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BiœmuS: A new tool for neurological
disorders studies through real-time
emulation and hybridization using
biomimetic Spiking Neural Network
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Characterization andmodeling of biological neural networks has emerged as a
field driving significant advancements in our understanding of brain function
and related pathologies. As of today, pharmacological treatments for neuro-
logical disorders remain limited, pushing the exploration of promising alter-
native approaches such as electroceutics. Recent research in bioelectronics
and neuromorphic engineering have fostered the development of the new
generation of neuroprostheses for brain repair. However, achieving their full
potential necessitates a deeper understanding of biohybrid interaction. In this
study, we present a novel real-time, biomimetic, cost-effective and user-
friendly neural network capable of real-time emulation for biohybrid experi-
ments. Our system facilitates the investigation and replication of biophysically
detailed neural network dynamics while prioritizing cost-efficiency, flexibility
and ease of use. We showcase the feasibility of conducting biohybrid experi-
ments using standard biophysical interfaces and a variety of biological cells as
well as real-time emulation of diverse network configurations.We envision our
system as a crucial step towards the development of neuromorphic-based
neuroprostheses for bioelectrical therapeutics, enabling seamless commu-
nication with biological networks on a comparable timescale. Its embedded
real-time functionality enhances practicality and accessibility, amplifying its
potential for real-world applications in biohybrid experiments.

Millions of people worldwide are affected by neurological disorders
that strongly impair their cognitive and/or motor functions1. An
increasing number of technologies and solutions are currently pro-
posed for the treatments of these diseases, whereas being limited to
curbing the progress or managing symptoms in most cases2,3.

Aside frommedical treatment through chemical processes, artificial
devices are developed to improve the quality of life of individuals. To

bring neuroprosthesis into realization, the behavior of biological neu-
rons as well as its connection and interaction with artificial neural net-
works must be considered. To this end, investigation of the interaction
of neuronal cell assemblies is required to understand and reproduce a
specific behavior driven by intrinsic spontaneous activity. Additionally,
long-term replacement of damaged brain areas with artificial devices
implies understanding of their neurophysiological behaviors.
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In this context, new therapeutic approaches and technologies are
needed both to promote cell survival and regeneration of local
circuits4 and restore long distance communication between dis-
connected brain regions and circuits5. Thus, characterization and
modeling of biological neural networks6,7 are crucial to develop the
new generation of neuroprostheses that mimics biological dynamics
and provides adaptive stimulation at biological timescale based on the
principle of electroceutics8,9.

Thanks to the new neuromorphic platforms, performing biohy-
brid experiments involving the bi-directional communication between
a living system and its artificial counterpart is becoming more and
more relevant not only for the development of neuromorphic bio-
medical devices8,9, but also to elucidate the mechanisms of informa-
tion processing in the nervous system10. Recently, major progress has
been made in the field of neuroprostheses6,7, so as neuromorphic
devices are nowcapable of receiving andprocessing inputwhile locally
or remotely delivering their output either through electrical, chemical
or optogenetic stimulation11.

A bi-directional interaction performed according to closed-loop
architecture is mandatory to perform biohybrid experiments6. Closed-
loop technologies has seen significant advancements, particularly in
the realm of adaptive, personalized therapies. A notable development
in this area is the focus on leveraging various sensing systems to enable
therapies that candeliver closed-loop (i.e. adaptive) biomimetic inputs
to dysfunctional neural circuits over time. This approach has shown
particular progress in the treatment of Parkinson’s disease where
adaptive deep brain stimulation devices that adjust stimulation para-
meters based on neural signals, showed improved efficacy and
reduced side effects compared to traditionalfixed-parameter devices12

going as far as restoring functions such as walking13. Another notable
development is found in Brain-Computer Interfaces (BCIs) that have
shown major improvements in enabling real-time adjustments to
enhance system performance and user interaction based on closed-
loop architectures, and finding applications in prosthetic control and
rehabilitation for stroke patients14.

