Table 1 Calculation equation of failure pressure

From: Limit state equation and failure pressure prediction model of pipeline with complex loading

case

additional load

principal stress

judging condition

Calculation equation

Case 1

positive

\({\sigma }_{1}\) = \({\sigma }_{L}\), \({\sigma }_{2}\) = \({\sigma }_{h}\), \({\sigma }_{3}\) = 0.

\({\sigma }_{2}\le \frac{{\sigma }_{1}+{\sigma }_{3}}{2}\)

\(\left(\frac{1}{2}-\frac{b}{1+b}\right)\frac{p}{{p}_{0}}+\frac{\sum ({\sigma }_{L})}{{\sigma }_{u}}=1\)

Case 2

\({\sigma }_{2} > \frac{{\sigma }_{1}+{\sigma }_{3}}{2}\)

\(\left(\frac{1}{2(1+b)}+\frac{b}{b+1}\right)\frac{p}{{p}_{0}}+\frac{1}{1+b}\frac{\sum ({\sigma }_{L})}{{\sigma }_{u}}=1\)

Case 3

\({\sigma }_{1}\) = \({\sigma }_{h}\), \({\sigma }_{2}\) = \({\sigma }_{L}\), \({\sigma }_{3}\) = 0

-

\(\frac{1}{1+b}\left(1+\frac{b}{2}\right)\frac{p}{{p}_{0}}+\frac{b}{1+b}\frac{\sum ({\sigma }_{L})}{{\sigma }_{u}}=1\)

Case 4

negative

\({\sigma }_{1}\) = \({\sigma }_{h}\), \({\sigma }_{2}\)=0, \({\sigma }_{3}\) = \({\sigma }_{L}\)

\({\sigma }_{2}\le \frac{{\sigma }_{1}+{\sigma }_{3}}{2}\)

\(\left(1-\frac{1}{2(1+b)}\right)\frac{p}{{p}_{0}}+\frac{1}{1+b}\frac{\sum ({\sigma }_{L})}{{\sigma }_{u}}=1\)

Case 5

\({\sigma }_{2} > \frac{{\sigma }_{1}+{\sigma }_{3}}{2}\)

\(\left(\frac{1}{b+1}-\frac{1}{2}\right)\frac{p}{{p}_{0}}+\frac{\sum ({\sigma }_{L})}{{\sigma }_{u}}=1\)

Case 6

\({\sigma }_{1}\) = \({\sigma }_{h}\), \({\sigma }_{2}\) = \({\sigma }_{L}\), \({\sigma }_{3}\) = 0

-

\(\left(1-\frac{b}{2(1+b)}\right)\frac{p}{{p}_{0}}+\frac{b}{1+b}\frac{\sum ({\sigma }_{L})}{{\sigma }_{u}}=1\)

  1. \({\sigma }_{1}\), \({\sigma }_{2}\), and \({\sigma }_{3}\) represent three types of principal stresses; \({\sigma }_{h}\) and \({\sigma }_{L}\) respectively denote circumferential and axial stresses; \({\sigma }_{u}\) represents the tensile strength; p is the internal pressure load; p0 denotes the ultimate bearing capacity of the internal pressure (only the internal pressure load is applied); and b is the yield criterion parameter.