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Widespread 2013-2020 decreases and
reduction challenges of organic aerosol
in China

Qi Chen 1,2,8 , Ruqian Miao 1,8, Guannan Geng 3,8, Manish Shrivastava 4,
Xu Dao5, Bingye Xu6, Jiaqi Sun5, Xian Zhang5, Mingyuan Liu5, Guigang Tang5,
Qian Tang6, Hanwen Hu3, Ru-Jin Huang 7, HaoWang1, Yan Zheng1, Yue Qin 1,2,
Song Guo 1,2, Min Hu1,2 & Tong Zhu 1,2

High concentrations of organic aerosol (OA) occur in Asian countries, leading
to great health burdens. Clean air actions have resulted in significant emission
reductions of air pollutants inChina.However, long-termnation-wide trends in
OAand their causes remainunknown.Here,wepresent bothobservational and
model evidence demonstratingwidespreaddecreaseswith a greater reduction
in primary OA than in secondary OA (SOA) in China during the period of 2013
to 2020. Most of the decline is attributed to reduced residential fuel burning
while the interannual variability in SOA may have been driven by meteor-
ological variations. We find contrasting effects of reducing NOx and SO2 on
SOA production which may have led to slight overall increases in SOA. Our
findings highlight the importance of clean energy replacements in multiple
sectors on achieving air-quality targets because of high OA precursor emis-
sions and fluctuating chemical and meteorological conditions.

Long-term exposure to ambient particles that have an aerodynamic
diameter of 2.5μm or smaller (PM2.5) is associated with millions of
global premature deaths per year1. Clean air actions arewidely taken to
mitigate air pollution from PM2.5, leading to significant air-quality
improvements in North America, Europe, and East Asia2. Remarkably,
the emissions of SO2 and NOx were reduced by 70% and 28%, respec-
tively, from 2013 to 2020 in China under two key policies, namely the
Air Pollution Prevention and Control Action Plan (2013–2017) and the
Three-year Blue-sky Action Plan (2018–2020)3. The mean PM2.5 con-
centrations of annual averages for 74 key Chinese cities decreased
from 72μgm−3 in 2013 to 34μgm−3 in 20204. Despite these advances,
the PM2.5 concentrations in most countries still far exceed the World

Health Organization (WHO) new guideline of annual mean of
5μgm−3(see ref. 2). Further reduction of PM2.5 is challenged by high
fraction of organic aerosol (OA) that has an issue of a great complexity
but a limited understanding of its precursors and secondary formation
pathways5,6.

The OA precursors may remain in the particle phase after
being emitted to form primary OA (POA) or be oxidized in the atmo-
sphere to form secondary OA (SOA). They consist of thousands of
volatile (VOC), intermediate-volatility (IVOC), semivolatile, and low-
volatility (S/LVOC) organic compounds6. Because of a large con-
sumption of residential coal and biofuel and a rapid expansion of
industrial activities, anthropogenic emissions of the OA precursors in

Received: 24 October 2023

Accepted: 17 May 2024

Check for updates

1State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Innovation Center for Engineering Science andAdvanced Technology,
International Joint Laboratory for Regional Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China. 2Institute
of Carbon Neutrality, Peking University, Beijing, China. 3State Key Joint Laboratory of Environmental Simulation and PollutionControl, School of Environment,
Tsinghua University, Beijing, China. 4Pacific Northwest National Laboratory, Richland, WA, USA. 5China National Environmental Monitoring Centre,
Beijing, China. 6Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Province Environment
Monitoring Centre, Hangzhou, China. 7State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global
Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China. 8These authors contributed equally: Qi Chen, Ruqian Miao, Guannan
Geng. e-mail: qichenpku@pku.edu.cn