In the neuromorphic engineering research, SNNs are designed
using two distinct approaches: bio-inspired or biomimetic. The former
is widely used for applications such as computation and artificial
intelligence15 using accelerated time simulation of simple neuron
models. The latter uses complex neuron models operating at biologi-
cal timescale to simulate neural network dynamics and/or performing
biohybrid experiments16. To perform bi-directional biohybrid experi-
ments and develop bioelectrical therapeutic solutions for health care
like electroceutics8,9,17, real-time bio-physics interface and SNN pro-
cessing aremandatory to ensure interaction at biological timescale18,19.
However, most of current solutions for biomimetic SNN simulations
are software-based tools such as NEURON20, NEST21 or Brian222 and
show significantly high computation time, especially for complex
neuron models with synaptic plasticity. Hence, they are not suited for
real-time emulation at millisecond time scale23 differently from
hardware-based SNNs18, characterized by complex neurons and
synapses and which allow temporal accuracy of the stimulation.
Nevertheless, real-time stimulation and processing of biological data
using biomimetic Spiking Neural Network (SNN) are still quite rare24.

Hardware-based SNNs are analog or digital. Analog SNN
systems18,25,26 show lower power consumption than digital SNNs27.
Research on memristor devices as synapses has also been
explored28–30. In contrast, digital SNNs are more flexible thus more
suited for prototyping while showing overall quicker design time,
hence constituting the best choice for preliminary experiments and
design of the new generation of neuroprosthetics.

The prominent SNNs hardware platforms are TrueNorth31,
BrainScaleS-232, SpiNNaker33 and Loihi34. TrueNorth uses a digital
architecture but is inspired by the principles of analog computation,
emphasizing low power consumption and parallel processing

capabilities. BrainScaleS-2 is primarily using Leaky Integrate-and-Fire
(LIF) neurons for exploring learning algorithms and plasticity
mechanisms in neural networks. SpiNNaker provides real-time pro-
cessing and offers flexibility in simulating different network config-
urations and neuron models including LIF and Hodgkin-Huxley (HH)
but with a limited number of conductance-based currents.While some
of these systems present mobile versions like35 for BrainScaleS-2,most
of them primarily offer access via cloud-based services rather than
direct physical access hence limiting direct integration into embedded
closed-loop system outside of the provided server-based infra-
structure. Prior work of the team36 presented a hardware-only imple-
mentation of a biomimetic SNN, but facing limitations in terms of
network configuration flexibility, system integration and computation
accuracy.

In this manuscript, we present BiœmuS standing for BIOmimetic
EMUlation Single compartment, an accessible low-cost platform for
real-time emulation of biomimetic SNNs characterized by detailed
biophysical models of neurons and synapses within a fully customiz-
able network. We will also showcase the versatility and user-
friendliness of BiœmuS, specifically tailored for biohybrid experi-
ments and guaranteeing a seamless system integration between the
biological and its artificial counterpart in the context of closed-loop
applications for electroceutical treatments.

Results
Adaptable integrated real-time biomimetic SNN
The targeted low-cost platform is based on a System on a Chip (SoC)
featuring both Programmable Logic (PL, i.e. FPGA) and processors in a
Processing System (PS) part. It is capable of running up to 1024 HH
neurons with fully configurable synapses, supporting a total of 220

synapses. It features on-board monitoring and versatile external
communication options such as Ethernet, Wi-Fi, expansion PMODs
(standard peripheral module interface) and a Raspberry Pi header;
allowing different compromises for monitoring and interconnection.
The system allows real-time emulation of configurable networks as an
accessible computing unit that can integrate biohybrid experiments
with versatility (Fig. 1A).

The platform can be divided in two main parts referred to as
software and hardware as identified in Fig. 1B. The hardware corre-
sponds to the programmable logic part computing the Spiking Neural
Network running in hard real-time at a period of 31.25μs. The software
part includes the configuration,monitoring and control running in soft
real-time, implying fluctuating latency potentially larger than the
deadline that is however not inducing a failure of the system, at a
minimum period of 1ms.

The neurons composing the SNN are modeled with high biologi-
cal plausibility using the Hodgkin-Huxley (HH) paradigm37 in the Pos-
pichil model38 implementing 6 conductance-based currents. An
injected current mimicking synaptic noise following an Ornstein-
Uhlenbeck process39,40 reproduces spontaneous activity by triggering
action potentials on a random basis.

All parameters of the HH model as well as the synaptic noise
parameters are tuned through the 25 parameters available from the
Python scripts (Fig. 2A). The scripts implement 4 preset neuron types
including Fast Spiking (FS), Regular Spiking (RS), Intrinsic Burst (IB)
and Low Threshold Spiking (LTS) cortical neurons and allow the user
to create new presets.

