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Enhanced quantum state transfer by
circumventing quantum chaotic behavior

Liang Xiang 1,2,7, Jiachen Chen 1,2,7, Zitian Zhu 1,2,7, Zixuan Song 1,2,
Zehang Bao 1,2, Xuhao Zhu 1,2, Feitong Jin 1,2, Ke Wang 1,2, Shibo Xu 1,2,
Yiren Zou 1,2, Hekang Li 1,2, Zhen Wang 1,2, Chao Song 1,2,
Alexander Yue 3, Justine Partridge3, Qiujiang Guo 1,2 ,
Rubem Mondaini 4,5,6 , H. Wang 1,2 & Richard T. Scalettar 3

The ability to realize high-fidelity quantum communication is one of the
many facets required to build generic quantum computing devices. In
addition to quantum processing, sensing, and storage, transferring the
resulting quantum states demands a careful design that finds no parallel in
classical communication. Existing experimental demonstrations of quan-
tum information transfer in solid-state quantum systems are largely con-
fined to small chains with few qubits, often relying upon non-generic
schemes. Here, by using a superconducting quantum circuit featuring
thirty-six tunable qubits, accompanied by general optimization procedures
deeply rooted in overcoming quantum chaotic behavior, we demonstrate a
scalable protocol for transferring few-particle quantum states in a two-
dimensional quantum network. These include single-qubit excitation, two-
qubit entangled states, and two excitations for whichmany-body effects are
present. Our approach, combined with the quantum circuit’s versatility,
paves the way to short-distance quantum communication for connecting
distributed quantum processors or registers, even if hampered by inherent
imperfections in actual quantum devices.

Among the many desired features of future large-scale quantum
computation, the manipulation and transmission of quantum states
without destroying their fragile coherence stand out as of primal
importance. Originally, the transport of quantum information has
been theoretically proposed1 and experimentally demonstrated2,3 by
using entangled photons tomediate the information transfer between
atom clouds over long distances, allowing quantum teleportation of
states4,5 and the implementation of quantum key-distribution6,7, a
fundamental step towards the realization of long-distance quantum
secure communication8. Recently, the growing system sizes of

quantumcomputing platforms9–13make it of paramount importance to
realize quantum communication between different parts of a single
device (or short-range quantumnetworks14), particularly for solid-state
architectures with local interactions11,15.

Considering short-distance quantum communication in solid-
state devices, implementations in small chains16–25 have primarily led
the way. Particle transport in two-dimensional (2D) networks of
superconducting qubits are further explored recently26–28. While the
digital scheme of sequential SWAP gates provides a platform-
independent way, the accumulation of minor two-qubit gate errors
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can ultimately hinder an efficient quantum state transfer (QST)29. An
alternative approach, which avoids complex dynamical control of
inter-qubit operations, is to use pre-engineered couplings that, in
quantum circuits governed by a static Hamiltonian, achieve high-
fidelity transfer of quantum information30 (Fig. 1a).

Theoretical demonstration of this approach has been put forward
in the case of an N-site one-dimensional (1D) XY-model quantum spin
chain31–33:

Ĥ =
XN

hm,niJm,n ½σ̂ +
m σ̂

�
n + σ̂�

mσ̂
+
n �, ð1Þ

where σ̂ +
m (σ̂�

m) is the raising (lowering) operator for qubit Qm, and the
nearest-neighbor (NN) coupling between a pair of qubits is given by
Jm,n. The key observation is that provided the couplings are chosen to
satisfy Jn,n+ 1 = J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðN � nÞ

p
for n = 1,…,N − 1, the eigenvalues of

Hamiltonian (1) in the single-excitation subspace are equal-spaced. It
is equivalent to that of a large (N − 1)/2-spin S

!
under a homogeneous

magnetic field, i.e., Ĥ=J = Ŝ+ + Ŝ� =2Ŝx , where Ŝ+ ðŜ�Þ is the raising
(lowering) operator of the large spin. Such a 1D perfect QST scheme
has been previously realized in small-scale superconducting circuits17

and photonic qubits in coupled waveguides16.
Generalization to higher dimensions is readily obtained in

theory34. For example, in a bipartite lattice in D dimensions,
the constraints in the inter-qubit NN couplings satisfy a
similar expression: JðdÞn,n+ 1 = J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðNd � nÞ

p
for n = 1,…,Nd − 1 and

d = 1,…,D. The corresponding mapped large-spin Hamiltonian,
ĤD=J =2ðŜ1,x + Ŝ2,x + . . . + ŜD,xÞ, describes a collection of D large
(Nd − 1)/2 spins, each independently precessing around its x-axis at the
same rate, thereby guaranteeing perfectQST at time tJ =π/2 (Fig. 1d for