Nature Communications |         (2024) 15:4465 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3559-8914
http://orcid.org/0000-0003-3559-8914
http://orcid.org/0000-0003-3559-8914
http://orcid.org/0000-0003-3559-8914
http://orcid.org/0000-0003-3559-8914
http://orcid.org/0000-0003-2858-9083
http://orcid.org/0000-0003-2858-9083
http://orcid.org/0000-0003-2858-9083
http://orcid.org/0000-0003-2858-9083
http://orcid.org/0000-0003-2858-9083
http://orcid.org/0000-0002-1605-8448
http://orcid.org/0000-0002-1605-8448
http://orcid.org/0000-0002-1605-8448
http://orcid.org/0000-0002-1605-8448
http://orcid.org/0000-0002-1605-8448
http://orcid.org/0000-0002-9053-2400
http://orcid.org/0000-0002-9053-2400
http://orcid.org/0000-0002-9053-2400
http://orcid.org/0000-0002-9053-2400
http://orcid.org/0000-0002-9053-2400
http://orcid.org/0000-0002-4907-9616
http://orcid.org/0000-0002-4907-9616
http://orcid.org/0000-0002-4907-9616
http://orcid.org/0000-0002-4907-9616
http://orcid.org/0000-0002-4907-9616
http://orcid.org/0000-0003-1664-4516
http://orcid.org/0000-0003-1664-4516
http://orcid.org/0000-0003-1664-4516
http://orcid.org/0000-0003-1664-4516
http://orcid.org/0000-0003-1664-4516
http://orcid.org/0000-0002-9661-2313
http://orcid.org/0000-0002-9661-2313
http://orcid.org/0000-0002-9661-2313
http://orcid.org/0000-0002-9661-2313
http://orcid.org/0000-0002-9661-2313
http://orcid.org/0000-0002-2752-7924
http://orcid.org/0000-0002-2752-7924
http://orcid.org/0000-0002-2752-7924
http://orcid.org/0000-0002-2752-7924
http://orcid.org/0000-0002-2752-7924
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48902-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48902-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48902-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-48902-0&domain=pdf
mailto:qichenpku@pku.edu.cn


China and India have become several times higher than those in
developed countries7–9. Correspondingly, SOA campaign-mean con-
centrations reached 30–40μgm−3 in Chinese and Indian cities10–12.
Although China’s 2013–2020 pollution-control efforts led to sig-
nificant emission reductions, rare studies have examined nationwide
long-term trends in OA. Responses of OA concentrations to precursor
emissions can be quite complicated due to the nonlinearity of gas-
particle partitioning and secondary processes4. Meteorological varia-
tions and changes of biomass burning and biogenic emissions may
cause extra interannual variations ofOA13–15. Changes of anthropogenic
emissions of SO2, NOx, and OA precursors not only affect anthro-
pogenic OA but also particle acidity and gas-particle partitioning and
consequently biogenic SOA formation16–18. The lack of understanding
of the mitigation effectiveness, meteorological impacts, and
anthropogenic–biogenic interactions associated with such high load-
ings of anthropogenic OA hinders the developments of effective
control measures in future.

Here, we combine comprehensive surface measurement analysis
and state-of-the-artOAsimulations to elucidate the long-termvariations
of OA and their causes in China. We first used ambient observations to
discover the OA trends during 2013–2021. We then simulated the OA
concentrations with a revised, nested version of global chemical
transportmodel driven by a newly developed emission inventory of OA
precursors over the full-volatility range.Model resultswere validatedby
observations. A series of model sensitivity runs were conducted to
examine the impacts of various drivers on OA during the action-plan
period, such as changes in precursor emissions, variabilities in
meteorological conditions, control of other pollutants, and changes in
natural emission sources. Our results highlight the challenges of con-
trolling OA pollution to reduce the health burden in developing coun-
tries, which may aid the acceleration of policy developments on clean-
energy transition and technological innovations in the industry.

