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Pressure stabilizes ferrous iron in
bridgmanite under hydrous deep lower
mantle conditions

Li Zhang 1 , Yongjin Chen1, Ziqiang Yang 1, Lu Liu 1, Yanping Yang1,
Philip Dalladay-Simpson 1, Junyue Wang1 & Ho-kwang Mao 2

Earth’s lower mantle is a potential water reservoir. The physical and chemical
properties of the region are in part controlled by the Fe3+/ΣFe ratio and total
iron content in bridgmanite. However, the water effect on the chemistry of
bridgmanite remains unclear. We carry out laser-heated diamond anvil cell
experiments under hydrous conditions and observe dominant Fe2+ in bridg-
manite (Mg, Fe)SiO3 above 105GPa under the normal geotherm conditions
corresponding to depth > 2300 km, whereas Fe3+-rich bridgmanite is obtained
at lower pressures. We further observe FeO in coexistence with hydrous NiAs-
type SiO2 under similar conditions, indicating that the stability of ferrous iron
is a combined result of H2O effect and high pressure. The stability of ferrous
iron in bridgmanite under hydrous conditions would provide an explanation
for the nature of the low-shear-velocity anomalies in the deep lower mantle.
In addition, entrainment from a hydrous dense layer may influence mantle
plume dynamics and contribute to variations in the redox conditions of the
mantle.

There is a general consensus that the lower mantle is dominated by
bridgmanite on the basis of high-pressureexperimental data of density
and sound velocities of the candidate minerals1–3. The models of the
lower mantle are largely dependent on the chemical composition of
bridgmanite throughout the entire lowermantle down to the top of D″
layer4. How the chemistry of bridgmanite especially the Fe3+/ ∑Fe ratio
and total iron content change with bulk composition under the lower
mantle conditions remains controversial. Under pressure-temperature
conditions of the topmost lowermantle, up to 16% Fe3+ was obtained in
bridgmanite (Mg, Fe)SiO3 synthesized from Fe2+-dominant material5,6,
whereas higher concentrations of Fe3+ were observed in aluminous
bridgmanite showing a nearly linear dependence of Fe3+/ ∑Fe with Al3+

content6,7. Furthermore, Fe metal was observed in coexistence with
Fe3+ as a result of the disproportionation of ferrous iron in
bridgmanite8.

Under pressure-temperature conditions of the deep lowermantle
(>80GPa), existing data of the Fe3+/∑Fe ratio in Al3+-bearing

bridgmanite remain scattered ranging from 20 to 60% (Fig. S1) in part
due to the differences in their starting materials9–12. The effects of
pressure andAl3+ content on the Fe3+/∑Fe ratioof bridgmanite have not
been fully clarifiedbecauseof its complicating factors such aschemical
composition, spin state of iron10, difficult-to-achieve equilibriumof site
distribution of iron13, and possible iron oxidation induced by
amorphization7,14. The ab initio calculations, however, suggested that
the disproportionation reaction from ferrous iron to Fe3+ plus iron
metal is energetically favorable, in both Al-free and Al-rich composi-
tions, at all lower mantle pressures15. Properties sensitive to the Fe3+/
∑Fe ratio of bridgmanite include element partitioning between lower
mantle minerals10,16, spin state of iron17–19, and density and sound
velocity profiles3,20 under the lower mantle conditions. To clarify the
effect of Al3+ content on the Fe3+/∑Fe in bridgmanite, we should further
take into account the H2O effect as the presence of a hydrous phase
could drastically reduce the Al3+ content in bridgmanite with Al3+ pre-
ferentially partitioning into the coexisting hydrous phase relative to
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bridgmanite21–25. To the best of our knowledge, the H2O effect on the
chemistry of bridgmanite has never been reported. The effects of Al3+

and H2O on the chemistry of bridgmanite under high-pressure-
temperature conditions must be addressed in order to obtain an
accurate model of the lower mantle and understand the origin of
chemical heterogeneity in the deep lower mantle.

To understand the key factors controlling the iron oxidation state
of bridgmanite,wedesignedexperiments to separate the effects of Al3+

and H2O. First, we will determine the Fe3+/∑Fe ratio of Al3+-free bridg-
manite as a function of pressure under hydrous conditions. Ortho-
pyroxene (opx) (Mg0.85Fe0.15)SiO3 (Fs15) was sandwiched between
hydrous silica gel as the starting material. Second, experiments on dry
bridgmanite will be carried out for comparison. The previous study
reported iron depletion in dry bridgmanite as a result of the dis-
proportionation reaction26. Third, in order to evaluate the Al3+ effect,
we conducted one experiment on Al3+-bearing bridgmanite in a
hydrated basaltic composition to compare with the results of Al3+-free
bridgmanite under similar pressure-temperature conditions. Our
experiments were performed in laser-heated diamond anvil cells over

the pressure and temperature range of 91-125 GPa and 1800-2400 K,
close to mantle geotherm conditions27.