D = 2). In practice, however, even considering perfectly isolated sys-
tems without decoherence, parasitic cross-couplings35, and device
defects11 can naturally occur and, as a result, hamper the perfect QST.
The former introduces a connection between qubits across a plaquette
via anunwanted coupling J ×m,m0 (Fig. 1b). After performing themapping
to the large-spin Hamiltonian,

Ĥtot = 2JðŜ1,x + Ŝ2,xÞ+4J × Ŝ1,xŜ2,x , ð2Þ

suchextra terms result in a J×-mediated spin-spin interaction that spoils
the standard predictions31,32 of perfect QST (Fig. 1e). Here we assume
for simplicity a single energy scale J× that governs this term (see
Methods). The latter, manifested as a defective coupler in our device
(gray bond with a cross marker in Fig. 1b), similarly breaks the
requirements of NN couplings for a perfect QST.

Toovercome these limitations and efficiently transfer few-particle
states in rather generic 2D networks, we utilize a Monte Carlo
annealing process to find optimal NN coupling parameters that allow
for a good QST under experimental limitations in tunability and extra
constraints arising from imperfections (see Methods). With the opti-
mized parameters, we realize efficient few-particle transfers in an
imperfect 2D superconducting qubit network (Fig. 1b, c) by engi-
neering NN couplings and unveiling the physical insights behind.
Starting from a small 1 × 6 1D chain and a 3 × 3 2D network, we
experimentally recover trajectories of two coupled large spins and
demonstrate that the optimization of single-excitation QST yields
synchronized precessions among the twomapped spins (Fig. 1e) in the
large spin representation. We then adapt our protocol to transfer few
particles across a 6 × 6 2D network, a problem for which analytic

Fig. 1 | Schematic representation of quantum state transfer. a Single-excitation
QST is achieved by finding a suitable Hamiltonian Ĥ which transfers initial state ∣ψ

�
encoded in qubitQA to qubitQB. Herewe assume ℏ = 1. b Large-spin representation
of a QST in a 2D network. Without cross-couplings or defects, a QST from QA to its
opposite-symmetric qubit QB can be regarded as the independent precession of
two fictitious spins, eachmapping a directionof the qubit network; hereN1 =N2 = 6.
NN couplings along the x(y) directions are denoted by Jxm,n(J

y
m,n), whereas gives the

amplitude of the intraplaquette next-nearest neighbor couplings. Gray bond with a
cross marker depicts the defect, a malfunctioning coupler in our device. c Pulse
sequences for realizing single-excitationQST. Square pulses are applied on all other
qubits except for QA to bring them to the resonant frequency ωI, and on all the
couplers non-neighboring to QA to engineer them to the desired couplings. To
suppress the effects of small pulse distortions causedby step responses,wewait for
2 μs (prepad) before exciting QA and bringing it and its neighboring couplers to

target frequencies. After a transfer time tQST, all the qubits, and couplers are tuned
to read work points for qubit state measurements. d Trajectory
fhŜi,xðtÞi,hŜi,yðtÞi,hŜi,z ðtÞig in the enlarged Bloch sphere of the two mapped spins,
i = 1, 2, when the NN couplings are parametrically selected as Jx!1,y!2

