchy callers and operational gui-
dance to researchers of life science researchers. Moreover, by simulating the
mixing of different types of cells, we confirm that TAD hierarchy is generated
not simply from stacking Hi-C heatmaps of heterogeneous cells. Finally, we
propose an air conditioner model to decipher the role of TAD hierarchy in
transcription.

Dramatic advances in high-throughput sequencing of genome-wide
interactions (Hi-C) have brought high-order genome spatial archi-
tecture within 2-µm nucleus to light, spanning from chromosome
territories, A/B compartments to megabase-scale topologically asso-
ciating domains (TADs) and chromatin loops1–3. Accompanied by
numerous studies on embryogenesis, lineage differentiation, and
various diseases4,5, TADs are revealed to serve as principal units of

chromatin folding and gene regulation2,6, ranging from 100 kb to 1Mb.
Initially recognized as the fractal globule model and blocks along
diagonal on Hi-C heatmap1, TAD manifests high self-interaction within
itself and insulates contacts with other TADs by convergent
CCCTC-binding factor (CTCF) binding and cohesin combination2,7–10,
known as ‘loop extrusion’model11,12, confining appropriate interactions
between regulatory elements and target genes13. Although TADs are
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conserved across cell types and species2,14–16, insertion or deletion of
TAD boundaries would give rise to ectopic enhancer-promoter con-
tacts, leading to abnormal gene expression, development disability,
and tumorigenesis4,17,18. Similarly, TAD reorganization through cell fate
transition is high correlated with gene expression changes14,19–21.

It’s previously found that TADs could be further subdivided into
subTADs7,22,23, and the Phillips group systematically detected subTADs
withdirectional index adaptedby aHiddenMarkovModel (HMM-DI) in
high-resolution 5C maps2,22. Perhaps subTADs could account for the
discrepancy in size and number of TADs from different TAD callers,
multiple resolutions, and matrices normalization12,24. SubTADs show
moredynamics thanTADs, including cell-to-cell variation and tissue-to-
tissue variation, and generate insulated neighborhoods within a
TAD20,25,26, retaining the independenceof gene expression. Increasingly
number of researches focus on these smaller subTADs in embryonic
development, lineage differentiation, and tumorigenesis27–32. Even
manipulating just these tens-of-kilobase scale subTADs enables precise
control of transcription and phenotypes33,34. Apart from CTCF or
cohesin, subTAD boundaries are discovered to be confined by active
epigenomic markers (indicating strong enhancers and active pro-
moters), mediators, transcription factors, transcription start sites
(TSSs), and transcription termination sites (TTSs)35, which define the
organization, maintenance or reconfiguration of certain
subTADs29–32,34. Such diverse anchors of subTAD boundaries may
contribute to highly dynamic nature andweakness comparedwithTAD
boundaries25. In addition to the formation mechanism mentioned
above, subTADs take shape before convergence into hierarchical TAD
structures during the mitosis-to-G1 phase transition, indicating a
bottom-up formation of TAD/subTAD36. Coincidentally, chromatin has
been revealed to be organized into a domains-within-domains tree-like
hierarchy, nominated metaTAD, which extends the maximum size of
TAD domains to 2Mb And units in metaTAD tend to be reorganized
through neuron differentiation, associated with transcription state
transition19,37. Recent research collectively refers to TAD, subTAD, and
metaTAD as TAD hierarchy, with the level characterized by positive
correlations with CTCF enrichment, gene activity, gene density, and
active epigenetic states. In contrast, single TAD conveys the lowest
extent of these aspects38. Furthermore, the hierarchical level of TAD
boundary remarkably separates colorectal carcinoma from normal
colon, which is relevant to novel transcription and prognosis39. The
‘asymmetric extrusion’ model is proposed as a possible formation
mechanism of TAD hierarchy, according to distinct epigenetic features
of adjacent subTADs38. Together, TADhierarchy is necessary to explore
gene regulation anddiseases, ofwhich increasinglymore functions and
applications are hopefully to be discovered in follow-up research.

Obviously, TADhierarchy expands the definition and size range of
typical TADs. However, a few critical problems remain to be solved:
whether TAD hierarchy is generated simply from stacking Hi-C heat-
maps of heterogeneous cells, what the mechanism of its formation is,
and how it acts on gene regulation. Besides, confusion arises when
picking out tools for detecting TAD hierarchy. In this work, we com-
pared the performance of 13 computational methods for TAD hier-
archy prediction in robustness (matrices-normalization, various
resolutions, and various sequencing depths), epigenomic features, and
tools usability. Hierarchy similarity is evaluated by a metric we devel-
oped and onemetric previously reported40. Among thesemethods, we
hope to give biomedical researchers tools-recommendation for
appropriate datasets or special studies and convey a comprehensive
elucidation on TAD hierarchy both in structural definition and in
unique functions on gene regulation.

Results
Compendium of hierarchical TAD callers
Increasinglymore researches are exploring subTAD or the hierarchical
structure of TAD, starting from HMM-DI2 to GRiNCH41, with over 20

algorithms developed for TAD hierarchy detection (Table 1). There are
five principal strategies underlying these tools: linear score, clustering,
network features, structural entropy and statistical model (Fig. 1a).

Each strategy represents reasonable interpretation of TAD struc-
tures from unique perspective. Linear score shows perspectives for
TAD distribution of different sizes by tuning one single parameter,
such as Arrowhead by corner score7, CaTCH by reciprocal insulation
(RI)42, HiTAD25 by window sizes, OnTAD by size of sliding diamond
window and average contact frequency within it38, Multi-CD37 by a free
parameter λ related to domain solution, Armatus23 and matryoshka43

by a resolution parameter γ. The size of TADs is almost positively
correlatedwith the value of the single parameter, and small TADs from
low value are usually positioned in large TADs from high value.
Thinking TADs as a series of contiguous blocks on a chromosome,
clustering iteratively merges TADs neighbors based on similarity of
interactions between contact domains to a larger TAD until reaching a
chromosome-arm size, and regards the layer-by-layer clustering rela-
tionship as the TAD hierarchies, including BHi-Cect44, SpectralTAD45,
IC-Finder46, and TADpole47. This continuity is also manifested in graph
theory, and its two big branches: network features (3DNetMod48,
HBM49, GRiNCH41, and spectral50) and structural entropy (deDoc51, and
SuperTAD40). Network features assume TAD-like structure as the best
structural separation on the chromosome, making one TAD as a node
and the relation between TADs as an edge. By calculating the edge
weight, nodes in the network are divided into vintage clusters, and
each cluster covers a large TAD and the nested subTADs within it. The
structural entropy is defined over the coding tree of a graph by fixing
and decoding the graph in a way that minimizes the uncertainty
occurring in random walks. The essence of structural entropy algo-
rithm is tofix the genomic loci atwhich theuncertainty of the structure
is maximized. The less information there is, the more possibility that
contact domains are in the same TAD. As for the statistical model, it
characterizes TAD hierarchy and biological properties by certain sta-
tistical distribution, for example: Gaussian mixture distribution
(GMAP26), generalmixed distribution combined generalized likelihood
ratio test (HiCKey52), and probability distribution model with dynamic
programming (TADtree53 and PSYCHIC54).

Given these methods define the level of TAD hierarchy by differ-
ent start (from level 0 or level 1) and various directions (from the inside
out or the opposite), we make uniform provisions for the level of TAD
and boundary (Fig. 1a). TAD is a chromatin structure at the sub
megabase scale, which is shown as an isosceles right triangle sig-
nificantly above the background in Hi-C thermograms. the TAD hier-
archical structure is shown as a nested isosceles right triangle (Fig. 1b).
To assess how many layers are nested in the TAD structure, we define
level 1 for the TADs that don’t belong to any larger TAD outside, and
the level increases by 1 as smaller TADs position an inner layer. For
boundaries, the rule follows that of OnTAD: the maximum of TADs it
belonging to in a single direction, suggesting one boundary may
belong to different numbers of TADs by left and right (Fig. 1b).