The equations of ion channel states are pre-computed and stored
inmemory so that they can be easily modified to any channel dynamic
without impacting the performances of the system or limiting the
mathematical functions used. The computation of ion currents is
performed using 32-bit floating-point coding allowing emulation of
currents with different dynamics potentially smaller in comparison to
other currents like for Ca2+-based currents in IB or LTS neurons
(Fig. S10B).
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Neurons are connected using biomimetic synapses mimicking
AMPA, NMDA,GABAA andGABAB synaptic receptors

41 to allow fast and
slow synaptic excitation or inhibition, computed using 18-bit fixed-
point coding. The parameters of the synaptic models can be tuned
similarly to the HH parameters through the Python scripts (Fig. 2A).
Synaptic connection can be established between all neurons and
independently weighted using the Python scripts allowing the user to
create custom functions to setup the connections. The generated
configuration file can be emulated using the Python scripts to assess
behavior and verify membrane voltage, ion channel state equations,
internal variables and raster plot (Fig. 2A).

To maximize compatibility and versatility, a Canonical Ubuntu is
running on the processors of the board. Compatibility and versatility
are important criteria, knowing that standards for communication
protocols interfacing biological recording units vary along with man-
ufacturers (e.g., Serial Peripheral Interface (SPI), Ethernet, USB). In
addition, laboratories often have custom setups, designed to reach
their specific needs or inherited from prior experimental settings. The
selected carrier board features notably multiple USB3.0 and Ethernet
ports as well as expansion PMODs (standard peripheral module

interface) and Raspberry Pi headers, allowing implementation of a
wide range of protocols.

The on-boardmonitoring allows storage of all spikes and up to 16
waveforms in a file, and also forwarding this data over Ethernet using
ZeroMQ (as depicted in Fig. 2B), an open-source networking library
widely utilized in embedded systems for its high performances and
portability. Up to 8membrane voltages of neurons canbe selected at a
time and output per Digital-to-Analog Converter (DAC) plugged on
PMOD connectors. Data is moved from the PL to PS using Direct
Memory Access (DMA) interfaced by Advanced eXtensible Interface
(AXI) using a driver, thus providing high throughput and good scaling
almost independently from the CPU load (Figs. S22, S23). The interval
of collection and forwarding for spikes and waveforms can be set from
the application settings.

A wireless setup communication for embedded applications is also
provided viaWi-Fi using a PMOD ESP32 that plugs on PMOD connectors
for spike monitoring. It communicates directly with the PL via SPI pro-
tocol driven by an ESP32microcontroller that is able to receive and send
data throughWi-Fi network (Fig. 2B). This solution offers amore flexible
approach for interconnection of the system that suits well in vivo

Real-time

Host computer

Configuration
• Configure network
• Generate configuration file
• Emulate behavior

Monitoring
• Monitor spike or waves
• Save spike or waves
• Send stimulation

KR260 Carrier board

Programmable logic (PL)

Processing system (PS)
K26 SOM

Canonical Ubuntu 22.04

• Configure SNN from configuration file
• Control SNN
• Collect and export data

C++ Application

SNN HH
• Compute SNN neurons
• Detect spikes from waveforms
• Send spike activity
• Display waveforms

Software Hardware

B

Biohybrid experiments

Emulation

Hardware SNN

Monitoring Setup

User interface

Modeling

A

Fig. 1 | Overview of BiœmuS, a real-time hardware-based SNN for biophysically
detailed emulation and biohybrid experiments. A BiœmuS corresponds to a
platform integrating a hardware SNN allowing user to monitor and configure. the
system through Python scripts and Qt-based GUI. The fully configurable network
allows real-time emulation of custom network configurations that can be inte-
grated in a biohybrid experimental setup acting as a versatile biomimetic artificial
neural network easily interfaced with standard biological recording units. Network

configurations displayed are exported fromBiœmuS software.B BiœmuS runs on a
carrier board integrating a System-on-Module featuringCPU in a Processing System
part (PS) and FPGA in a Programmable Logic part (PL). The real-time hardware
biomimetic SNN is implemented in PL part and controlled through a C++ applica-
tion running in the PS part. The PS part runs a Canonical Ubuntu allowing standard
interfacing and operation.Monitoring is performedby aQt-basedGUI and setupby
Python scripts ran either on-board or on another computer.
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applications where cables are a concern, whilemaintaining a low latency
and acceptable throughput. In addition, this constitutes a reusable ele-
ment to build a reduced and minimal embedded version of the system
targeting a smaller hardware-only target to create an energy-efficient
solution for embedded applications.

The SNN is setup from the configuration file generated by Python
scripts (Fig. 2A) that is either generated directly on-board using the
Python interpreter installed on the Ubuntu operating system or on
another computer. The application controlling the system can be
launched directly on the board using the Ubuntu desktop or remotely
over SSH (Fig. 2B).

