Table 1 Computational methods for prediction of TAD hierarchy

From: A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains

Approach

Caller

Input format

Main language

Parameter

Liner Score

Arrowhead

hic format

Shell, Awk, Java

1

Armatus

dense matrix, sparse matrix, Rao format*

C++, Python

1

CaTCH

catch format**

C, R, Shell

0

HiTAD

cool format***

Python

1

matryoshka

dense matrix, sparse matrix, Rao format

C++, Shell

1

OnTAD

dense matrix, hic format

C++

2

Multi-CD

dense matrix

Matlab

NA

Clustering

IC-Finder

dense matrix, sparse matrix

Matlab

NA

TADpole

dense matrix

R

6

BHi-Cect

Rao format

R

0

SpectralTAD

dense matrix, sparse matrix, hic format, cool format, Rao format

R

3

Network features

HBM

dense matrix

R

5

spectral

mat format****

Matlab

NA

3DNetMod

sparse matrix

Python

18

GRiNCH

sparse matrix

C, Python

3

Structural Entropy

deDoc

sparse matrix

Java

0

SuperTAD

dense matrix, sparse matrix

C++

0

Statistical Model

TADtree

dense matrix

Python

6

GMAP

dense matrix, sparse matrix

R

4

PSYCHIC

dense matrix

Matlab, C

NA

HiCKey

dense matrix, sparse matrix, Rao format

C++

6

  1. A matrix is a two-dimensional data object made of m rows and n columns, therefore having total m x n values. If most of the elements of the matrix have 0 value, then it is called a sparse matrix. In Hi-C data, the sparse matrix represents the chromatin contact map, the numerical values in row i and column j represent the frequency of DNA interaction between i bin and j bin in chromosomes. The sparse matrix is one of the common inputs for TAD hierarchical structure recognition algorithms.
  2. *Rao format is another sparse matrix, of which the start and end sites are represented by genomic coordinate.
  3. **catch format, ***cool format, and ****mat format mean files separately produced by CaTCH, cooler, and Matlab.
  4. Bold text is the actual input type for this article.