Results and discussions
Experimental conditions
Experimental results and conditions are listed in Table 1. The phase
assemblages and Fe3+/∑Fe ratio of bridgmanite were obtained com-
bining in situ X-ray diffraction (XRD) at high pressure with ex situ
chemical analysis in a transmission electron microscope (TEM) on
the samples recovered to ambient conditions (see “Methods”). A thin
section suitable for TEM analysis was precisely lifted out from the
heated center in each sample. The heated area can be clearly
recognized under microscope in contrast to the surrounding trans-
parent unreacted sample (Fig. 1). The homogeneity of color is an
indication of no obvious variation in iron content across the heated
spot. To further examine the effect of temperature gradient on the
chemical composition, we managed to prepare a thin section across
the temperature gradient of the heated spot along the radial direc-
tion and confirmed the homogeneity of the bulk composition (Fig. S2

Table 1 | Experimental conditions and results

Run# P&T PRT Sample/Medium Phases by XRD SAED Fe3+/ΣFe

332-82 92GPa&1850K 82GPa Fs15/h-silica ⧸ crystalline 0.56(6)

275-81 91 GPa&1950K 81GPa Fs15/h-silica Brd+Nt+hcp-Fe amorphous Fe3+

390-93 105GPa&2250K 93GPa Fs15/h-silica Brd + Nt crystalline 0.30(1)

188-96 108GPa&2250K 96GPa Fs15/h-silica Brd + Nt crystalline 0.14(1)

390-106 119GPa&2400K 106GPa Fs15/h-silica ⧸ crystalline 0.06(3)

344-112 125GPa&2400K 112GPa Fs15/h-silica Brd + Nt amorphous Fe2+

332-9582 107GPa&2200K 95GPa Fs15/h-silica Brd+Nt ⧸ ⧸

decompress 92GPa&1900K 82GPa Brd+Nt amorphous Fe3+

344-99d 112GPa&2350K 99GPa Fs15/SiO2 Brd+H+Nt ⧸ ⧸

344-102d 114GPa&2200K 102GPa Fs15/SiO2 ⧸ crystalline ⧸

334-102d-2 115GPa&2350K 102GPa Fs15/SiO2 ⧸ crystalline ⧸

344-108m 120GPa&2200K 108GPa MAFSH/h-silica ⧸ unstable 0.46-0.75

335-95 107GPa&2300K 95GPa Fe(OH)3/SiO2 FeO+Nt+py / Fe2+

332-99 113GPa&2500K 99GPa FSH/Ne FeO+Nt+Ct / Fe2+

Fs15: orthopyroxene (Mg0.85Fe0.15)SiO3; Brd: bridgmanite (Mg, Fe)SiO3; Nt: NiAs-typeSiO2; H: H-phase; h-silica: hydrous silica gel containing ~2wt.%H2O;MAFSH: a gel samplewith 24.9mol%MgO-
12.8mol%Al2O3-7.5mol%Fe2O3-54.8mol%SiO2 containing∼4wt%H2O; FSH: ahydrous gel samplewithamolar ratioof Fe2O3: SiO2 = 1:4 containing ~2wt.%H2O;Ct: CaCl2-type SiO2; py: pyrite-type
FeOOHx. The XRD measurements were performed on the samples at high pressure after temperature quench (PRT). The numbers in parenthesis are one standard deviation.

20 �m 20 �m

Run#344-112,125 GPa&2400 K Run#275-81, 91 GPa&1950 K

A B

Fig. 1 | Representative microscopic images of the samples recovered to ambient conditions. The heated area of the samples recovered from (A) 125GPa and 2400K
(Run#344-112) versus (B) 91GPa and 1950 K (Run#275-81).
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Fig. 2 | TEM images and electron diffraction of the recovered crystalline
bridgmanite. A, B Run#390-93, showing a nearly pure bridgmanite phase with
grain boundaries recovered from 105GPa and 2250K; (C) and (D) Run#188-96,
recovered from 108GPa and 2250K; (E) and (F) Run#332-82, coexistence of