Evaluation among callers and within each caller
Among the algorithms above, 3D-NetMod requires redundant para-
meters to be set and tested. For high-resolution data (especially over
40Kb), there is no precise parameter range, resulting in low con-
fidence for TAD hierarchy prediction; CaTCH seldom gives so proper
pair of RIs determining TAD and subTAD that subTADs are not always
well located in TADs; results from BHi-Cect are recorded in a compli-
cated form, making it not easy to extract the location of TADs;
descriptions for parameters of HMM-DI, HBM, spectral, IC-Finder,
PSYCHIC and Multi-CD in each step are not clear enough to perform,
even without parameter options. Therefore, these methods do not
participate in this evaluation.

After the above screening, we intend to use theHi-Cdata available
under the Gene Expression Omnibus (GEO)55 accession number

Article https://doi.org/10.1038/s41467-024-48593-7

Nature Communications |         (2024) 15:4376 2



GSE63525 to compare performance of the following 13 methods:
Arrowhead, Armatus, TADtree, HiTAD, GMAP, deDoc, matryoshka,
OnTAD, TADpole, SpectralTAD, HiCKey, SuperTAD and GRiNCH.
According to length range of TADs/subTADs, we pick data resolutions
including 5 Kb, 10Kb, 25 Kb, 50 Kb and 100Kb on chromosome 7 from
7 human cell lines (GM12878, IMR90, HMEC, HUVEC, NHEK, K562,
KBM7), and chose MAPQ> 30 data normalized with the iterative cor-
rection and eigenvector decomposition (ICE)56 (see the Methods),
under certain condition. Chromosome 7 contains moderate genetic
messages that ensure the reliability of the analysis, and covers vital
genes like the HOXA gene family, which are involved with genome
architecture, limb development, and multiple types of cancer28,57–59.

Variation of hierarchical TAD structures from different algorithms.
Short of the metric to compare such domain-within-domain structure,
we developed hierarchy structural similarity (Hier_SSIM) (see the
Methods) using structural similarity to judge the similarity of the
output heatmap (Fig. 2a).

We obtain the output results from all the tools on 10Kb data of
GM12878 cell line (Fig. 2b, c). We categorize thesemethods by average
linkage (see the “Methods” section), a kind of hierarchical clustering,
and obtain fourmain clusters: the first includesHiCKey and SuperTAD;
the second involves only GRiNCH; the third contains matryoshka,
SpectralTAD, Arrowhead and deDoc; the last covers Armatus, OnTAD,
GMAP and HiTAD (Fig. 2b). Overall, there is a high degree of similarity
between all clusters. Though such clusters are not significantly con-
sistent with methods groups, the diagram of TAD hierarchy directly
exhibits two possible reasons. For example, TADs located at 1–1.5Mb
have the following conditions: (1) belong to the upstream or the
downstream larger TAD; (2) consist of scattered monolayers or hier-
archical construction (Fig. 2c). Disagreement of the four clusters above
partly consults from the division at a larger scale (larger TADs),

confirming that TAD confines the nested subTADs within it whatever
their reconstruction36. That explains the difference within the cluster.
While the hierarchy in the same genome region has greater power to
distinct clusters. Hence, TADhierarchy could prove a decisive factor in
chromosome topology and deserves further concern.

Since lack of a conclusive gold standard to evaluate the accuracy
of TAD prediction, it’s a feasible option to judge the correlation with
biological features. Given that TAD boundaries are always anchored by
architectural proteins such as CTCF and cohesion2,7–9, we compared
the enrichment of CTCF and SMC3 (subunit of cohesin protein com-
plex) at TADboundaries fromall tools. Bothmarkers show sharp signal
peakonOnTAD,HiTAD, Armatus, deDoc,matryoshka,Arrowhead, and
SpectralTAD. GMAP and GRiNCH show good correlation with CTCF
signal peak around boundaries (Fig. 2d, Supplementary Fig. 1a),
reflecting perfect accuracy and efficiency in detecting TAD boundaries
and best recognition of TAD segregation. To verify the robustness of
our results across species, we applied TAD hierarchy recognition
methods to Hi-C data ofmouse CH12-LX cell line and drosophila S2 cell
line. Notably, we consistently found that CTCF enrichment occurred at
TAD boundaries in different species and achieved the most enrich-
ment in the OnTAD boundaries (Supplementary Fig. 1b, c). Apart from
CTCF and cohesin, TAD boundaries tend to enrich active regulators,
like H3K4me3 (active promoter), H3K27ac (active enhancer and pro-
moter), POLR2A (subunit of transcriptional factor) and H3K9ac (active
promoter) but don’t collect repressed elements such as H3K27me3
(repressed promoter) and H3K9me3 (heterochromatin)2,35. We con-
duct the same analysis on these markers: DNase-seq, H3K4me3,
H3K27ac, POLR2A, and H3K9ac. These markers permanently show
significant signal peak around boundaries from OnTAD and Armatus
and occasionally show it on HiTAD, matryoshka, Arrowhead and
SpectralTAD (Supplementary Figs. 1d, e, and 2). And HiCKey stably
shows little but clear peak of all the above markers (Fig. 2d,

Table 1 | Computational methods for prediction of TAD hierarchy

Approach Caller Input format Main language Parameter

Liner Score Arrowhead hic format Shell, Awk, Java 1

Armatus dense matrix, sparse matrix, Rao format* C++, Python 1

CaTCH catch format** C, R, Shell 0

HiTAD cool format*** Python 1

matryoshka dense matrix, sparse matrix, Rao format C++, Shell 1

OnTAD dense matrix, hic format C++ 2

Multi-CD dense matrix Matlab NA

Clustering IC-Finder dense matrix, sparse matrix Matlab NA

TADpole dense matrix R 6

BHi-Cect Rao format R 0

SpectralTAD densematrix, sparsematrix, hic format, cool format,Rao format R 3

Network features HBM dense matrix R 5

spectral mat format**** Matlab NA

3DNetMod sparse matrix Python 18

GRiNCH sparse matrix C, Python 3

Structural Entropy deDoc sparse matrix Java 0

SuperTAD dense matrix, sparse matrix C++ 0

Statistical Model TADtree dense matrix Python 6

GMAP dense matrix, sparse matrix R 4

PSYCHIC dense matrix Matlab, C NA

HiCKey dense matrix, sparse matrix, Rao format C++ 6

Amatrix is a two-dimensional dataobjectmadeofm rowsandncolumns, therefore having totalm xn values. Ifmost of theelements of thematrix have0value, then it is called a sparsematrix. InHi-C
data, the sparse matrix represents the chromatin contact map, the numerical values in row i and column j represent the frequency of DNA interaction between i bin and j bin in chromosomes. The
sparse matrix is one of the common inputs for TAD hierarchical structure recognition algorithms.
*Rao format is another sparse matrix, of which the start and end sites are represented by genomic coordinate.
**catch format, ***cool format, and ****mat format mean files separately produced by CaTCH, cooler, and Matlab.
Bold text is the actual input type for this article.
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sistent with the middle figure. The darker purple color represents higher TAD
layers. Darker yellow represents higher TAD boundary hierarchy.

Article https://doi.org/10.1038/s41467-024-48593-7

Nature Communications |         (2024) 15:4376 4



a

d

cb
HiCKey

SuperTAD

GRiNCH

matryoshka

SpectralTAD

Arrowhead

deDoc

Armatus

OnTAD

GMAP

HiTAD

H
iC

Ke
y

Su
pe

rT
AD

G
R

iN
C

H

m
at

ry
os

hk
a

Sp
ec

tra
lT

AD

A r
ro

w
he

ad

de
D

oc

Ar
m

at
us

O
nT

AD

G
M

A P

H
iT

AD

80

60

100

boundary boundary boundary 0.5Mb0.5Mb0.5Mb-0.5 -0.5 -0.5

GMAPOnTADHiTAD

80

60

100

boundary boundary boundary boundary0.5Mb 0.5Mb 0.5Mb 0.5Mb-0.5 -0.5 -0.5 -0.5

matryoshka SpectralTAD SuperTADHiCKey

80

60

100

boundary boundary boundary boundary0.5Mb 0.5Mb 0.5Mb 0.5Mb-0.5 -0.5 -0.5 -0.5

ArrowheadArmatus GRiNCH deDoc

CTCF

1 0 0 0 0 0 0 0
0 2 2 2 1 1 1 0
0 2 2 2 1 1 1 0
0 2 2 2 1 1 1 0
0 1 1 1 3 3 2 0
0 1 1 1 3 3 2 0
0 1 1 1 2 2 3 0
0 0 0 0 0 0 0 1

Hier_SSIM

1 0 0 0 0 0 0 0
0 2 2 2 2 2 1 1
0 2 2 2 2 2 1 1
0 2 2 2 2 2 1 1
0 2 2 2 2 2 1 1
0 2 2 2 2 2 1 1
0 1 1 1 1 1 2 2
0 1 1 1 1 1 2 2

(Hierarchy structural
similarity)

chr7
1.0 2.0 3.0 Mb

8.0

1.0

2.0

3.0

5.0

6.0

7.0

4.0

0.0

HiCKey

SuperTAD

GRiNCH

matryoshka

SpectralTAD

Arrowhead

deDoc

Armatus

OnTAD

GMAP

HiTAD

Hi-C

Fig. 2 | Hier_SSIM and evaluation across all callers (ICE-normalized Hi-C data at
10Kb resolution). a Diagram of Hier_SSIM process. b Clustering of TAD hierarchy
callers. Source data are provided as a Source Data file. c Hierarchical structures of

representative region by callers. The green image in the first row represents the Hi-
C heatmap. The remaining blue images show the distribution of TAD levels from
each method. d Peak signals for structural protein CTCF around the boundary.