Results
Observed decreases of OA in China
Long-term continuous measurements of particulate organic carbon
(OC) have been conducted in a recently developed national monitor-
ingnetwork for PM2.5 chemical composition inNorthChina Plain (NCP)
and provincial-level monitoring sites in Yangzi River Delta (YRD) since
2015.Measurements in earlier years are only available at some research
sites. As shown in Fig. 1a, c, the annual mean OC concentrations
decreased by 46% in NCP from 2017 to 2021 and 36% in YRD from 2015
to 2021. Meanwhile, annual PM2.5 concentrations decreased by about
30% in the two regions4. Relatively greater OC concentrations present
in 2019, which deviates slightly from the general declines. The NCP
data further indicate that annual OC concentrations decreasedmost in
winter among the four seasons (Supplementary Fig. S1).

To explore the changes in POA versus SOA, we examined the OA
source apportionment results obtained from aerosol mass spectro-
meter (AMS) measurements in 162 field campaigns across China
(Supplementary Table S1 and Fig. 1b). Each campaign covers a short
period of 2 weeks to 3 months. NCP has the highest regional-mean OA
concentration of 23.1μgm−3 in contrast to the region-mean con-
centrations of 13.5–15.5μgm−3 in YRD,Northwest (NW), and Pearl River
Delta (PRD) (Supplementary Table S2). POA accounts for about 50% of
OA in north regions (NCP and NW) and about 40% in south regions
(YRD and PRD), reflecting a spatial difference in sources19. The data in
five cities from different regions in China indicate clear OA declines in
winter, accompanied with increasing SOA mass fractions in three of
the cities (Fig. 1e, f). In Beijing, where the campaign data covers over
50% of the period of 2013–2020, the declines of OA and the increases
of SOA fractions present in all seasons, with more significant changes
in winter. Moreover, all-campaign-mean OA concentrations decreased
from 20.6 to 9.0μgm−3, and SOA mass fractions increased from 53 to
69% (Supplementary Table S3). To conclude, the observations suggest
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Fig. 1 | Long-term observations of organic aerosol (OA) in China and their
comparisons to model simulations. a Locations of the monitoring sites for
organic carbon (OC) including 34 sites in a recently developed nationalmonitoring
network for PM2.5 chemical composition in North China Plain (NCP), 6 provincial
monitoring sites inYangzi River Delta (YRD), and 3 research sites in the two regions.
b Locations of the campaign sites for aerosol mass spectrometers. c Annual mean
OC concentrations from the continuous measurements of long-term monitoring
sites. Error bars represent the standard deviations (NCP) and the ranges (YRD) of
the annual concentrations across sites. d Annual mean OC concentrations at each
site compared to the modeled OC. e, f Campaign-mean OA concentrations and

secondary OA (SOA) mass fractions in OA obtained from individual campaigns in
different seasons (DJF: winter; MAM: spring; JJA: summer; SON: fall) during
2013–2020 in cities fromfivemain regions inChina (BJ: Beijing inNCP; SH: Shanghai
in YRD; SZ: Shenzhen in PRD; LZ: Lanzhou in Northwest (NW); XM: Xiamen in
southeast coast). g, h Campaign-mean primary OA (POA) and SOA concentrations
compared to the modeled concentrations. Source data are provided as a Source
Datafile. The coastline boundaries in themapareoriginated fromNatural Earth free
vector map data (https://www.naturalearthdata.com/). The administration bound-
aries are originated from the National Earth System Science Data Center(https://
www.geodata.cn).
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widespread decreasing OA concentrations with increasing SOA mass
fractions in China.