bridgmanite and Fe metal recovered from 92GPa and 1850 K. The SAED data
confirmed crystallinity of bridgmanite in all the runs. The black dots in (A)
are marks for damages induced by electron irradiation during the EELS
measurement.
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and Fig. S3). Element mapping and phase chemistry was obtained by
energy dispersive spectroscopy (EDS). The bulk composition of the
5 × 5 μm2 area in the heated center was obtained with XFe = 0.15,
where XFe is the iron content in atoms per two-cation formula unit,
identical to the starting composition Fs15 (Fig. S3 and Table S1).
Further, we carried out electron energy-loss spectroscopy (EELS)
measurements at the Fe L2,3-edges to distinguish between Fe2+ and
Fe3+. Previous studies have demonstrated that EELS is an ideal tool for
quantitative determination of Fe3+/∑Fe ratio at the nanometer
scale7,14. Specifically, to avoid possible iron oxidation induced by
amorphization7, we carefully examined crystallinity of bridgmanite
before and after each EELS measurement using selected area elec-
tron diffraction (SAED) in a TEM. In this study, only those data from
crystalline bridgmanite are used to examine the pressure effect on
the Fe3+/∑Fe ratio of bridgmanite.

Pressure effect on the iron oxidation state of Al3+-free bridg-
manite under hydrous conditions
A thin layer of Fs15 opx was sandwiched between symmetric layers of
hydrous silica gel containing ~2 wt.% H2O. In the first run, the Fs15
sample was cold compressed to 93GPa and then heated at 2250K for
15mins, corresponding to 105GPa after accounting for the thermal
pressure (Run#390-93, Table 1). The heating durationwas 15mins after
the target temperature was reached in all the runs unless otherwise
specified. The two-dimensional XRD scan on the sample after tem-
perature quench showed the coexistence of bridgmanite and NiAs-
type silica phases (Fig. S4). The sample was then recovered to ambient
conditions and prepared for TEM analysis. The EDS mapping of the
TEM section showed a homogeneous bridgmanite phase except for a
few very small grains of ironmetal (Fig. 2A). The chemical composition
of bridgmanite was obtained based on multiple EDS analyses
with XFe = 0.14 very close to the starting material Fs15 (Table S1),
consistent with the observation of a nearly pure bridgmanite phase
(Fig. 2A). The SAED data confirmed its crystallinity (Fig. 2B) and the
EELS data (Fig. 3) revealed an Fe3+/∑Fe ratio of 0.30(1) by a linear
combination of Fe L3 reference spectra of the ferrous and ferric iron
standards (Fig. S5).

To evaluate the pressure effect on the Fe3+/∑Fe ratio under
hydrous conditions, we synthesized another two separate samples at
108GPa and 2250K (Run#188-96) and 119 GPa and 2400K (Run#390-
106), respectively (Table 1). The EELS data revealed the Fe3+/∑Fe ratios
of 0.14(1) and0.06(3) for these two runs (Fig. 3), respectively, while the
bridgmanite phase in both runs remained crystalline after the recovery
(Fig. 2C–F). In the pressure range where bridgmanite is dominant in
ferrous iron, we didnot observe a temperature dependence of the iron
content and Fe3+/∑Fe ratio. In conclusion, the EELS data confirmed the
stability of ferrous-iron-dominant bridgmanite above 105GPa and
2250K under hydrous conditions (Fig. 4).

In an experiment conducted at 91 GPa and 1950 K, the spotty
diffraction pattern indicated the formation of a well-crystallized
bridgmanite phase at high pressure (Fig. S2), but the TEM analysis
on the recovered sample revealed an amorphous bridgmanite phase
(Run#275-81, Fig. S6), implying that the sample lost its crystallinity
during the recovery. The element mapping showed the coexistence of
Fe-bearing bridgmanite, metallic particles and a silica phase (other
than the pressuremedium), consistent with in situ XRD observation at
high pressure (Fig. S6). The EELSmeasurements revealed all Fe3+ in the
amorphous bridgmanite phase.