Article https://doi.org/10.1038/s41467-024-48593-7

Nature Communications |         (2024) 15:4376 5



Supplementary Figs. 1 and 2).While H3K27me3 is apparent onArmatus
andmatryoshka,H3K9me3peak is clearonGRiNCH, deDoc, andGMAP
(Supplementary Fig. 3a and b). Moreover, we search for overlap of
boundaries with protein-coding genes, including promoter and coding
sequence (CDS), and consistently find boundaries from SuperTAD
cover the greatest number of genes, followed by HiCKey, matryoshka
and SpectralTAD (Supplementary Fig. 3c and d). Together, we con-
clude thatOnTAD,HiTAD, SpectralTAD, andArrowhead are perfect for
detecting architectural proteins and active epigenomic indicators.
GRiNCH, deDoc, and GMAP perform well in capturing inactive reg-
ulators and architectural proteins. Armatus and matryoshka do good
in all three aspects.

Hierarchical TAD identification across data resolution, normal-
ization, sequencing depth and biological replicates. For some basic
features, we first evaluate these methods with ICE Hi-C data in TAD
segment length, number/percentage of TAD/boundary at all levels,
and the genomic coverage of TADs. Researches generally consider the
length of TAD and subTAD roughly in the range of 30 kb~2Mb, so we
confine the size of TAD segments within this limit for subsequent
analysis and comparison (see the Methods), except for comparison of
TAD segment length.

We first explore the length distribution of TAD segments on 7 cell
types and all five resolutionswithout size filtration on the ICEHi-C data
(Fig. 3a, Supplementary Fig. 4). Except Arrowhead and TADpole, the
length of TAD fragments is generally within 2Mb, of which is within
1Mb in deDoc, matryoshka and SuperTAD. There is a trend of length
shortening with the lifting of resolution in most of the methods, while
that of GRiNCH fluctuates in a stable range (Fig. 3a, Supplemen-
tary Fig. 4).

Then we compare the number and percentage respectively of
TADs and their boundaries of all levels on the 50Kb and 10Kb ICEHi-C
data of GM12878 and K562 (Fig. 3b, c, Supplementary Fig. 5), and we
find a relatively consistent distribution in most approaches (except
SuperTAD andHiCKey). The number and percentage of TAD segments
decrease as the level arises, with the same tendency seen in TAD
boundaries (Fig. 3b, Supplementary Fig. 5a, c, d). With the increase of
resolution, the number of TAD rises at all levels, especially the higher
level in Armatus, OnTAD, HiTAD, and GMAP, as well the proportion
(Fig. 3b, Supplementary Fig. 5a, c, d). As for TAD boundaries, the
increase in resolution makes the number of boundaries measured by
all methods increases in each level, but the ratio between the levels
remains permanent (Fig. 3c, Supplementary Fig. 5b, e, f).

Next, we define the percentage of TAD segment coverage on the
whole chromosome as the genomic coverage and count it on chro-
mosome7 (see the “Methods” section). The genomic coverage ofmost
methods is over 90% (Fig. 3d, Supplementary Data 1). For OnTAD and
TADtree, the values are stable at 80% and 70%, respectively, while the
ratios of SuperTAD, HiCKey, and TADpole are almost up to 100%. In
general, the genomic coverages of the majority of tools are slightly
affected by resolution, while those of matryoshka and Arrowhead are
largely affected by resolution.

Robustness is an important metric to evaluate performance of
TADhierarchy callers.We set a series of testing conditions by changing
resolution (5 Kb, 10Kb, 25 Kb, 50Kb, and 100Kb), matrices normal-
ization (rawmatrix and ICE-normalizedmatrix), and sequencing depth
(20%, 50%, and 100%) (Fig. 4). Here, two metrics are used to measure
the similarity of TAD hierarchy: overlap ratio (OR, derived from
SuperTAD40 to evaluate the similarity between two coding trees) and
Hier_SSIM (see the Methods).

To objectively assess the performance, we set similarity of 0.7 as a
standard, which conveys a neutral correlation. Our Hier_SSIM results
reveal that matryoshka, HiTAD, TADpole, deDoc, Armatus, SuperTAD,
OnTAD, Arrowhead, TADtree, GMAP and SpectralTAD are less affected
by resolution (Fig. 4a), while OR shows good robustness of deDoc,

GRiNCH,OnTAD, SuperTAD, andTADpole (Supplementary Table 1). As
for raw data and ICE-normalized data, SpectralTAD, Arrowhead,
SuperTAD, deDoc, and TADpole show high similarity, indicating that
they are superior in processing raw data (Fig. 4b, c). Finally, after
downsampling the ICE-normalized data of 50Kb by 50% and 20%, we
find that SpectralTAD, matryoshka, deDoc, TADpole, OnTAD, GMAP,
TADtree, GRiNCH, and SuperTAD are seldom affected by the sequen-
cing depth of input data (Fig. 4d, SupplementaryTable 2). Owing to the
diversity in sequencing depths of 7 cell types (GM12878, HMEC,
HUVEC, K562, KBM7, andNHEK) inGSE63525 dataset, we applyOnTAD
on 50Kb and 10Kb ICE-normalized data and calculate OR between
every two samples to seek the leading factors of TAD hierarchy var-
iation. Results are mainly divided into two distinct clusters by resolu-
tion, with OR ranges from 0.7 to 0.8 within the same cluster and that
around 0.5 between distinct clusters (Fig. 4e, Supplementary Fig. 6a).
Sequencing depth and cell-specificity may give rise to the fluctuation
within the cluster. Together, data resolution serves as the principal
component of discrepancy among results from one single algorithm.
Lastly, to measure the reproducibility of TAD hierarchy calling results
on biological replicates of Hi-C data, we applied TAD hierarchy
recognition methods to GM12878 Hi-C data, and found that
matryoshka, SpectralTAD, OnTAD, Arrowhead, GMAP, andHiCKey can
achieve great reproducible results (Supplementary Fig. 6b). And
SpectralTAD can achieve the most reproducible results with 0.976539
similarity. This suggested that these methods are robust in identifying
TAD in biological replicates.

In summary, we find that TAD hierarchy is greatly affected by
resolution and sequencing depth, but seldom varies with normal-
ization and biological replicates. While there are still plenty of hier-
archical TAD callers that show stability whatever the resolution, with
similarity ranging around 0.7. As for traditional TAD callers, the simi-
larity between multi-resolution is about 0.524. That means TAD hier-
archy is less influenced by resolution, compared to single TAD
structures. Thus, focusing on TAD hierarchy is promising to overcome
the shortage or limitation on resolution and convey potential infor-
mation of chromatin, which would be a wiser choice than single TAD.