Drivers of interannual variations of POA and SOA
The decline of OA follows the emission reduction of OA precursors.
We developed VOC, IVOC, and SVOC emission inventories for China
that reflect the changes of fuel uses and end-of-pipe control mea-
sures from 2013 to 2020 (Fig. 2a–c). Anthropogenic emissions of S/
LVOC are estimated to be 2.6–4.0 Tg y−1, among which about
1.4–2.5 Tg y−1 are emitted as POA. The S/LVOC emissions decreased
by 35% from 2013 to 2020, and 70% of the reduction occurred during
the 2013–2017 period. The replacement of residential stoves with
natural gas and electric stoves contributes 56% of the S/LVOC
reduction, especially in winter (Supplementary Fig. S2)3,20. The esti-
mated anthropogenic IVOC emissions are 6.5–7.2 Tg y−1, showing an
8% decrease from 2013 to 2020. Rapid expansion in solvent use leads
to high emissions of volatile chemical products that offset the
reductions in residential and transportation emissions8,21. In addition,
about 35% of non-methane VOC emissions (mostly aromatic com-
pounds) may act as OA precursors (i.e., 9.0–10.3 Tg y−1). The high
aromatic fraction in China is explained by the rapid increase in sol-
vent use and industrial activities since 20008. The economic slow-
down during the COVID-19 outbreak led to a significant decrease of
anthropogenic emissions in 2020. Overall, our estimated annual
emissions of IVOCand S/LVOCare comparablewith other nationwide
inventory values with relative differences of 11–36% (Supplementary
Fig. S3)7,22–24. Compared to the emissions in the United States9, the
annual emissions of IVOC and S/LVOC in China are about 2 times

higher but with much less contributions from open biomass burning
(Supplementary Fig. S4).

We applied these emissions in GEOS-Chem and conducted simu-
lations under assimilated meteorology with key model updates that
improve the model performance on PM2.5 chemical components and
surface hydroxyl radical (OH) concentrations19. The model can repro-
duce the decreasing trends in OC in NCP and YRD, and the simulated
OC concentrations agree well with the observations (Supplementary
Fig. S5). For all-site comparisons, the normalized mean bias (NMB) is
0.01 and the Pearson correlation coefficient (r) is 0.61 (Fig. 1d). Fur-
thermore, model simulations reasonably capture the observed POA
(NMB= −0.05; r =0.87) and SOA (NMB= −0.26; r = 0.54), and the
comparisons do not indicate significant regional or seasonal model
biases (Fig. 1g, h and Supplementary Fig. S5). Statistical values are
similar for the main regions of NCP, YRD, and PRD (Supplementary
Table S2). Note that yearly model comparisons to campaign observa-
tions are statistically less meaningful, showing relatively greater NMBs
for smaller sample sizes (Supplementary Table S3). On average, S/
LVOCand IVOC together contribute to about 75%of the simulated SOA
in China. Such a high contribution is consistent with the findings from
ambient SOA potential analysis and other modeling work in regions of
high anthropogenic emissions25–28.

Figure 2d, e shows the simulated annual mean concentrations of
POA and SOA in China. The population-weighted POA concentrations
exhibit a steady decline of 53% from 7.9μgm−3 in 2013 to 3.7μgm−3 in
2020, while SOA shows a less reduction of 25% from 7.7 to 5.8 μgm−3.
Spatially, the reduction in POA mainly occurs in NCP where the resi-
dential emissions are high (Fig. 2f, g), which is consistent with the
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Fig. 2 | Simulated organic aerosol (OA) precursors, primary OA (POA), and
secondary OA (SOA) trends in China. a–c Anthropogenic emissions of OA pre-
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considered as OA precursors. d, e Simulated population-weighted annual mean
concentrations of POA and SOA over the action-plan period. f, g Spatial difference

of simulated POA and SOA mean concentrations between 2020 and 2013. Source
data are provided as a Source Data file. The coastline boundaries in the map are
originated from Natural Earth free vectormap data (https://www.naturalearthdata.
com/). The administration boundaries are originated from the National Earth Sys-
tem Science Data Center(https://www.geodata.cn).
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greater OA decline in Beijing than in other cities (Fig. 1e). By contrast,
the decrease of SOA is widespread because of atmospheric processing
of diverse precursors despite of the scattered changes in precursor
emission (Supplementary Fig. S6). For a particular case in southern
Sichuan, intensive forest fires in 2020 cause significant enhancements
in POA and SOA (Supplementary Fig. S7). Nationally, POA contributes
to two-thirds of theOAdecline from2013 to 2020. Themass fractionof
SOA in OA becomes greater in most regions (Supplementary Fig. S8),
and the average fraction of SOA increases from 49 to 61%, which are
consistent with the AMS observations (Fig. 1e, f and Supplementary
Table S3).