In order to recover a crystalline bridgmanite phase at this pres-
sure, we synthesized another two samples at slightly lower tempera-
tures. First, a reverse experiment was conducted (Run#332-9582). An
Fe2+-dominant bridgmanite phase was synthesized at 107GPa and
2200K based on the experimental conditions mentioned above. The
sample was then decompressed to 82GPa and heated again at 1900 K
and 92GPa for 20mins. The recovered samplewas an amorphous Fe3+-

bridgmanite phase similar to the results of Run#275-81. We further
conducted another experiment at 92GPa and 1850 K (Run#332-82).
Eventually, a crystalline bridgmanite phase was preserved after the
recovery in coexistence with some iron metal (Fig. 2E, F). The EELS
measurements on the crystalline bridgmanite phase revealed a mix-
ture of Fe2+ and Fe3+ and small variations of the Fe3+/∑Fe ratio was
observed across the sample possibly due to the relatively low tem-
perature for the synthesis (Fig. S7). We obtained an average Fe3+/∑Fe
ratio of 0.56(6) at 92GPa and 1850 K, in comparison to dominant
ferrous iron in bridgmanite above 105GPa and 2250K. The amorphi-
zation of bridgmanite in those runs at slightly higher temperatures
might indicate the instability of the Fe3+-dominant bridgmanite phase
under ambient conditions. These results combined have showed a
dramatic pressure effect on the Fe3+/∑Fe ratio of bridgmanite under
hydrous conditions with dominant ferrous iron in bridgmanite at
depth greater than 2300 km (Fig. 4).

Fe-bearing bridgmanite under dry versus hydrous conditions
To understand the role of H2O in controlling the iron oxidation state,
we further compare the chemistry of bridgmanite between dry and
hydrous conditions under similar pressure-temperature conditions.
We conducted three separate sets of experiments in Fs15 sandwiched
between dry silica layers at 112-115 GPa after accounting for the thermal
pressure (Table 1). We conducted the first experiment at 114 GPa and
2200K (Run#344-102d). The TEM images of the recovered sample
showed the coexistence of Fe-depleted bridgmanite, a mixture of Fe-
rich grain and a silica-rich amorphous phase (Fig. S3). The chemical
analysis revealed Fe-depletion in bridgmanite with XFe = 0.11, while the
bulk composition of 5×5 μm2 area in the heated center is obtainedwith

Fig. 3 | EELSmeasurements showing ferrous-iron-dominant bridgmanite above
105GPa and 2250K under hydrous conditions. The EELS data were recorded for
the crystalline bridgmanite samples recovered from 105-119GPa and 2250-2400K,
in comparison with the EELS data of the startingmaterial Fs15, siderite FeCO3 (Fe

2+/
ΣFe = 100%) and hematite Fe2O3 (Fe

3+/ΣFe = 100%) measured under the same
instrumental conditions. Themaximaof Fe2+ (708.1 eV) and Fe3+ (709.8 eV) at the L3-
edge are indicated by the black dotted lines.
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XFe = 0.15, identical to the starting composition Fs15 (Table S1). To
examine the temperature effect on Fe-depletion of dry bridgmanite,
we conducted a separate experiment at a higher temperature of
2350K and 115 GPa (Run#344-102d-2). We observed a greater Fe-
depletion in bridgmanite with XFe = 0.02 at 2350K compared to the
run at 2200K (Table S1). In agreement with the previous study26, we
confirmed Fe-depletion in bridgmanite as a result of the dis-
proportionation reaction. The temperature effect on the dis-
proportionation reaction and crystallization of the H-phase (Fig. S8)
will require further investigation (see Supplementary Note 1 for
details). The observation of Fe-depletion in bridgmanite under dry
conditions, in contrast to the ferrous-iron-dominant bridgmanite
without Fe loss under hydrous conditions, demonstrates that H2O
stabilizes ferrous iron in bridgmanite under the deep lower mantle
conditions at >2300 km depth.

To reveal how H2O stabilizes ferrous iron, we conducted experi-
ments in the Fe2O3-SiO2-H2O system under similar high-pressure-
temperature conditions, and obtained FeO in coexistence with
hydrous NiAs-type SiO2 in the run products (Fig. 5), indicating that the
stability of ferrous iron is a combined result of H2O effect and high
pressure. At slightly lower pressures, a hexagonal hydrous phase
Fe12.76O18Hx was obtained in the Fe2O3-H2O and FeO-H2O systems,
respectively28. The results further demonstrated that the iron valence
state under H2O-saturated deep lower mantle conditions is indepen-
dent on the iron valence state in the starting materials.