Comprehensive performance and guidance of hierarchical TAD
callers
Basedon the testing above,we summarize a comprehensive evaluation
of all methods (Fig. 5a), including biological correlation, robustness,
and actual user experience (software installation, code instructions,
input processing, parameters setting, downstream procession, time
consumed, resolution self-identification and built-in visualization). We
also providedetails of running time andmemory cost for eachof the 13
methods (Supplementary Table 3). From the perspective of biological
correlation, OnTAD and Armatus perform extraordinarily in archi-
tecture proteins, chromatin accessibility, and active histone mod-
ifications, while Armatus, matryoshka, GRiNCH, deDoc, and GMAP are
suitable for inactive molecular markers. As for input, spectral requires
matrix from Matlab; CaTCH needs catch file produced by hicpro2-
catch; the cool matrix in HiTAD could be obtained by HiCExplorer;
deDoc deals with sparse matrix with max bin order in the first line;
TADtree, HiCKey, HiTAD and 3DNetMod conduct configure files con-
taining parameters, the path of input and software. Such variety can be
seen in output: OnTAD, HiTAD, matryoshka, and GMAP directly show
coordinate and level of each TAD; deDoc, SpectralTAD, and GRiNCH
just send TADs at different levels in separate files; the rest of the
methods require the calculation of TAD level additionally. This eva-
luation is not totally equal to the real performance of tools, affected by
the quality of library construction, sequencing depth, and background
noise. The input of single-cell Hi-C data provides amore realistic three-
dimensional structure of chromatin, but at the same time poses the
problem of high noise and data sparsity. In addition, disagreement of
the results partly originates from various strategies or principles of
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Fig. 3 | Identification of hierarchical TADs in chromosome 7 from ICE-
normalized Hi-C data. a Length range of hierarchical TADs called by different
methods and resolutions. The line that divides the box into 2 parts represents the
median of the data. The ends of the box show the upper (Q3) and lower (Q1)
quartiles. The difference between Quartiles 1 and 3 is called the interquartile

range (IQR). The extreme line shows Q3+ 1.5xIQR to Q1-1.5xIQR (the highest and
lowest value excluding outliers). b, c Numbers of TADs (b) and boundaries (c) at
various levels of theGM12878 cell line on 10Kb.dGenomic coverageof hierarchical
TADs of various callers and resolutions. Source data are provided as a Source
Data file.
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TAD prediction, showing diverse understandings of TAD structure
and hierarchy. Together, we provide a commendation of TAD hier-
archy callers with proper input format for colleagues interested in it
from fields of chromatin 3D structure, life science, and medi-
cine (Fig. 5).

Besides, it’s important to flexibly select the appropriate method
according to the resolution of sample data, sequencing depth or data

sparsity, platform sources, and sequencing technologies. First, what
should be identified include the sequencing depth (or data sparseness)
of data and the optimal range of resolution. When dealing with higher-
resolution data, OnTAD, HiTAD, matryoshka are ideal options, and
matryoshka also performs well on low-resolution data (~500 kb)43. In
terms of sequencing depth, SpectralTAD, deDoc, and GRiNCH can
handle ultra-sparse data. It is worth mentioning that IC-Finder and

b
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SpectralTAD work well in high-noise inputs. Second, for samples from
various sequencing technologies and platforms, the following meth-
ods have their special focus. All methods are capable of processing
bulk Hi-C data, while Armatus and chromoHBM-3C additionally deal

perfectly with 3C data; deDoc is friendly to ultra-sparse data and even
pooled single-cell Hi-C data; TADpole is suitable for Capture Hi-C data
after combing DiffT scores; PSYCHIC shows compatibility for data
from multiple platforms, such as SPRITE, HiChIP, and Hi-C.

Fig. 4 | Evaluation of each caller across data resolution, normalization, and
sequencing depth. a Hier_SSIM between TAD hierarchy obtained at different
resolutions was assessed in a pairwise manner (e.g., 5 Kb vs. 10 Kb, 5 Kb vs. 25 Kb,
etc.; results for the ICE data only are shown here). Hier_SSIM varies from 0 (no
similarity, white) to 1 (full similarity, dark blue), showed in the Heatmap simulation
diagram (the left panel). TAD hierarchy callers are ranked based on the average
values of the Hier_SSIM across all resolutions (from highest to lowest, the right
panel). b, c Concordance between TAD hierarchy obtained with each caller from
raw and ICE-normalized matrices at different resolutions (5, 10, 25, 50, 100Kb)

using the Overlap ratio (b) and the Hier_SSIM (c). Overlap ratio and Hier_SSIM vary
from0 (no similarity, white) to 1 (full similarity, dark red). TAD hierarchy callers are
ranked based on the average values of the overlap ratio and the Hier_SSIM (from
highest to lowest). Samples are beyond the resolution range of callers (backslash)
and results of certain resolutions can not computed (gray). d Ratio of Hier_SSIM of
TAD hierarchy between 20% and 100% versus that between 50% and 100% from
GM12878 cell line 50Kb ICE data. The dashed line indicates the linear fit. eOverlap
ratio betweenTADhierarchy obtainedwith 7 cell lines on 50Kb ICE data byOnTAD.
Source data are provided as a Source Data file.
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Since performance related to the biological significance of all
methods shows no huge difference, we summarize a guidance more
focused on usability (Supplementary Fig. 7). The guidance takes
three main points into consideration: (1) complexity of format for
input/output files; (2) computational memory and resource con-
sumption required by software; (3) abundance of the TAD hierarchy
obtained. OnTAD shows predominant smooth in format resolvent of
files, abundant levels of TAD hierarchy, and little consumption in
running. GMAP is user-friendly while presenting steady two layers. If
the computing platform is strong, SpectralTAD, Armatus,
matryoshka, and deDoc are wise choices. Researchers who are skilled
in file format conversion can try deDoc, Arrowhead, matryoshka,
and HiTAD.

Applications of TAD hierarchy in biomedicine
Studies to date using these methods mainly focus on the formation of
chromatin construction, gene regulation, embryonic development,
and disease. First, the mechanism of structural formation has been
explored throughout the field. OnTAD is used to describe the topo-
logical structure in normal and H1 depletion T cells, finding the impact
of histone H1 in chromatin compaction60, and capturing chromosome
conformation of human sister chromatids61. It also shows distinct TAD
hierarchy in normal colon and colorectal carcinoma39. HMM-DI is
applied to identify a subset of TADs exhibiting strong core-periphery
mesoscale network in T cell62. Armatus provides evidence that TAD
cliques are general phenomena across kinds of cell types and reveals
genomic differences between large TAD cliques and small ones63.
deDoc, HiTAD, and GMAP respectively detect TAD construction in
pig embryos64, maize65, and mouse erythroid cell populations36.
Moreover, the spatial scale of chromatin architecture is vital for tool
selection: Multi-CD, GRiNCH, and CaTCH can deal with TADs, sub-
TADs, and compartments,while chromoHBM (oneof the algorithmsof
HBM) and PSYCHIC perform well in loop interactions, thus especially
suitable for studying interactions between regulatory elements and
target genes.

Second, the relationship between chromatin topology and gen-
ome function is still contentious. And some methods have made an
attempt at gene dysregulation. Two clear TADs detected by Spec-
tralTAD are mapped with numerous gene-gene and gene-enhancer
interactions around the Regulators of Complement Activation (RCA)
gene cluster in B cells, revealing extensive co-regulation66. deDoc is
used in heat shock (HS) and calls TADs in the K562 cell line under
normal HS (NHS), short-termHS (SHS), and long-termHS (LHS). And it
helps researchersfind strong stability of chromatin in response to SHS,
compared to little alteration of chromatin accessibility67.

Third, a few methods have generated progression in embryonic
development. HiCKey, Arrowhead, OnTAD, SpectralTAD, andTADpole
are used to confirm insulation ranking of germ cells at various stages
and lineages of differentiation, facilitating the principle for the nucleus
programming that creates gametogenic progenitors in both sexes68.
3DNetMod, together with allelic expression states and chromatin
marks, is used to explore the alteration of chromosome topology
among oocytes, sperm, and early preimplantation embryos, exploring
the complex dynamics of 3D-genome organization during early
development69.