n,n + 1 = J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð6� nÞ

p
,

without cross-couplings (J ×m,m0 =0) or defect. e J ×m,m0≠0 and defect disturb the per-
fect precessions, breaking the standard protocol31, and the desired QST fails.
Optimizing couplings J1,2n,n + 1 compensates for the effects of imperfections, allowing
the “wiggled” evolution to achieve QST within desired time scales. f Cartoon con-
trasting the general picture for the evolution in Fock space of an initial state (green
dot) under generic or QST-optimized Hamiltonians. General dynamics tend to be
ergodic and quickly diffuse the initial information in Fock space, while the QST
dynamicsmanifest nonergodic behavior, re-converging to the final target state (red
dot) at later times.
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treatments are absent, achieving transfer fidelities of 0.90 for single-
excitation, 0.84 for Bell state, and0.74 for two-excitation, even if cross-
couplings and a defective coupler exist. Remarkably, the underlying
principle governing a perfect QST of few-particle states is immediately
connected with the ergodicity breaking (Fig. 1f) by a near Poisson
distribution of the ratio of adjacent gaps. Our findings are far beyond
the scope of previous experiments16,17, not only establishing a practical
way to realize few-particle QST in imperfect 2D networks but also
revealing the underlying physical understanding of QST from angular
momentum theory and quantum ergodicity.

Results
Single-excitation transfers
We start by benchmarking the standard one-dimensional protocol of
Ref. 31 via employing a single (upper) row of qubits of the current
device in Fig. 1b, featuring a 1D chain of N = 6 qubits without dis-
cernible cross-couplings (Fig. 2a). Figure 2b showsa nearlyperfectQST
with a fidelity above 0.99 at tQST ≈ 125 ns (tQSTJ ≈π/2) by tuning the
qubit couplings Jn,n + 1 = � J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð6� nÞ

p
(since { Jn,n+ 1} are negative in

our experiment, we add a minus sign here to keep the label J as a
positive value), with J/2π = 2MHz (hereafter we define J as a typical
energy scale in our experiments with J/2π = 2MHz for 1D and 3 × 3
cases, and 1MHz for 6 × 6 cases), which maps onto a single large spin
precessing around the x-axis (Fig. 2c). If a single transfer is desired, the
interactions can be switched off at tQST by tuning qubits away from
interaction frequency and adjusting NN couplings to the values near
zero; otherwise, back-and-forth free propagation of the state occurs

between qubits Q1 and Q6, within time scales (~0.5 μs) such that
decoherence (T1 ≈ 140 μs, TSE

2 ≈ 19μs, see Supplementary Note 1) does
not substantially affect device performance.

Todemonstrate the effectiveness of our procedure, we beginwith
a case where a defective coupling is deliberately included, and the
resulting QST fidelity is low. For that, we explore quantum information
transfer in a subset of qubits in Fig. 1b: a 3 × 3 2D networkwith its lower
left corner,Q4,2 (see Supplementary Fig. 2), relabeled asQ1 in Fig. 2d, g.
It encompasses a device defect – a malfunctioning coupler (the bond
with a cross marker in Fig. 2d, g) that constrains one of the qubit
couplings to ~ 2π ×0.3 MHz. NN couplings are parametrically cali-
brated with Jð1,2Þn,n+ 1 = � J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3� nÞ

p
on other qubit pairs (Fig. 2d). Under

these conditions, Figure 2e displays the results of the excited-state
population dynamics forQ1 andQ9, quantifying the transfer between a
single-qubit excitation initialized at Q1 and aimed to transfer it to the
opposite qubit Q9. Unfortunately, the transfer success is largely com-
promised to a low fidelity of about 0.27 precisely because the existing
J ×m,m0 -couplings and the defect prevent the standard coupling
parametrization31 from achieving perfect QST. In the language of the
mapped Hamiltonian, the rotations of the two spins are now corre-
lated, leading to the failure of approaching the pole of the − z direction
—see experimental and simulated results in Fig. 2f (see Supplementary
Note 5 for details of the measurements of trajectories).

Having shown that parasitic and defective couplings in real devi-
ces destroy the transmission of a quantum state with the standard
protocol31, we now tackle these limitations by careful tuning (see
Supplementary Note 2) of the coupler-mediated interactions Jð1,2Þn,n+ 1
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Fig. 2 | Single-excitationquantumstate transfer in 1D (1 × 6) and small 2D (3 × 3)
systems. a Schematic representation of 1D 1 × 6 qubits with the NN couplings
parameterized by the standard protocol Jn,n + 1 = � J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð6� nÞ

p
with J/2π = 2 MHz31.