The parameters of the application are generated in JSON format in
a configuration file, allowing users to easilymodify parameters without
requiring code recompilation while also preserving parameters of the
run. Theparameters include the addresses forZeroMQ forwarding, the
local saving or other parameters such as the neurons to monitor
(Table S3).

The firmware can be easily updated and loaded by running bash
scripts, allowing convenient management of alternative versions
developed for a custom dedicated hardware. An external stimulation
trigger for each neuron with an independent duration is available via
ZeroMQ to easily integrate the system in closed-loop setups.

Example network configurations
This sectiondemonstrates how the SpikingNeuralNetworkof BiœmuS
can be configured to be exploited for real-time emulation based on

biological models using the provided Python scripts. Two examples of
network configurations are demonstrated using in vitro and in vivo
experimental models.

To offer a tangible example of network configuration for neuro-
logical disorders studies, in vitro cortical organoids have been selected
as a demonstration case. Cortical organoids are three-dimensional
tissue cultures derived from stem cells widely used to investigate the
human brain properties. Thanks to their remarkable capability to
replicate specific brain areas42–44, they allow for detailed studies of
neural development and organization. Moreover, cortical organoids
demonstrate functional maturation comparable to that observed in
human, a feature not typically observed in traditional primary rat
cultures45. This unique ability to recapitulate human brain-like prop-
erties makes cortical organoids an invaluable tool for advancing our
understanding of neurodevelopmental processes and neurological
disorders.

The presented model is based on two types of structures
according to a recent study44, promoting different synaptic connec-
tions between organoids as depicted in Fig. 3A. Thismodel constitutes
a good example to illustrate how the network can be configured
according to custom synaptic connection rules defined by the user, to
align with a specific model.

The structure referred to as “single” serves to physically isolate
organoids, preventing any direct connections between them. This
configuration functions as a reference model, allowing observation of
the independent activity of each organoid. On the other hand, the

KR260 Carrier board

Programmable logic (PL)

Processing system (PS)
K26 SOM

SNN HH
Calculation core

Spike monitoring

Waves monitoring

AXI DMA

dma proxy driver
Kernel

Userspace
C++ Application

Canonical Ubuntu 22.04

Scope

DAC
Waves

ESP32
Spikes

Ethernet

Waves

Spikes
SSH

Host computer

Monitoring

Setup

Wifi

Host computer

SNN-HH.py

NeuronHH.py Synapses.py

HwConfigFile.py

SnnEmulator.py

Emulate FPGA behavior

KR260 Carrier board

Programmable logic (PL)

Processing system (PS)
K26 SOM

Canonical Ubuntu 22.04

• Configure SNN from configuration file
• Control SNN
• Collect and export data

C++ Application

SNN HH

SNN-HH.py

B

A

Fig. 2 | Architecture and system integration of the platform. A Overview of
system setup from the configuration file generated by Python scripts ran either on-
board or on another computer. The configuration file is then read by a C++ appli-
cation running on Canonical Ubuntu operating system in the Processing System
(PS) part to set up the SNN in Programmable Logic (PL) part. Configuration can be
emulated beforehand to predict the behavior. Example membrane voltage and
raster are exported fromBiœmuS software.B Schematicof systemcommunication.

System control is achieved through the C++ application either remotely via SSH or
directly on-board from the Ubuntu desktop. Spikes can bemonitored concurrently
using Ethernet, Wi-Fi and on-board file saving. Waveforms can be monitored con-
currently using Ethernet, visualization on scope by probing the Digital-to-Analog
Converter (DAC) and on-board file saving. Example membrane voltage is exported
from BiœmuS software.
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“connected” organoids, or connectoid, positions organoids several
millimeters apart while facilitating constrained interconnections,
typically forming axonbundles thatpredominantly link neurons on the
organoid surface46,47. This setup promotes stronger andmore intricate
biological activity44.

An additional Python class has been created for that specific
model to assign normally distributed XY coordinates to neurons and
generate synaptic connections based on specific rules for each struc-
ture. The synaptic connection probability inside organoids is set as a
linear function of the relative distance between neurons, where the
connectionprobability for the connectedorganoids is a linear function
of their relative distance to the center of the organoid. The con-
nectivity map obtained, shown in Fig. 3B, presents the connectivity
map of internal and external synapses confirming the synaptic con-
nection rules. The matrix of connection and list of neurons generated
is then simply translated to hardware SNN configuration by the exist-
ing software (Fig. 2A), showcasing a case of custom user script to
generate the network configuration.