Al3+ effect on the iron oxidation state of bridgmanite under
hydrous conditions
The basaltic and pyrolitic compositions contain about 15 wt.% and 3-5
wt.% Al2O3, respectively

29. To examine the Al3+ effect on the iron oxi-
dation state under hydrous conditions, we obtained aluminous
bridgmanite phase in coexistencewith anAl3+-rich hydrous silica phase
at 120GPa and 2200K using a hydrous gel starting material with all
iron in Fe3+. The MgO-Al2O3-Fe2O3-SiO2 gel sample containing ∼4wt%
H2O has a simplified basaltic composition and has been used in the
previous studies23,28. In this sample, gradual amorphization of alumi-
nous bridgmanite was observed, which led to an increase of the Fe3+/
∑Fe ratio from 0.46 to 0.75 between two consecutive EELS

measurements on one selected grain (Fig. S9). The results indicate that
the Fe3+ content of aluminous bridgmanite is coupled to its Al3+ con-
centration under hydrous conditions. We obtained an atomic ratio Al/
(Fe+Al) of ~0.40 in the recovered bridgmanite phase (Table S1), which
is equal to the measured Fe3+/∑Fe ratio within the uncertainties. About
60% of iron in aluminous bridgmanite is still in the Fe2+ state despite all
iron in Fe3+ in the starting material. Furthermore, our observation
showed that amorphization of aluminous bridgmanite could lead to an
overestimation of its Fe3+/∑Fe ratio. Future EELSmeasurements should
be performed on crystalline aluminous bridgmanite to establish a
relationship between Fe3+ and Al3+ content under hydrous lower
mantle conditions.

Bridgmanite is nearly dry in coexistence with a hydrous phase24.
Water can be stored in the high-pressure phases of silica in a basaltic
composition23,30–32. Under the deep lower mantle conditions, the Al3+-
rich NiAs-type silica phase with an approximate formula Si0.7Al

0.3O1.85Hx
23 could contain up to 4.6 wt.% H2O via the Si4+ = Al3+ + H+

charge-coupled substitution30,33. On the other hand, the solid solution
of δ-phase34 and phase H35, AlOOH–MgSiO2(OH)2, was found stable in
coexistence with bridgmanite in a pyrolitic lower mantle system21,22,25.
In a system where the water content is lower than the level as simu-
lated in our experiments, we would expect a decrease of water con-
tent in the hydrous phase or a smaller proportion of the hydrous
phase. As Al3+ preferentially partitions into the coexisting hydrous
phase relative to bridgmanite21–25, the Fe3+ content in bridgmanite will
be reduced accordingly due to the coupled substitution of Fe3+

and Al3+.
In summary, we investigated the combined effects of H2O and

pressure on the chemistry of bridgmanite and obtained the following
results: (1) ferric-iron-rich bridgmanite (Mg, Fe)SiO3 was observed
under hydrous conditions at depth <2000 km; (2) the presence of H2O
in a coexisting hydrous phase stabilizes ferrous iron in bridgmanite at
depth >2300 km, in contrast to Fe-depletion in dry bridgmanite (Mg,
Fe)SiO3 as a result of the disproportionation; and (3) our preliminary
results at 120GPa and 2200K indicate that the Fe3+ content is coupled
to its Al3+ concentration in bridgmanite under hydrous conditions. The
experiments in a hydrated pyrolitic composition have not been con-
ducted yet due to the technical challenges.

Fig. 4 | Ferric iron concentration in bridgmanite under hydrous lower mantle
conditions. The blue solid circles represent the Fe3+/ΣFe ratios measured in
recovered crystalline bridgmanite samples over the pressure range of 90-130GPa.

The light blue curve is a guide to the eye for the Fe3+/ΣFe ratio of bridgmanite. The
dash line indicates the corresponding depth (~2300 km) where the Fe3+/ΣFe ratio
falls below 0.2.
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Geophysical and geochemical implications
The deep lower mantle structure is dominated by two large low-shear-
velocity provinces (LLSVPs) beneath the Pacific and Africa at depth
greater than 2300 km36–39. The calculations of seismic velocities sug-
gested that the LLSVPs with lowered shear-wave speeds and higher-
than-average density can be well explained by iron enrichment in a
bridgmanite dominant composition40–42. The stability of ferrous-iron-
dominant bridgmanite under hydrous conditions, in contrast to the
disproportionation and iron-depletion in dry bridgmanite26, has
important consequences for the deep lower mantle at depth
>2300 km. Under deep lower mantle conditions above 60GPa, the
calculated shear-wave-velocity of iron silicate perovskite with com-
position 25mol%Fe2O3-75mol%FeSiO3 as a function of pressure43 is
nearly parallel to those of MgSiO3 and FeSiO3

44,45. Considering iron-
enrichment in bridgmanite from XFe = 0.10 to 0.15, we obtain about
1.1% increase in density, 1.0% decrease in shear-wave velocity and 0.3%
in bulk-sound velocity on the basis of the previous calculations45. The
H2O-induced iron-enrichment and stability of ferrous iron in bridg-
manite is in general consistent with the character of the LLSVPs46,47,
providing an alternative to the basal magma ocean hypothesis48.
To constrain geophysical and geochemical models of LLSVPs more
quantitively, future research will be needed to examine Al and
Fe partitioning between bridgmanite and coexisting phases in
both hydrated basaltic and pyrolitic compositions, respectively. In
particular, the occurrence of iron spin-pairing in ferropericlase49–51

coupled with the Fe3+/∑Fe ratio in bridgmanite could affect the Fe
partitioning10.