b The corresponding experimental dynamics of Q1 and Q6 excited-state popula-
tions (top), whose time-evolution heatmap for all six qubits is shown at the bottom.
A nearly perfect transfer fidelity above 0.99 is observed at tQST ≈ 125 ns. c The
associated trajectory of hŜ1,αi (α = x, y, z) in the large-spin representation; markers
(line) give the experimental (simulated) results. d 3 × 3 qubits with uniform NN
couplings, Jð1,2Þn,n + 1=2π≈� 2

ffiffiffi
2

p
MHz31, except for the defective coupler. e The excited

population dynamics of qubits Q1 and Q9 (top) and snapshots for all qubits at
representative times (bottom). The fidelity is very low (0.27) due to the imperfec-
tions. f The corresponding spin trajectories, hŜ1,αi and hŜ2,αi, describing the lack of

perfect precession in the presence of cross-coupling terms J ×m,m0 and the defective
coupler. g–i show the same for the case in which we optimize the couplings in the
3 × 3 qubit network to achieve a good QST. Despite the wiggled evolution of the
spin-trajectories, the synchronized precession is recovered, and the fidelity of the
QST is improved to 0.936 ±0.012. The crossmarker in the bond connecting qubits
Q6 and Q9 denotes the defective coupler with a fixed value of about 2π ×0.3 MHz.
Error bars here come from the standard deviation of five experimental repetitions.
tΔE is a minimum time, set by “quantum speed limit” arguments, for the generation
of a final state localized on a different site, and hence orthogonal to the initial state
(seeMethods). See Supplementary Fig. 4 for the experimentallymeasured coupling
values in (a, d, and g).
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(Fig. 2g) according to the couplings optimized with the aforemen-
tioned annealing optimization procedure (see Supplementary Note 8).
Figure 2h reports these results for the same 3 × 3 network: Regardless
of cross-couplings and one fixed coupling, the transfer fidelity is
greatly improved, reaching a value of 0.936 ± 0.012. In such a scenario,
the trajectories of two coupled large spins
fhŜð1,2Þ,xðtÞi,hŜð1,2Þ,yðtÞi,hŜð1,2Þ,z ðtÞig, are optimized in away to reach the −z
poles synchronously despite their different paths during the dynamics
(Fig. 2i). These results pave the way for pursuing QST in much larger
quantum circuits, where imperfections are more likely to occur11,13.

By employing all 36 qubits and utilizing the optimization proce-
dure under those constraints (see Methods), we report in Fig. 3a the
transfer of a single excitation across a 6 × 6 qubit network. Here we
experimentally achieve a maximum transfer fidelity of 0.902 ±0.006
(Fig. 3a). Experimentally reconstructed density matrices, labeled by ρ̂,
of the initial state inQ1 and the resulting final state inQ36 after QST are
shown in the right panels of Fig. 3a. Under ideal conditions, we can
numerically obtain solutions for optimized NN couplings with QST-
fidelities above 0.99, even if influenced by cross-couplings and defects
(see Supplementary Fig. 18), but experimental imperfections in cali-
brating couplings and qubit frequencies can impact those results.
More prominent, however, are the residual thermal excitations in the
qubit network, which mainly cause the observed experimental infide-
lity. Numerical simulations suggest that 0.5% thermal excitations in
each qubit could result in transfer errors of ~3% for 3 × 3 network
and ~ 10% for a 6 × 6 network. This indicates that their suppression
constitutes an important route to further improve the future transfer
fidelity on a 2D network. For a detailed discussion on the effects of
thermal excitations and the noise analysis of couplings and qubit fre-
quencies, see Supplementary Notes 3 and 4, respectively.

Building on these results, our protocol similarly accomplishes the
QST ofmaximally entangled two-qubit states. By preparing a Bell state
∣Ψ�i= ∣01i � ∣10ið Þ=

ffiffiffi
2

p
in qubit pair (Q1,Q2), we target the transfer to

the opposite-symmetric qubit pair (Q35,Q36) in the network (Fig. 3b).
For that, the initial state ∣Ψ�i is obtained by applying a quantum cir-
cuit, which consists of a two-qubit control-Z gate and several single-
qubit gates, on Q1 and Q2 (see Supplementary Fig. 14). After a transfer
time tJ ≈π/2, we perform two-qubit quantum state tomography onQ35

and Q36 to witness the transfer efficiency and find a fidelity
F = trðρ̂expρ̂idealÞ≈ 0.840 ± 0.006 for the experimentally reconstructed
densitymatrix ρ̂exp (the right panel of Fig. 3b), which demonstrates the
effectiveness of our protocol for transferring quantum entanglement.
Here, the QST fidelity of the entangled state displays a large sensitivity
to noise in both the qubit’s frequency and the value of the optimized
couplings (see Supplementary Note 4 for an extended discussion),
which substantially restricts the transfer success.