Last but not least, researches on chromosome spatial structure
have been centered around disease progression. HMM-DI reveals that
the linkage disequilibrium (LD) blocks encompassing schizophrenia
disease-associated single nucleotide variants (daSNVs) are significantly
enriched at core nodes,whereas obsessive-compulsive disorder (OCD)
daSNVs are enriched at periphery nodes and autism spectrumdisorder
(ASD) daSNVs are equally distributed across core or periphery nodes,
indicating link between 3D-genome’s core-periphery network struc-
ture and neuropsychiatric daSNVs62. OnTAD can distinguish normal
colon from colorectal carcinoma both with hierarchical level of TAD

and involved genes39. Chromosome spatial architecture, identified by
SpectralTAD, shows the downstream efforts of loss of NSD1 in head
and neck squamous cell carcinoma (HNSCC), together with RNA-seq
results. That presents genome structure’s proficiency in targeted
treatments70. 3DNetMod identifies subTADs in ESCs to help discover
the relationship between high-scale genome topology alteration and
disease-associated short tandem repeats (STRs), which is well known
to contribute to over 25 inherited disorders71. In addition, TADpole
performs perfectly in insertion points of Inv1 mutations47. Thus, it is
necessary to say that somemethods are suitable for specific biological
problems.

The impact of cell heterogeneity on TAD hierarchy
As for bulk Hi-C data, TAD levels are consistent with the extent of gene
expression, but the formation and existence of TAD hierarchy require
further studies. Currently, the hypothesis for the formation of TAD
hierarchy is divided into three categories: one is that the TADhierarchy
exists in a single-cell adjusting the gene expression (the pink box); the
second regards it as just single superimpose of TAD layers derived
frommillions of cells (the blue box); the third supports concurrenceof
the previous two points (the orange box) (Fig. 6a). In clinical samples,
the authenticity of TAD hierarchy greatly affects the study on triggers
of disease. Our recent work proposed that the heterogeneity of cancer
cells may be one of the reasons for the formation of TAD multi-scale
layers in complicated TAD hierarchy in colorectal carcinoma39.

To explore the impact of cell heterogeneity on TAD hierarchy, we
perform a simulation of cellular heterogeneity bymixingGM12878 and
K562 in 11 different ratios (Supplementary Fig. 8a, see the Methods).
Given the evaluation above, we observe that OnTAD exhibits better
performance in identifying TADhierarchy, thus it enables us toprovide
convincing results for subsequent studies. OnTAD is used on the
mixed data, and to search changes in TAD/boundary levels. If TAD
hierarchy is the result of image superposition, the number of TAD
boundaries with high levels will get obviously higher at a certain mix-
ing ratio than that of a pure cell line. Interestingly, we find that the
number doesn’t significantly excess that of K562 regardless of the
mixing ratio (Fig. 6b). Further, we add IMR90 to be mixed with
GM12878 and K562 in equal proportion, compare them with cases of
their pure cell lines, and obtain consistent results (Supplementary
Fig. 8c). As mixing ratio changes, the number of TADs tends to be
approximate to that of the pure cell line which has more TADs. A
similar phenomenon can be seen for boundaries (Supplementary
Fig. 8b, c).

Next, to better simulate the impact of cell heterogeneity on TAD
hierarchy, we collected single-cell Hi-C data of GM12878 and IMR90
fromKim et al.72. Then, we generated pseudo-bulkHi-Cmatrices based
on different cell mixing ratios and calculated the distribution of TAD
numbers at different levels (Supplementary Fig. 8d). The results were
consistent with bulk Hi-Cmixing.We noticed the outputs never excess
greatly to one pure cell line whatever the mixing ratio. In this way, the
distribution of TAD hierarchy is seldom affected by cellular hetero-
geneity. Hence, we infer that TAD hierarchy would never just be a
superimpose of millions of Hi-C heatmaps. This suggested that TAD
hierarchy could be a real architecture in single cells.

Our discovery is consistent with recent findings. Xiaowei Zhuang
group conducted a super-resolution chromatin tracing method based
on multiplexed stochastic optical reconstruction microscopy
(STORM) imaging of chromatin architecture and discovered TAD-like
domains with spatially segregated globular conformations in single
cells, of which the boundary shows cell-to-cell variety73. Besides, Jian
Ma Lab and Zhihua Zhang group separately developed Higashi74 and
DeTOKI75 to identify TAD-like domains with scHi-C data. Now that the
existence of TAD-like domains has been confirmed with imaging
technology, the discovery of TAD hierarchy at the single-cell level is
just around the corner and has great research potential.
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Hierarchical TADs act as air conditioner
Previous studies have pointed out that TAD boundaries are formed by
cohesin protein complex sliding on chromatin fibers until encounter-
ing convergent CTCF10, nominated as ‘loop extrusion’ model76. Thus,
TADand subTADcanbedescribed as ‘loopdomains’77. Beyond this, the
subTAD boundary generates insulating neighbors featured by sig-
nificantly distinct genome function, and the ‘asymmetric ring extru-
sion’ model is proposed to explain the mechanism of TAD hierarchy,
among which the boundary with levels 5+ obsesses significantly high
transcriptional activity38.

In the section of the evaluation, OnTAD performs well in the
majority of aspects, thus we use it to conduct deep analysis on ICE-
normalized data of GM12878 (10Kb). We found that the enrichment of
H3K4me1 and H3K4me3 (related to the active promoter) increased as
the TAD and boundary levels went up (the yellow box), while that of
H3K27me3 (associated with the repressed promoter) was the opposite
(Fig. 7a, Supplementary Fig. 9a). This is consistent with previous
findings of TAD hierarchy38. In addition, we predict the hierarchical
TAD structure of GM12878 and K562 cell lines, and compare the gene
expression along with epigenetic features (Fig. 7b, Supplementary
Fig. 9b). It is obvious that in the 86–88Mb region of chromosome 7,
the TAD hierarchy is rich in GM12878, while barren in K562, which
coincides with the epigenetic landscape and expression abundance. It
also confirmed the previous finding that hierarchical TADs are more
active than single TAD or TAD gaps38. Moreover, both cell lines have
the TAD encompassing the cyclin D binding myb-like transcription
factor 1 gene (DMTF1) (86.79–86.87Mb, the yellow shading). What the
two cell lines have in common is that the TAD border is level 3 at
87.86Mb (the pink shading). But the TAD border in GM12878 shows
the interaction with the DMTF1 TAD, while failing to link with the
DMTF1 TAD in K562.Moreover, theDMTF1 TAD is encompassed by the
larger TAD (86.88–87.85Mb) in GM12878 with more plentiful hier-
archy, but that of K562 is distinct. These two points may result in the
contrast expression of DMTF1. Thus, higher-level boundaries of the
DMTF1 TAD will affect the expression of DMTF1.

Based on this, we propose an air conditioner model for the
mechanism of TAD hierarchy (Fig. 7c, Supplementary Fig. 9c): The air
conditioners represent enhancers. Then various levels of TADs and
TAD boundaries are represented by shadows and curves of different
colors. As shown in Fig. 7c, the high-level TAD boundary mediates the
formation of three TADs. As a result, high-level TADboundary has high
interaction frequency with other TAD boundaries. Since active mod-
ifications and gene transcription were enriched at the TAD boundary,
we inferred that there were active enhancers and transcriptional-
activated genes on the TAD boundaries. A high-level TAD boundary
can gather a number of enhancers by interacting with other TAD
boundaries. Enhancers play the role in activating transcription by near-
space interaction, so there is an analogy between enhancer and air
conditioner. Themore concentrated the distribution of enhancers, the
stronger the activation of genes. In different cells types, states or
conditions, TAD hierarchy might change. The reduction of TAD
boundary level leads to reduction of enhancer concentration (Sup-
plementary Fig 9c). And the reduction of enhancer concentration
limits the activation of gene expression. This is consistent with our
model that the concentration of air conditioner affects the ability of
controlling the temperature of the aggregation area.