Underfixedmeteorological inputs or emissions, themodel results
further indicate that the emission changes in OA precursors is the
predominant factor to lower OA concentrations from 2013 to 2020,
especially during the first phase of 2013–2017 (Fig. 3a, b). The annual
reduction of POA emissions relative to 2013 is about 3–9%, corre-
sponding to 1–15% of annual decline in POA concentrations (Supple-
mentary Fig. S9). Meteorological variations may have led to additional
decreases of annual mean POA by 0–6% (Fig. 3c). Unlike POA, both
positive and negative annual changes of SOA present when changes in
SOA precursor emissions are limited (Supplementary Fig. S9). The
modeledmeteorology-driven changes of annualmean SOA range from
−5 to 6% (Fig. 3d), which explains the majority of the year-to-year
variations of SOA on top of the emission-driven decline from 2013 to
2020. The year of 2019 appears to be most meteorologically unfa-
vorable for reducing OA, which agrees with the observed high OC
concentrations in NCP and YRD (Fig. 1c). Compared to anthropogenic
emissions, natural changes in wildfires and biogenic emissions play
negligible roles onOA interannual variability (Supplementary Fig. S10).

To identify key meteorological parameters that affect OA, we
examined the correlations between the interannual variations of these
parameters and the meteorology-driven annual changes of POA and
SOA that are simulated under the fixed-2013-emission scenario (Sup-
plementary Fig. S11). Non-stagnation days (nonStagDay), precipitation,
and relative humidity (RH) correlate strongly and negatively (r = −0.7
to−0.9)with POAandSOA, explainedby the influences of atmospheric
dilution and removal on aerosol concentrations (Fig. 3e). SOA corre-
lates better with cloud fraction (CLD-FRAC) and cloud optical thick-
ness (CLD-OT) (r = −0.6) than POA does (r = −0.3), suggesting that
cloud-driven radiation changes may significantly affect the photo-
chemical oxidation of OA precursors to form SOA29.

To consider the spatial difference ofmeteorological influences on
surface PM2.5 concentrations

30, we trained a random forestmodel with
assimilated meteorological inputs to predict the meteorology-driven
interannual variations of POA and SOA in each grid (Supplementary
Note S1 and Supplementary Fig. S12). The feature importance and
SHapley Additive exPlanations (SHAP) values confirm that CLD-FRAC
and CLD-OT are more relevant and important parameters for
explaining the interannual variations in SOA than in POA (Fig. 3f and
Supplementary Fig. S13). Two other parameters, specific humidity (SH)
and friction velocity (U*), are more important for SOA than for POA.
These parameters are used for the calculations of air density and
gaseous dry deposition (affecting SOA precursors) in the model,
respectively.

Atmospheric reaction conditions also affect the SOA formation.
Interestingly, the reductions of SO2 and NOx during 2013–2020 play
opposite roles in affecting SOA production. Supplementary Fig. S14
shows greater modeled concentrations of atmospheric oxidants (i.e.,
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simulated under the fixed-2013-emission scenario. f Feature importance of
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SOA resolved by random forest (RF) model analysis. CONC stands for the con-
centrations of POA and SOA used in RF which are the model outputs under the
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subscripts, 1 and tp, denote the first model layer and tropopause, respectively.
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OH and ozone) in 2020 than in 2013 in northern and eastern China and
Sichuan Basin. The NOx reduction is one of the main drivers of the
elevated oxidant levels31 and enhances SOA production (Supplemen-
tary Fig. S15). By contrast, the SO2 reduction leads to significantly lower
aerosol liquid water content (ALWC) and greater aerosol pH in those
regions, affecting aqueous SOA production from small carbonyls (e.g.,
glyoxal) and isoprene epoxydiols17,32. These changes offset each other
among regions, leading to only 0−3% of net increases in annual mean
SOA (Fig. 3a, b and Supplementary Fig. S15). On a regional scale and by
monthly evaluation, we found much greater OA changes that can be
attributed to themeteorological and chemical drivers (Supplementary
Fig. S16). However, the model skills in describing finer temporal and
spatial variations ofOAmight be limited becauseof large uncertainties
in estimated emissions and the lack of observational constraints.