Two-excitation transfers
The observed relatively large transfer fidelity for states (entangled or
not) composed of a single excitation endows the ability to push toward
an even more challenging scheme. A standard mapping (see Methods)
of the spin operators in Hamiltonian (1) relates the emulated model to
one of hardcore bosons, whose cardinality reflects the number of
photon excitations and hopping energies Jm,n. In the case of a 2D lattice,
such amodel describes a typical quantum chaotic Hamiltonian. Its non-
integrability renders quick thermalization and the absence of memory
of the initial conditions throughout sufficiently long dynamics36.
Therefore, the prospects of achieving a successful QST are slim: One
expects diffusive behavior in Fock space37, making it unlikely to find a
single state with the majority of the weight in ∣ψðtÞ� at a later time. Yet,
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Fig. 3 | Single-excitation quantum state transfer in a 2D 6 × 6 qubit network
with optimized couplings. a left, shows themeasured couplings of the 6 × 6 qubit
network; center, the corresponding time evolution of Q1 and Q36 excited-state
populations, which shows a transfer fidelity of 0.902± 0.006 at about 250 ns; right,
the quantum state tomography in the subspace of the initial and target qubits, Q1

andQ36.b Fidelity dynamics for theQSTusing a Bell state initially encoded inqubits
Q1 and Q2; here, the quantum state tomography at tJ =0 is shown in the (Q1, Q2)
subspace whereas at time tJ≈π/2 (J/2π = 1MHz) is shown in (Q35,Q36) with a fidelity

of 0.840 ±0.006. The fidelity here is a generalization of the probability to the Bell
case (see text), wherewe have two basis states in our initial and final wavefunctions
to characterize the QST transfer. Lines (circles) are the numerical (experimental)
evolution with the measured couplings. Solid bars (gray frames) represent
experimental (ideal) values of density matrix elements. Error bars come from the
standard deviation of five experimental repetitions. tΔE is the minimum time for a
perfect QST set by “quantum speed limit” arguments (see Methods). See Supple-
mentary Figs. 5 and 6 for the specific values of experimentallymeasured couplings.
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suppose the number of excitations is small compared to the total sys-
tem size. In that case, we argue that this weakly chaotic Hamiltonian38,39

can still be engineered such that a two-excitation QST is efficient (see
Supplementary Figs. 20 and 21 for the optimized couplings).

Figure 4a and d show the QST-optimized couplings for two-
excitation states in 3 × 3 and 6 × 6 qubit networks—in both cases, the
pair (Q1,Q2) is initially excited. In the former, we experimentally
exemplify in Fig. 4b the propagation of ∣ψðtÞ� in Fock space, con-
trasting both the optimized and random couplings at different times.
Only when the couplings are optimized does one recover a regime
where most of the weight collapses on a single Fock state, quantita-
tively describing the schematic cartoon in Fig. 1f. The states are orga-
nized according to ametric defined by the L1-normof the excitations in
the lattice (see Methods) such that the distance d to the initial state
∣n=0i obeys dð∣0i,∣0iÞ =0, whereas the distance to the target state,
dð∣0i,∣ntarget

E
Þ, takes the maximum value for the given network size.

Thus, an average distance can be dynamically defined as

hdðtÞi=
XDĤ�1

n=0

dð∣0i, ∣niÞ jhnjψðtÞij2, ð3Þ

measuring the wave-packet’s “center of mass” evolution in the Fock
space of dimensionDĤ . Figure 4c displays its dynamics for the case of
the QST-optimized solution of the couplings, where one observes a
ballistic (almost) periodic evolution between the initial state ∣0i and
the target state ∣ntargeti. Conversely, if one implements random
couplings {Jm,n} between the qubits, a slow evolution towards the

mean distance d = 1
DĤ

PDĤ�1
n=0 dð∣0i,∣niÞ (d ≈ 1:33 for 3 × 3 cases) is

achieved. In this case, the wave-packet dynamics after an initial
transient is close to exhibiting a diffusive behavior (see Supplemen-
tary Note 7).