Hence, in GM12878, the air conditioner concentrated in the high-
level TAD boundary, indicatingDMTF1 TAD boundary has highly active
modification (Fig. 7b, Supplementary Fig. 9b, yellow shadowing). Thus,
the expression of DMTF1 is high with the help of highly concentrated
air conditioners. While in K562, the reduction of the DMTF1 TAD
boundary level may lead to lower concentration of enhancers, which
limits DMTF1 gene expression. Same result can be also seen for ADAM
metallopeptidase domain 22 gene (ADAM22) (the pink shading).
DMTF1 protein helps to suppress cell growth or induce apoptosis, and

ADAM22 encodes protein without metalloprotease activity. Lower
expression of these genes in K562maybe propitious to tumorigenesis.
To further exploration, we analyzed the TAD hierarchy in colorectal
carcinoma (BRD3187) and paracancerous tissue (BRD3187N), together
with gene expression (Supplementary Fig. 10a). Interestingly, the
boundary of TAD containing the acylglycerol kinase (AGK) gene in
colon cancer tissues was more spatially folded, resulting in an
increased density of active regulatory elements in the surrounding
region. Transcription level of AGK was also elevated. While in para-
cancerous tissues, the reduction of AGK TAD boundary level made the
transcriptional active elements sparser in the adjacent space, con-
tributing to lower AGK expression. The AGK gene encodes a mito-
chondrialmembraneprotein involved in lipid/glycerolipidmetabolism
and oncogenic MAPK signaling, and its higher expression in colorectal
cancer tissues also promotes cancer development. Generally, TAD
hierarchy shows more complexity in genome regions with higher
transcriptional activity.

The air conditioner phenomenon can also be observed in TAD
hierarchy between K562 and IMR90 in previous study52. The spatial
folding degree of chromatin in region anchored by CTCF caused the
difference in density of transcription active elements, resulting in
different transcription levels of genes at the same location between
different cell types, states, or developmental stages. The degree of
folding resulted in the spatial proximity of genomic fragments, and
this spatial proximity does not have the same high insulation fraction
as the CTCF anchor, allowing greater flexibility in the arrangement of
subTADs within a large TAD. This is consistent with the inter-cellular
heterogeneity of subTADs. In sum, the high-level TAD boundary indi-
cates the convergence of numerous powerful regulatory factors like
super-enhancers and is functionally similar to ‘hub-boundaries’38.
Together, the air conditioner model will provide a broader and more
flexible perspective to explore genes, transcription factors, enhancers,
histone modifications, and their interaction.

Discussion
Genome regulation is promising to be more precise at subTAD level,
and TAD hierarchy plays a critical role in ontogeny and diseases. We
make systematic definition and grades of TAD hierarchy. With five
main types of tools accessible, we compare TAD hierarchy from 13
hierarchical TAD callers with a metric Hier_SSIM, from the perspective
of biological correlation, robustness under raw/ICE-normalized data,
multiple resolutions, and various sequencing depths. We find TADs
and boundaries of all levels variablemostly by resolution andmethod.
Integrating the above factors, a comprehensive evaluation and
operational user manual are present for TAD hierarchy callers. To a
large extent, our work deepens understanding of TAD hierarchy and
recommends tools for the best match, ensuring stability of results and
perfect performance. Thus, hierarchical approaches are promising to
promote more biological applications in biomedicine.

Existence of TAD hierarchy in individual cells may reveal instan-
taneous scenes of gene activity making up the complete process in
certain cell type or state and partly explain the disagreement in the
previous comparison of 22 TAD callers24. Thus, the focus is on the
alteration of hierarchical TAD layers, replacing the single difference in
TAD size or number. Besides, TAD hierarchy is confirmed to change
greatly between normal colon and colorectal cancer39, which could be
a breakthrough of involved researches in medical fields. In this way,
TAD hierarchy is hopeful to be a disease diagnostic index, especially in
cancer screening. As core subunit of cohesin, RAD21 up-regulation
facilitates cohesin to load on chromatin, resulting in constant TAD
length and increased space volume78. Yujie Sun group attributed it to
full ring extrusion within TAD. While in sight of this work, over-
expression of RAD21 could increase the complexity of TAD hierarchy.
That provides the technical possibility to study key factors of TAD
hierarchy and manipulate its structural alteration. Meanwhile,
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Fig. 7 | Further analysis of TAD hierarchy with OnTAD. a Enrichment of histone
modifications within TADs and around boundaries of all levels. Level 1 (dark blue),
level 2 (blue), level 3 (green) and level 4 plus (orange) are overlaid. The yellow
shaded area indicates where the TAD boundary is located. b Representative
example of TAD hierarchy and multi-omics landscape in GM12878 cell (left panel)

and K562 cell (right panel). The upper green images show Hi-C heatmaps in both
sides, and the middle blue images show the distribution of TAD hierarchy. Areas
with yellow and pink shading are selected to depict inter-cellular variation.
c Schematic representation of the air conditioner model for TAD hierarchy. TAD
boundaries are marked according to the level.
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increasingly more evidence have discovered that transcription factors
and co-factors form phase-separated droplets at super-enhancers and
exhibit powerful impact on gene control79. And phase separation of
architecture protein Oct4 regulates TAD reorganization80. As compo-
nent of TAD hierarchy, subTAD shows close connection with com-
partments and phase separation27,37,81, partly contributing to the cell-
to-cell variation. Similar with liquid-like condensates, high-level
boundaries exhibit aggregation of functional elements and several
genome zones. Thus, TAD hierarchy may hold the post of potential
indicator of phase-separated condensates on Hi-C heatmaps.

On this account, future works of TAD hierarchy could focus on
these aspects: (1) distribution preference of gene or regulatory ele-
ments in TAD hierarchy; (2) key molecules and their function on for-
mation, maintenance, and reconfiguration of TAD hierarchy; (3)
alteration of TAD hierarchy during embryonic development, phylo-
geny, viral infection, disease, tumorigenesis, and treatment; (4)
reconfiguration of TADhierarchy throughDNAdamage, repairing, and
cell apoptosis; (5) relationship between TAD hierarchy and phase
separation; (6) analysis of TAD hierarchy in single-cell data; (7) algo-
rithm improvement combined with artificial intelligence and inte-
grated analysis with multi-omics data.

Three-dimensional genome has achieved enormous progress
these decades82,83, of which the main approaches of capturing real
chromatin structures are based on next-generation sequencing and
micro-fluorescence imaging84,85. However, limiting to technical issues
such as data type86,87, sequencing depth, and resolution88,89, there are
still unknown regions to explore for the fine structure of 3D-genome
and hierarchical TAD. The biggest dilemma in TAD hierarchy is that
most studies and methods are based on bulk Hi-C data and next-
generation sequencing85, so there are still plenty of unresolved chro-
matin segments in genome 3D structures such as centromeres and
telomeres, leading to the absence of solid standards of evaluation.
Meanwhile, structural variations, such as insertion, deletion, copy
number variations, translocation, can cause abnormal Hi-C heatmap
and inaccurate TAD hierarchy recognition. Moreover, relevant
researches in biology and medicine are numbered, further limiting
exploration in TAD hierarchy. Hence, algorithm teams and experi-
mental groups could utilize respective superiority and academic
strengths. There is an urgency for more TAD hierarchy callers by
improvement of algorithms, especially artificial intelligence (AI)
including traditional machine learning and deep learning with artificial
neural networks. AI is superior at learning patterns in massive
amounts of published data to discover unknown information and
improve the accuracy of predictions, rather than developing an algo-
rithm to solve one problem. On the one hand, multiple machine
learning methods have been well applied to studying DNA, RNA, pro-
teins, and their interactions in the field of biology90. On the other hand,
they are developed to effectively identify digenic traits and genotypes
of specific diseases in genomics91. Another dominance is to make up
for weaknesses of data, such as low sequencing depth, low resolution,
data type, and background noise. For example, deep learning with
interpretability trains a relatively superior model through learning
complex relationships among various data types and could discover
unknown information in the 3D-genome by enhanced resolution and
structure recognition88,89, which could supplement the blank of
structure detection from next-generation sequencing or microscopic
imaging. Particularly, that’s beneficial to explore TAD hierarchical
structure in single-cell data. Combination of AI and more excellent
single-cell omics derivative techniques is supposed to resolve this
problem and reveal relationship between chromatin spatial structure
and transcriptional regulation in single cells, especially single-cell Hi-C
(scHi-C)92,93. Besides, many machine learning models have been
applied to detect spatial structures at different scales of genome94,95,
with promising usage in predicting TAD hierarchy. Furthermore,
researchers of bioinformatics and genomics could make efforts to

combine genome spatial architectures with better-fitting mathema-
tical-physicalmodels for higher sensitivity in interaction identification.