Response of OA on precursor reductions
Figure 4 shows the model results under extreme emission-cut sce-
narios for anthropogenic OA precursors from different sectors in
China. We consider the scenarios of cutting all OA precursors in each
sector as clean-energy transition pathways and the scenarios of cutting
individual category of OA precursors as end-of-pipe solutions. The
population-weighted annual mean concentration of OA in the base
year of 2019 is 11.2 μgm−3 in which 38% is POA. Because themajority of
S/LVOC is contributedby residential sources (Fig. 2c), a full elimination
of residential organic emissions may greatly reduce POA by 63% and
SOA by 38%, leading to a total decline of 47% of OA. Less reduction in
SOA is expected because residential is the predominant source sector
of POA whereas solvent use and industry also contribute substantially
to SOA. The 100% cut in residential is not a practical solution because
of the large volume and dispersed nature of residential sources. A less
aggressive cut of 50% of the residential emissions may lower OA by
23%. By contrast, solvent use contributes greatly to the emissions of
IVOC and VOC. A 50%-less solvent use has a potential to lower OA by
9%. In addition, about 11% of OA reduction may be achieved by a 50%
cut in industrial emissions of OA precursors (i.e., mainly from S/LVOC
reduction). Among the source sectors, residential remains as the most

effective sector for controlling OA pollution in China. Our results
suggest that a coordinated multi-sector control strategy is necessary
to effectively lower OA concentrations. However, the fact that a 50%
emission cut on all anthropogenic OA precursors cannot guarantee an
OA level below5μgm−3 indicates a great challenge for China to achieve
the new WHO air-quality guideline.

Discussion
Our study identifies a large and rapid decrease in OA from 2013 to
2020 in China from observations and model perspectives, indicating
remarkable achievements of the implementation of clean air actions
(especially residential fuel replacement). A similar extent of decline
(25–50% of OC) occurred in the United States from 1990 to 201213.
Given the predominant anthropogenic contributions to high OA con-
centrations, variations in natural sources such as biogenic sources and
wildfires negligibly affect interannual variations of OA in China. By
contrast, variations in meteorological conditions play a more impor-
tant role on OA. The modeled POA and SOA are both anti-correlated
with ventilation, precipitation, and relative humidity, whereas SOA is
also affected negatively by cloud fraction and optical thickness due to
photochemical impacts, leading to a greater dependence of SOA
variability onmeteorology thanPOA.We further show the reduction of
NOx and SO2 in China may play opposite roles in SOA formation and
have caused a small offset to the SOA reduction from 2013 to 2020.
The lesser reduction in SOA than in POA that has occurred in China
verifies the outcome of the lack of control on solvent-use emissions of
IVOC and VOC and the chemical and meteorological impacts.

The simulation of anthropogenic OA over a full-volatility range
remains highly uncertain. This study reproduces the observed OC,
POA, SOA, and IVOC concentrations in China (Fig. 1 and Supplemen-
tary Note S3), indicating a good estimate of the total amounts of S/
LVOC and IVOC emissions. Recent emissions from transportation are
consistent among inventories (Supplementary Fig. S3)7,22,23. Our resi-
dential emissions are greater than others because of the use of har-
monized emission factors7,24. Lower residential emissions, however,
would result in lower simulated SOA and worse model-observation
comparisons. The representation of chemical processes for SOA for-
mation and aging in chemical transport models can be an important
source of model bias6. Our model simulations reasonably reproduce
the regional variations of OA (Supplementary Fig. S17 and Supple-
mentary Table S2), suggesting a minor impact of simplified model
representation of multigenerational production and fragmentation
pathways on SOA in regions of high anthropogenic emissions33,34.
Moreover, the meteorology-driven changes of aerosol microphysical
properties (e.g., phase state and viscosity) and their impacts on SOA
formation and lifetime are poorly understood and beyond the model
capability35, which is likely an important local controlling factor but not
a dominant factor across all regions. Future improvements on the
volatility distributions of individual source sectors and the description
of the conversion and fate of full-volatility-range organics are needed
to reduce the regional model bias in SOA simulations.