Turning to the large 6 × 6 qubit network, we report in Fig. 4e the
population dynamics of the initial and target two-excitation states:
Here, a maximum fidelity of about 0.737 ±0.007 is experimentally
observed for the transfer of excitations from (Q1,Q2) to (Q35,Q36).
Notwithstanding the large Hilbert space, DĤ = ð362 Þ=630, one has to
dealwith in this case to find theoptimized couplings thatmaximize the
QST fidelity, the non-integrability of the Hamiltonian naturally bounds
performance. Minor deviations on the optimized couplings, which can
inherently occur owing to experimental imperfections, significantly
impact the transfer fidelity (see Supplementary Note 4).

The approach we have introduced here explicitly uses an
annealing Monte Carlo procedure to optimize QST. As such, it is a
“black box”, providing no clear physical indication of why the opti-
mized coupling solutions give a better QST. To acquire that insight, we
perform an ergodicity analysis, classifying the eigenspectrum {εα} of
the corresponding Hamiltonians using the ratio of adjacent gaps
rα � minðsα ,sα + 1Þ=maxðsα ,sα + 1Þ40, where sα = εα+1 − εα. If the couplings
are randomly chosen, Fig. 4f shows that the distribution P(r) typically
follows one of the random matrices of the same symmetry class of Ĥ,
signifying strong ergodicity in the spectrum where level repulsion
takes place [P(r =0)→0] (see Supplementary Note 7 for an extended
discussion). In contrast, if the couplings are optimized, ergodicity is
largely absent, and a distribution P(r) close to a Poissonone isobtained
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Fig. 4 | Two-excitation QST in 2D qubit systems with optimized couplings.
a Measured couplings of the 3 × 3 qubit network for the optimized two-excitation
QST (see Supplementary Fig. 7 for the specific values). b The corresponding
experimental time evolution of two-excitation state QST in Fock space
½DĤ = ð92Þ= 36�, where each marker denotes a Fock state—here, we contrast a solu-
tion for QST-optimized couplings from one with randomly chosen Jm,n at different
representative times. The concentric circles denote the Fock states with the same
distance from the initial state. c The dynamics of the average distance 〈d(t)〉 tra-
veled in Fock space for both cases; the dashed (dotted) line gives the maximum
(mean) distance. d Measured couplings of the 6 × 6 qubit network for the two-

excitation QST ½DĤ = tð362 Þ=630� after optimization (see Supplementary Fig. 8 for
the specific values). e The (Q1,Q2) and (Q35,Q36) populations over time using the
measured couplings in (d), which yield a transfer fidelity of 0.737 ± 0.007 at about
250 ns. Error bars in (c) and (e) come from the standard deviation of five experi-
mental repetitions. f Numerically computed distribution of the ratio of adjacent
gaps P(r) in the case of QST-optimized and random couplings. Here, we take an
average of an ensemble of k = 40 coupling matrices to improve statistics; dashed
and dotted lines are surmises for the Wigner–Dyson and Poisson distributions48,
respectively (see Supplementary Note 7). tΔE is a minimum time for a perfect QST
set by “quantum speed limit” arguments (see Methods).
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instead. This analysis thus provides a clear understanding of the
underlying interpretation of the optimization procedure: the cou-
plings Jm,n evolve to partially cure the quantum chaotic nature of the
system, allowing higher fidelity QST to take place.

Our Monte Carlo annealing process does not produce a unique
solution. Different Jm,n can be found which give QST of high fidelity.
The ergodicity analysis provides a link between these solutions: They
share adistributionof their level spacings, which is roughly Poissonian,
with higher fidelities linked to more faithful Poisson statistics.

Discussion
In this work, we realized efficient QST of few-excitation states in a 2D
intermediate-scale quantum processor, even in the presence of
unwanted parasitic couplings and inherited defects. The key ingre-
dient relies on manipulating NN inter-qubit couplings, whose values
are set by a classical Monte Carlo annealing optimization procedure
under the conditions ofmaximizing the transfer fidelity at a given time
tQST. Unlike previous single-excitation QST experiments in small-scale
1D chains16,17, our experiments generalize QST to two dimensions and
few-excitation states. More importantly, we reveal the underlying
connections between the efficient few-excitation transfer and the
breaking of quantum ergodicity.