Importantly, the seismic imaging observations revealed a spatial
connection between broad plume-like conduits rooted at the base of
the mantle and major hotspots52, and the correlation of hotspot loca-
tions within or at the borders of the LLSVPs further supports such a
connection53,54. The presence of H2O, even in small concentrations,
strongly influences the rheological properties under the mantle
conditions55, although the rheological properties under the deep lower
mantle conditions remain poorly understood. Whether the primordial
noble gases and volatiles56–58 are stored in LLSVPs is the subject of
continuingdebate56,59. However, a dense, low-viscosity layer at thebase
of the lower mantle may influence plume chemistry and dynamics and
be critical in establishing the long-lived conduits in the lowermantle60.
In addition, when the upwelling plumes contain such H2O-bearing
ferrous-iron-dominant material, disproportionation of ferrous iron
would produce Fe metal plus ferric iron at a shallower depth,
thus contributing to some variations in the redox conditions of the
mantle.

Methods
Synchrotron X-ray diffraction
The experiments were conducted in laser-heated diamond anvil cells.
Diamond anvils with flat culet diameters of 150 µmbeveled at 10° up to
300 μmwere used to generate pressure. Each sample was compressed
to a target pressure and then heated using a double-sided heating
system equipped with Ytterbium fiber lasers. The measured tempera-
ture uncertainties were within ±150 K28. Pressure was calibrated by the
Raman shift of diamond anvil61 at room temperature after temperature
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Fig. 5 | Formation of the FeO phase in the Fe2O3-SiO2-H2O system under high
pressure-temperature conditions of the deep lower mantle. A The starting
material was Fe(OH)3 sandwiched between dry SiO2 layers (Run#335-95). The
pyrite-structured FeOOHx (py-FeOOH) is in coexistencewith rhombohedral(R) FeO

when H2O is over-saturated in NiAs-type SiO2 (Nt). B A hydrous gel sample with a
molar ratio of Fe2O3: SiO2 = 1:4 containing ~2 wt.% H2O was loaded in Ne medium
(Run#332-99). The CaCl2-type silica (Ct) is in coexistence with FeO(R) when H2O is
unsaturated in the coexisting Nt phase. The X-ray wavelength was 0.6199Å.
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quench. The thermal pressures can be estimated in this pressure range
based on the equation Pth (GPa) = (T − 300) ∗0.006228. The phase
assemblages were characterized by XRD measurements conducted at
15U1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) with
an X-ray wavelength of 0.6199 Å or at the P02.2 beamline of PETRA III
with an X-ray wavelength of 0.2900Å.

Transmission electron microscope (TEM) analysis
After a sample was recovered to ambient conditions, a cross-section
was lifted from the center of heated area and thinned to 50–80 nm in
thickness using a FEI Versa-3D focused ion beam (FIB). Elemental
mapping and phase chemistry was obtained in a JEOL field emission
TEM operating at 200 kV equipped with an EDS system. The EELS data
were collected with an aperture of 5mm, dispersion of 0.05 eV per
channel, energy resolution of about 0.65 eV, dwell time from 0.01 to
0.1 s, and scan integration durations of 10–60 s. To enhance the signal-
to-background ratio, the EELS data of Run#332-82 were collected with
a dispersion of 0.15 eV per channel (Fig. S7). We determined the Fe3+/
∑Fe ratio in our recovered samples by a linear combination of Fe L3
reference spectra of the ferrous (FeCO3) and ferric iron (Fe2O3) stan-
dards from 703 to 717 eV following themethod described by van Aken
and Liebscher14. The numbers in parenthesis are one standard devia-
tion basedonmultiple analyses.Weobtained Fe3+/∑Fe =0.03(1) for our
starting material Fs15 opx as a reference (Fig. S5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated this study are provided in the article or Supple-
mentary Information. Source data for Figs. 3 and 5 are provided in the
Supplementary Dataset. Source data are provided with this paper.
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