Our findings have three important policy implications for OA
pollution control: (1) The residential sector is still the biggest con-
tributor of OA in China. As the residential fuel replacement slows
down, the OA pollution likely becomes persistently high in China and
thus challenges the consideration of tightening national air-quality
standards. Future policies on air-quality improvement should prior-
itize the continuation of residential clean-energy transition; (2)
Abatements of VOC have been suggested as a near-future priority for
ozone-pollution control in China31. Solvent use is now the largest
contributor of non-methane VOC and SOA precursors. Coordinated
control on ozone and SOA should encouragemeasures on solvent-use
emissions; (3) Our model simulations suggest the NOx reduction
increased SOA during 2013–2020 in China. In the longer term, if the
NOx-suppressed regime is transitioned to a NOx-limited regime, the
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NOx reduction would decrease surface OH to lower photochemical
production and lower inorganic nitrate concentrations to decrease
ALWC and thus aqueous SOA36, leading to co-benefits on SOA
pollution control.

Notably, high emissions of OA precursors are expected in other
emerging economies such as India and Southeast Asian countries
(Supplementary Fig. S18). High concentrations of OA in PM2.5 have
already been a serious problem there10,37. Similar considerations may
be taken to develop effective pollution-control measures in those
countries. To gainmaximumco-benefits and ensure the effectiveness
of pollutionmitigation policies, future research needs to focus on (1)
characterization of OA species, OA precursor class, or emission sec-
tors by health impacts, which leads to better-tailored control stra-
tegies on the most harmful OA sources; and (2) quantification of the
potential climate impacts on OA under different future emission
scenarios38.

Methods
Model descriptions
We use the nested GEOS-Chem model (13.3.1; https://doi.org/10.5281/
zenodo.5703364) with a revised Complex SOA scheme to simulate
POA and SOA at 0.5° × 0.625° horizontal resolution over the East
Asia19,39. The model is driven by assimilated meteorology from the
NASA Modern-Era Retrospective Analysis for Research and Applica-
tion, Version 2 (MERRA2; http://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2). Anthropogenic emission inventories of OA precursors
over the full-volatility range from 2013 to 2020 are developed on the
basis of fuel-specified Multi-resolution Emission Inventory for China
(MEIC) version 1.43. Compared to the previous version of MEIC, resi-
dential biofuel and coal use are updated on the basis of nationwide on-
site surveys40. The IVOC emissions are estimated from non-methane
VOC by applying specific emission ratio and volatility distribution to
individual source sectors (i.e., industry, solvent-use, transportation,
power, and residential) and fuel types (i.e., diesel, gasoline, coal, resi-
dential biofuel and coal, etc.), which are harmonized from
measurement-based literature results (Supplementary Table S4). We
then validate the emissions and volatility distributions by comparisons
to ambient observations of IVOC (Supplementary Figs. S19–S20). The
S/LVOC emissions are estimated by using the common empirical S/
LVOC-to-OCinventory method but with updated ratios and
measurement-based volatility distributions for individual sectors
(Supplementary Table S5). About 54–63% of the emitted S/LVOC
readily condense to the particle phase to form POA. The good com-
parisons of modeled POA and POA volatility distributions to the
observations validate our estimated S/LVOC emissions (Supplemen-
tary Figs. S5 and S21). Biofuel use is treated as an anthropogenic source
while open biomass burning is considered as a natural source in this
study. All other emissions,modelmodifications and configurations are
described in Supplementary Note S1. Supplementary Table S6 lists the
model modifications for HONO sources, heterogeneous uptake of
HO2, SO2, and NO2, and SOA parameterizations etc. and the improve-
ments of model performance. Updated SOA yields are provided in
Supplementary Table S7.