These demonstrations on an actual physical device underline the
significance of our protocol. In practice, unwanted couplings or
defects always exist in 1D and 2D qubit arrays. Our protocol not only
can be used to realize remote interaction and distribute entanglement
across a large solid-state device but also provides a constructive
technique for designing quantum channels as building blocks to link
two processor nodes14. Looking forward, the combination of dual-rail
encoding and the emergent mid-circuit measurement technique41

provide a new avenue to further improve the speed and robustness of
QST42,43.

Methods
Monte Carlo annealing process
In our experiments, the intraplaquette cross-couplings fJ ×m,m0 g and the
defective coupler cannot be manipulated, while the NN couplings
fJx,ym,ng for NN qubits Qm and Qn are adjustable. The task of accom-
plishing an efficient QST from the source qubits to the destination
qubits relies on an optimization scheme to find appropriate coupling
matrices fJx,ym,ng, in the presence of these constraints. Therefore, we first
estimate the cross-coupling values fJ ×m,m0 g and the defect before opti-
mization. Over an extensive experimental calibration process (see
Supplementary Note 2), we properly approximate all the next-NN
coupling parameters (parasitic couplings) to a value of J ×m,m0=2π =0:45
MHz in the optimization. As pointed out in the text, the coupler con-
necting qubits Q18 and Q24 is defective, setting the corresponding
coupling J18,24/2π to a fixed value + 0.3 MHz. As a result, the optimi-
zation process proceeds with these extra constraints.

Weemploy aMonteCarlo process in this spaceofparameterswith
cost function pðf Jx,ym,m+ 1, J

×
m,m0 gÞ / e�~F=T , where the ‘temperature’ T is

varied from Thigh→ Tlow and ~F marks the quantity one aims to mini-
mize: the infidelity ~FðtQSTÞ= 1� jhψðtQSTÞjψtargetij2 of the perfectQST at
times tQST. At each step of the sampling, one obtains such state via
unitary time evolution ∣ψðtQSTÞ

�
= e�iĤtQST ∣ψð0Þ�, where Ĥ is con-

structed with the current couplings parameters fJx,ym,m+ 1,J
×
m,m0 g.

Throughout the sampling, we use a combination of local and global
parameter changes, combined with k independent realizations of the
Monte Carlo process (k = 40 for the two-excitation transfer and k = 5
for the remaining cases). Furthermore, we also compare different
annealing scheduling protocols f(T), where f(Thigh(low)) = Thigh(low), and
proposed changes in the couplings are dynamically adjusted accord-
ing to their acceptance ratio.

Among the many choices for inter-qubit coupling matrices that
can maximize the fidelity of QST, we focus on the ones that preserve

the network inversion symmetry when dealing with single- or two-
excitation transfers. Two reasons stand behind this: (i) such symmetry
is also present in the original protocols for perfect QST31, and (ii) it
reduces the space of parameters one needs to probe to find solutions
that minimize the infidelity. Under such conditions, wemust optimize
30 individual couplings (15 for each direction) on the 6 × 6 super-
conducting quantum circuit instead of 60 couplings if no symmetries
were enforced.

Finally, we remark that in a sufficiently large lattice, a possible
solution for goodQST formultiple excitations is to have disjoint paths
alongwhich individual excitations propagate independently. However,
we have verified thatmore complex solutions with equally high fidelity
also exist by forcing all the couplings Jm,n to be bounded away from the
origin. Typically, we have performed the annealing process enforcing
that fJx,ym,ng=2π 2 ½Jmin,Jmax� MHz. In general, a larger range yields a
higher optimized QST fidelity but becomes more challenging for
experimental calibrations. In practice, we set different Jmin 2 ½�12,� 6�
and Jmax 2 ½�0:5,� 0:3� for different cases (see Supplementary Note 8
for the details of optimized couplings and QST dynamics); ergodicity
analysis in Fig. 4f is performed with fJx,ym,ng=2π 2 ½�10,� 0:1� MHz.