As for experiment groups, they could search for improvement in
sequencing techniques, types of digestive enzymes, and experimental
conditions for optimized preservation of chromatin structures.
Therefore, technologies suchas third-generation sequencing hasmore
application prospects and will reveal more sufficient structural-
regulatory characteristics of currently unresolved chromatin seg-
ments under the integration of the aforementioned AI technologies
and multi-omics. Prospectively, more communication and coopera-
tion between labs of multidisciplinary and deeper understanding of
TADswill arouse interests of biomedical teams, and expand researches
on TAD hierarchy in broader aspects of life activities including disease
occurrence, development, and drug resistance.

Methods
Benchmark metrics
Similarities among callers, resolutions, sequencing depths, and
matrices normalization are weighted by two metrics: Hier_SSIM and
Overlap ratio.
1. To compare the similarity of TAD level recognition results, we

defined the Hier_SSIM. Firstly, the results of the TAD callers were
mapped to the matrix as large as Hi-C heatmap. The value in each
pixel represents the TAD level of the pixel multiply by twenty. We
used a sliding window with a size of 8Mb to slide along the
diagonal to intercept the TAD level map. Structural similarity
(SSIM)96 was used to evaluate the similarity of each map by
skiamge Python package, and the average result was defined as
Hier_SSIM.

2. Overlap ratio is calculated by SuperTAD version 1.240, by assessing
the intersection of two TAD coding trees. Before that, we trans-
form all hierarchical TAD results into form of SuperTAD
outputs file.

As for similarity among resolutions for one method, we calculate
mean of values.

Preprocessing of datasets
Within this study, themajority of in situ Hi-C contacts are downloaded,
filtered by MAPQ ≥ 30, and extracted for intra-chromosomal contact
(contacts within the same chromosome) matrices on chromosome 7.
As for S2 cell line, we downloaded the paired SRA files from the
Sequence Read Archive (SRA) under the accession number
SRR9019613 by SRAToolkit (http://www.ncbi.nlm.nih.gov/Traces/sra/,
v3.0.10) with the prefetch tool (https://github.com/ncbi/sra-tools/
tree/master/tools/prefetch), and converted SRA files to fastq files by
the fastq-dump tool (https://github.com/ncbi/sra-tools/tree/master/
tools/fastq-dump) on double-ended sequencing data. Then we used
Hi-C-Pro97 (v2.11.4) to obtain Hi-C contact matrix.

Hi-C contact matrix normalization was performed using the
iterative correction and eigenvector decompositionmethod (ICE)56 for
inputs ofmost TAD hierarchy callers. Knight-Ruiz normalization (KR)98

is conducted for inputs of Arrowhead and HiTAD. For each sample, we
retained a copy of raw data. All samples were generated at five various
resolutions: 5 Kb, 10Kb, 25 Kb, 50Kb, and 100Kb, for the comparison
of all TAD hierarchy callers. The resolution is equal to single bin sizes.
When making multi-omics track graphs, we fix the bin size at 10 Kb,
and make the sequencing depth of GM12878 the same as that of K562.

ThebigWig format ofChIP-seqdata andRNA-seqdata ofGM12878
and K562 were downloaded from the Encyclopedia of DNA Elements
Encyclopedia of DNA Elements (ENCODE) project99 (https://www.
encodeproject.org/). We then calculate scores per genome regions
with the computeMatrix command of deepTools100 (parameter: scale-
regions, regionBodyLength: 30000, skipZeros). The computed files of
calculating were further used to generate profile with the plotProfile
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command of deepTools. RNA-seq data of colorectal and para-
cancerous tissues are from J. Aryee and E. Bernstein (GEO accession
number GSE133928101). We downloaded the TPM count files of
BRD3187 and BRD3187N, made it to the expression matrix, and con-
ducted vst normalization by DESeq2102. Then we matched it with the
reference genome to fetch the gene coordinate and got the bedgraph
for each sample. We finally obtained the bigWig file, by merging the
overlap region with bedTools, counting the sum of expression of the
gene involved as that of the overlap regions, and inputting bedgraph
file to bedGraphToBigwig103. Specific accession numbers of these
datasets are recorded in Supplementary Data 2.

The inputs of all callers were generated as separate requirements.
The sparse file was a three-column files, containing the two bins that
have interaction and contacts, similar to Rao format with coordinate
replacing bin number in 1st and 2nd column. The dense file and the hic
format were generated from the sparse file by ‘sparseToDense’ and
‘hicpro2juicebox’ of Hi-C-Pro. The cool files for comparison of
sequencing depthsweregenerated by cooler104 from the sparsefile. KR
cool files as inputs of HiTAD were downloaded from published Hi-C
datasets (ftp://cooler.csail.mit.edu/coolers). The coolfiles ofGM12878,
GM12878 replicate, CH12-LX, S2, and GM12878 single-cell Hi-C data
were translated from the hic files (*.hic) by HiCExplorer105. And the
catch file (*.dat) is just for CaTCH with 4 columns, equaling to adding
number of chromosomes before the 1st column of the sparse file.

The single-cell Hi-C data of GM12878 and IMR90 obtain from Kim
et al.106. were preprocessed according to the protocol described in
Ramani et al.107. Briefly, raw fastq, inner barcode, and outer barcode
were first download from the 4D Nucleome (4DN) project with
accession number 4DNESUE2NSGS and 4DNES4D5MWEZ. Then, the
adapter of raw fastq files was trimmed using SeqPrep (v1.2) software
with parameter: -A AGATCGGAAGAGCGATCGG -B AGATCGGAA-
GAGCGTCGTG. Next, clean reads were aligned to hg19-mm10 combo-
reference using bowtie2108 (v2.3.5.1). Output bam files were sorted
using samtools109 (v1.7) and converted to bed format using bedtools110

(v2.26.0). To filtered low-quality data, all cellular indices with fewer
than 1000 unique reads were removed and we filtered out all indices
where the cis:trans chromosome interaction ratio was lower than 1. At
last, bin_schic.py script was used to generate single-cell Hi-C contact
matrix at 10 kb, 25 kb, 50 kb, and 100 kb resolutions.

To mix data, the raw contact map of Hi-C of different cell lines
were downsampled to the same contact number according to the
original contact distribution. We further downsampled the contact
map as required and added the number of interactions at the same
location on the contactmap for differentmixing ratios, including 100%
GM12878, 100% K562, together with 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8
and 1:9 for GM12878 to K562. As for the ratio of GM12878, K562, and
IMR90, the percentage setting is 1:1:1, apart frompure samples. Finally,
we performed ICE correction on allmixed rawdata for further analysis.

Analysis for benchmarking
Hierarchical level analysis. All original outputs from various callers
are uniformly transformed into three-column files, containing start
bin/coordinate, end bin/coordinate, and TAD level. Then we calculate
the max number of each TAD boundary in start and end column as its
boundary level. Next, wefilter TAD segments ofwhich length is shorter
than 30Kb and larger than 2Mb and compute the distribution of TAD
andboundaries at all levels. Length comparison and genomic coverage
are generated from files without filtration.

Genomic coverage analysis. Firstly, the complement segments of
each hierarchical TAD output is obtained by BEDOPS111. Then, we cal-
culate the sum length of these segments, and the ratio of it to the
whole size of chromosome 7 from seven cell types (GM12878, HMEC,
HUVEC, IMR90, K562, KBM7, andNHEK). And the final result is 1 minus
their average. Specific results are recorded in Supplementary Data 1.

Visualization. TheHi-C heatmap, TADhierarchy diagram, andmultiple
epigenomic tracks are pictured by HiCExplorer105.

Statistics & reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Construction of a summary table
We constructed a summary table to show the performances of all
callers (Fig. 5), including biological correlation, robustness, and
usability. Biological correlation and robustness correctly show the
main evaluation work as described above. As for usability, we concern
difficulty of installation, complexity of input and output files, fluency
of running code, computational memory and resource consumed,
whether with built-in visualization, and whether with resolution self-
identified. The degree of performance was presented by normal, good
and excellent, shown in the image as grey dot, colorful dot, and col-
orful square. Since usability varies largely amongmethods, it covers all
degrees, while there only includes two assessments in biological cor-
relation and robustness.

Implementation of methods
Arrowhead7: we used the code of Arrowhead v1.0.0 based on Jui-
cer_tools v2.09.00112 from https://github.com/aidenlab/juicer/wiki/
Arrowhead. We set m to 2000, which are the default parameter set-
tings, and resolution parameter were set by data resolution.