Simulations and scenarios
Base simulations are performed inGEOS-Chem from2013 to 2020with
a spin-up period of one month. Chemical boundary conditions at the
edges of the simulation domain are provided by global simulations at
2.5° × 2.5° horizontal resolution. Model runs under various scenarios
are listed in Supplementary Table S8 and are described in detail in
Supplementary Note S1. We conducted the model runs from 2014 to
2020 with fixed-2013 meteorology to test the emission-driven (all
sources) interannual variations of OA. Similar model runs with fixed-
2013 emissions were conducted to test the meteorology-driven

interannual variations of OA relative to 2013 (Fig. 3c, d). We then used
these model results as well as assimilated meteorological inputs to
train a random forest model with SHAP analysis to predict the inter-
annual variations of OA and to identify the key parameters. For the two
phases of 2013–2017 and 2017–2020, we first run the model in 2017
with 2013’s emissions of anthropogenic OA precursors, 2013’s emis-
sions of anthropogenic pollutants other than OA precursors, or 2013’s
meteorology, and then run the model in 2020 with 2017’s emissions
and meteorology. This set of test is to quantify the impacts of
anthropogenic emission control on OA, for whichmeteorology-driven
differences only reflect 2017 vs. 2013 or 2017 vs. 2020not the four-year
period (Fig. 3a, b). We applied the population data from the Gridded
Population of the World (https://sedac.ciesin.columbia.edu/data/
collection/gpw-v4) dataset for 2015 to derive the population-
weighted concentrations.

Observations
Comprehensive data sets of ambient observations are used herein for
analyzing OA trends and model evaluations. Annual mean concentra-
tions of particulate OC from 2017 to 2021 in NCP are obtained from
continuous measurements in a national network for monitoring the
PM2.5 chemical composition which currently consists of 34 sites in
28 cities. Similar OC data in YRD are obtained from continuous mea-
surements at 6 provincial-level PM2.5 composition monitoring sites in
Zhejiang province, Shanghai, and Jiangsu province. In addition, annual
OC data at 9 research sites are added to the observation dataset. The
mean POA and SOA concentrations from 162 field campaigns are
summarized and listed in Supplementary Table S1. These OA mea-
surements are conducted by Aerodyne aerosol mass spectrometers or
aerosol chemical speciation monitors from 2013 to 2020, and the
source apportionments are analyzed by using the positive matrix
factorization (PMF) method with the PMF2 or ME2 solvers11. The con-
centrations of hydrocarbon-like, cooking-related, biomass burning-
related, and coal-combustion-related OA factors and those of the
oxygenated OA factors are summed up to represent the POA and SOA
concentrations, respectively. We also collect a large dataset of
campaign-mean concentrations of total IVOC in China to validate the
precursor emissions, andderive the volatility distributions of IVOCand
particle-phase S/LVOC from ambient gas or particle volatility mea-
surements in different places to validate the volatility-bin settings in
the emission inventories. The model results from the same locations
and measurement periods and arithmetic-mean concentrations are
used for model-observation comparisons (Supplementary
Figs. S19–S21). Detailed descriptions about the observations are pro-
vided in Supplementary Note S2. The choice of PMF factors analog to
the modeled OA categories, the model-observation comparisons, and
model consistency within various GEOS-Chem simulations are descri-
bed in detail in Supplementary Note S3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The modeled OA concentrations in China generated in this study are
available in the public repository (https://doi.org/10.5281/zenodo.
11114881). The rawmonitoring network data are protected and are not
available due to data privacy laws. Source data are provided with
this paper.

Code availability
The revised GEOS-Chem code, the run directory for GEOS-Chem, and
the code for reproducing the figures are available at the public repo-
sitory (https://doi.org/10.5281/zenodo.11114855).
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