Cross-couplings
When using the functional form that maximizes QST in a regular lat-
tice, mapping it to a large-spin Hamiltonian, JðdÞn,n+ 1 = J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðNd � nÞ

p
,

possible cross-couplings among the qubits can be incorporated in a
similar picture such that J ×m,m0 = J ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN1 �mÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ðN2 �m0Þ

p
, with

m = 1,…,N1 − 1 andm0 = 1, . . . ,N2 � 1. This is assumed when writing the
compact Hamiltonian in Eq. (2). Experimentally, however, active con-
trol of these couplings is inaccessible, and as mentioned above, cali-
bration shows that J ×m,m0 is approximately constant over the qubit
network. As a result, while the final emulated Hamiltonian evades the
simple large-spin form in this situation, one can still generically
represent and compute the corresponding spin “trajectories,” as done
in Fig. 1d, even in the presence of non-parameterized cross-couplings.

Hardcore boson picture
We use the notation of qubit excitations and particles in the text
interchangeably. This relies on the standard mapping between hard-
core bosons and the spin-1/2 operators: ây

m $ σ̂ +
m and âm $ σ̂�

m
44. As a

result, the Hamiltonian (1) is written as

Ĥ =
XN
hm,ni

Jm,n½ây
mân + â

y
nâm�, ð4Þ

where the “couplings” are read as hoppings energies between orbitals
m and n.

Distances in Fock space
Given the typical values of the coupling matrix, we define a metric for
distances between Fock states inspired by the associated time for a
Fock state to be reached. For example, the target state with excitations
in the qubit-pair (Q35,Q36) in the 6 × 6 qubit network should be one of
themost distant from the initial state with excitations in (Q1,Q2). Using
the initial state as a reference, a possible distance is defined as
dð∣0i,∣n0iÞ = 1

4

P2
l = 1 jx0

l � x0j+ jy0l � y0j+ jx0
l � x1j+ jy0l � y1j

� �� 1=2,
where ðx0

l ,y
0
lÞ are the Cartesian coordinates of each of the l-excitations

(l = 2) of a generic Fock state ∣n0i. For the initial state ∣n=0i, one thus
have (x0, y0) and (x1, y1) being the coordinates of its excitations. Hence
dð∣0i,∣0iÞ=0whereas dð∣0i,∣ntargetiÞ=8:5ð2:5Þ for the target state in the
6 × 6(3 × 3) network size. The 1/4 prefactor in the definition of
dð∣0i,∣n0iÞ refers to the average of the four different L1-norm distances
to eachpair ofparticles in the twoFock states, ∣0i and ∣n0i, owing to the
particle’s indistinguishability.
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Quantum speed limit
The transfer time tQST is bound to obey two constraints: If tQST is large,
typical couplings are small in magnitude, but the longer the time, the
more drastic the effects of decoherence, which would ultimately
inhibit anefficient quasi-adiabaticQST.On theother hand, a fastQST is
bounded by fundamental limits of the evolution of any quantum
mechanical system. Dubbed quantum speed limits, they control the
minimal time scale necessary for a time-evolving wave function to
become fully distinguishable (i.e., orthogonal) from the initial state.
Such a perfect orthogonalization process precisely describes a flawless
QST. Known bounds45,46 limit the minimal orthogonalization time

based on either the mean energy E = hĤi or the energy uncertainty

ΔE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĤ2i � hĤi2

q
of the system

tΔE =
π_
2ΔE

, tE =
π_

2ðE � Eg Þ
, ð5Þ

with Eg the ground-state energy of the Hamiltonian Ĥ that governs the
unitary dynamics. As a result, tQST ≥ maxftΔE ,tEg. In Figs. 2, 3, and 4, we
include the minimal orthogonalization time given by the quantum
speed limit for each of the Hamiltonians that describes the
corresponding evolution (see Supplementary Note 9 for an extended
analysis). In all cases we investigate, the energy uncertainty limit
bounds the QST, i.e., tQST ≥ tΔE.

Data availability
The data generated in this study have been deposited in the Zenodo
database under accession code https://doi.org/10.5281/zenodo.
1109063047.

Code availability
The codes used forMonteCarlooptimization in this study are available
in the Code Ocean capsule at https://codeocean.com/capsule/
8181086/tree/v2.
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