Armatus23: we used the code of Armatus v2.3 from http://www.cs.
cmu.edu/~ckingsf/software/armatus/. We set γ max to 1 and s to 0.05,
and resolution parameter were set by data resolution.

CaTCH42: we used the code of CaTCH v1.0 from https://github.
com/zhanyinx/CaTCH_R. We set RI of subTAD to 55%, and that of
TAD to 69%.

HiTAD25: we used the code of HiTAD v0.4.2 from https://pypi.
python.org/pypi/TADLib. We set maxsize to 2000000, and resolution
parameter were set by data resolution.

matryoshka43: we used the code of matryoshka v1.0 from https://
github.com/COMBINE-lab/matryoshka.We set γmax to 1 and s to 0.05,
and resolution parameter were set by data resolution.

OnTAD38: we used the code of OnTAD v1.2 from https://github.
com/anlin00007/OnTAD.git. We set penalty to 0.1 as default, maxsz
and minsz according to resolution (size range of TAD segment is
30Kb~2Mb).

Multi-CD37: we used the code of Multi-CD v0.1.0 from https://
github.com/multi-cd/multi-cd-matlab.

IC-Finder46: we used the code of IC-Finder from http://membres-
timc.imag.fr/Daniel.Jost/DJ-TIMC/Software.html.

TADpole47: we used the code of TADpole v0.0.09000 from
https://github.com/3DGenomes/TADpole. We set resolution para-
meter were set by data resolution.

BHi-Cect44: we used the code of BHi-Cect v1.0.0 from https://
github.com/princeps091-binf/BHi-Cect.

SpectralTAD45: we used the code of SpectralTAD v1.2.0 from
https://bioconductor.org/packages/SpectralTAD/. We set qual_filter to
FALSE as default, and levels to maximum effective value of each
sample.

HBM49: we used the code of HBM v1.0.0 from https://github.com/
yolish/hbm/.

spectral50: we used the code of spectral v1.0.0 from https://drive.
google.com/file/d/1lfbtDyuVibwJkD-0n_Xy8fpjRmj25JrO/view?usp=
sharing.

3DNetMod48: we used the code of 3DNetMod v1.0 from https://
bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17. The code
were set as author commended.
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GRiNCH41: we used the code of GRiNCH v1.0.0 from https://roy-
lab.github.io/grinch/. We set expected_size_of_cluster to 500000,
1000000, and 2000000 respectively for subTAD, TAD, andmetaTAD,
which were commended by the author.

deDoc51: we used the code of deDoc v1.0.0 based on Java v1.8.0_92
from https://github.com/yinxc/structural-information-minimisation.
No parameter was required to set.

SuperTAD40: we used the code of SuperTAD v1.2 from https://
github.com/deepomicslab/SuperTAD. We chose deepbinary mode,
and no parameter was required to set.

TADtree53: we used the code of TADtree v1.0.0 from http://
compbio.cs.brown.edu/projects/tadtree/. We set p = 3, q = 12, and
gamma = 500 as default. S andMwere set according to data resolution
(size range of TAD segment is 30 Kb~2Mb).

GMAP26: we used the code of GMAP v1.4 from http://
tanlab4generegulation.org/rGMAP_1.1.tar.gz. We set the following
parameters: resl = 10 * 103, logt = T, dom_order = 2, min_d = 25,
min_dp = 5, hthr = 0.9, bthr = Bg_d, t1thr = 0.75, fcthr = 0.9. While resl,
Max_d, Max_dp, and Bg_d were set according to data resolution.

PSYCHIC54: we used the code of PSYCHIC v1.0.0 from https://
github.com/dhkron/PSYCHIC.

HiCKey52: we used the code of HiCKey v1.0 from https://github.
com/YingruWuGit/HiCKey. We use default parameters.

Computational resource
A total of 4 workstations and 5 server nodes are used for data
processing.

Workstation 1: The workstation used to test all methods had an
Intel(R) Xeon(R) CPU W-2175 @ 2.50GHz (19,712 KB cache size; 28
cores in total) and 256GB of memory. The GPUs were one Nvidia
Quadro RTX5000 16G. The operating system used was Ubuntu
20.04.2 LTS.

Workstation 2: The workstation used to test all methods had an
Intel(R) Xeon(R) CPUW-2225@ 4.10GHz (8448KB cache size; 8 cores
in total) and 256GB of memory. The GPUs were one Radeon RX550/
550X. The operating system used was Ubuntu 18.04.6 LTS.

Workstation 3: The workstation used to test all methods had an
Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz (28,160KB cache size;
40 cores in total) and 256 GB of memory. The GPUs were one NVIDIA
RTX A6000 48GB. The operating system used was Ubuntu
18.04.6 LTS.

Workstation 4: The workstation used to test all methods had an
Intel(R) Xeon(R) Gold 6258 R CPU @ 2.70GHz (39,424 KB cache size;
112 cores in total) and 256GBofmemory. TheGPUswereone Llvmpipe
2684. The operating system used was Ubuntu 18.04.6 LTS.

Server nodes 1: The server node used to test all methods had an
Intel(R) Xeon(R) Gold 5320 CPUW-2175 @ 2.20GHz (39,936 KB cache
size; 52 cores in total) and 256 GB of memory. The GPUs were one
Nvidia Tesla A100 40GB. The operating system used was Red
Het 4.8.5–44.

Server nodes 2, 3, 4, and 5 have the samespecifications: The server
node used to test all methods had an Intel(R) Xeon(R) Gold 5320 CPU
W-2175@2.20GHz (39,936KB cache size; 52 cores in total) and 256GB
of memory. The GPUs were two Nvidia Tesla A100 40GB. The oper-
ating system used was Red Het 4.8.5–44.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. A summary
of the data used in this study is shown in Supplementary Data 2. In situ
Hi-C data of GM12878, GM12878 replicate sample, HMEC, HUVEC,

IMR90, K562, KBM7, NHEK, and CH12-LX cell lines are available in the
GEOdatabaseunder accession codeGSE63525. Coolfiles of 5 cell types
(HMEC, HUVEC, IMR90, K562, and KBM7) were downloaded from the
Cooler [ftp://cooler.csail.mit.edu/coolers] before, but may be reques-
ted by email to the authors now. In situ Hi-C data of drosophila S2 cell
line are available in the SRA database under accession code
SRR9019613. ChIP-seq data and RNA-seq data of GM12878 and K562
are available in the ENCODE project99 (https://www.encodeproject.
org). CTCF ChIP-seq data of GM12878, K562, CH12-LX, and S2 cell are
available in the ENCODE project under accession number
ENCSR000DZN, ENCSR000DWE, ENCSR000ERM, and ENCSR711UTK.
For GM12878 cell line, ChIP-seq data (H3K4me3, H3K27ac, POLR2A,
H3K9ac, H3K27me3, H3K9me3, and H3K4me1) are available in the
ENCODE project under accession number ENCSR057BWO,
ENCSR000AKC, ENCSR000EAD, ENCSR000AKH, ENCSR000AKD,
ENCSR000AOX, and ENCSR000AKF, respectively. RNA-seq data and
Dnase-seq data are available in the ENCODE project under accession
number ENCSR843RJV, and ENCSR000EMT, respectively. For K562
cell line, ChIP-seq data (H3K27ac, POLR2A, H3K27me3, and H3K4me1)
are available in the ENCODE project under accession number
ENCSR000AKP, ENCSR031TFS, ENCSR000EWB, and ENCSR000EWC,
respectively. RNA-seq data and Dnase-seq data are available in the
ENCODE project under accession number ENCSR594NJP, and
ENCSR000EKS, respectively. For paired colorectal and paracancerous
tissues, Hi-C data and RNA-seq data of are available in the GEOdatabse
under accession codeGSE133928, fromwhichwedownloaded theTPM
count files of BRD3187 and BRD3187N. The single-cell Hi-C data of
GM12878 and IMR90 are available in the 4DN project113 (https://www.
4dnucleome.org/) under accession code 4DNESUE2NSGS and
4DNES4D5MWEZ. Source data are provided with this paper.

Code availability
The analysis code is available both on GitHub and Zenodo under the
following link [https://github.com/XiangXuCode/TAD_hierarchy_
benchmark] and [https://doi.org/10.5281/zenodo.10982207]114.
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