The two structureswere emulated using 1024 neurons distributed
equally between the two organoids with a similar inhibitory/excitatory
ratio to biology44. Inhibition is modeled using FS neurons connecting
by GABAAR and excitation by RS neurons connecting by AMPAR.

While the number of neurons used is significantly lower, the
emulation is able to reproduce from network bursts to the burst syn-
chronizationbetweenorganoids in the connected structure44 as shown
in Fig. 3C.

An additional feature of the network configuration was explored
by introducing specific synaptic receptor inhibition to mimic drug
treatments, such as full antagonist to AMPAR (CNQX) and full
antagonist to GABAAR (Bicuculine) (Fig. S14). The results obtained
suggest that certain behaviors, such as epileptic seizures, could be
replicated, but would require partial receptor inhibition rather than
complete inhibition, or periodic inhibition over short durations.

The second demonstration illustrates various network config-
urations aimedat recapitulating the electrophysiological features of an
in vivo cortical biological network. The modeled network focuses on
the Rostral Forelimb Area (RFA) region of the rat brain with the
intention to exploit the artificial RFA to promote stimulation of the
living brain (Fig. 4A). This bio-artificial interaction aims to facilitate
adaptive intracortical microstimulation, delivered to a spared region,
the Somatosensory area (S1), via the neuromorphic biomimetic SNN,
to explore innovative strategies of open-loop electroceutical for brain
repair as in17.

The network configurations utilize up to 1024 neurons distributed
as FS neurons connecting with GABAAR for inhibition and RS neurons
connecting with AMPAR for excitation, similarly to the previous
example. However, this demonstration case introduces a network
topology in a brain-like fashion, composed by a set of clusters with a
higher density of connections within and fewer connections among
them48, as depicted in Fig. 4B. The synaptic connection rule followed a
close neighbor pattern. The parameters were swept to replicate the in
vivo recorded activity. This illustrates how the network can be
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Fig. 3 | Example network configuration based on cortical organoids. A Two
structures of cortical organoids modeled using FS and RS neurons connected with
excitatory and inhibitory synaptic connection (AMPAR and GABAAR) based on
biological culture observations and their spiking activity. Synaptic connections are
promoted according to rules depending on the structure to reproduce, spatial
placement of neurons and the ratio of inhibition/excitation connection observed.
The network configurationwas exported fromBiœmus software.BHeatmapof the
number of connection per neuron for the two structures of organoid inter-
connection showing internal and external synaptic connections. Internal connec-
tions correspond to the synaptic connections inside the two organoids of both

structures in a closer neighbor connection manner. External connections corre-
spond to synaptic connections between organoids for the connected structure,
favoring synaptic connection on the exterior ring of the organoid. Heatmap are
basedon anaverageof 40 randomgenerations of synapses for a givenXYmapping.
C Raster plot of 10-second emulated activity of a single and connected structure
using BiœmuS, highlighting network burst synchronicity for the connected struc-
ture. The spiking activity emulated corresponds to a maximum probability for
connection inside and outside the organoids of respectively 10% and 2% with 512
neurons per organoid and a 20% inhibition/excitatory neuron ratio.
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configured to adapt to a different connectivity model using the pro-
vided configuration scripts.

A total of 80 distinct configurations were simulated, varying
parameters related to synaptic noise, synaptic weight, and the ratio of
inhibitory/excitatory neurons. These configurations were then com-
pared with the biological recordings according to three main bio-
markers, specifically Mean Firing Rate (MFR), Mean Bursting Rate
(MBR) and Burst Duration (BD) as summarized in Figs. 4C, D. Data was
collected from the RFA area (i.e. the BNN) of 6 different Long Evans
rats. Then, aforementionedmetrics were computed for both the BNNs
and the 80 SNNs, to derive a grade reflecting differences between two
types of networks. From the radar plot of Fig. 4C, a subset of 6 SNN

configurationswas chosen, i.e. thosewhichmaximized the similarity to
the BNNs.

The biomarkers related to these configurations were juxta-
posed with the biological data according to MFR, MBR and BD
in Fig. 4D. No significant difference between the SNN and the
BNN was observed for the three metrics indicating the high level of
performances of our SNN in emulating the activity of the BNN.
The absence of statistical significance was demonstrated by per-
forming a Mann–Whitney U-test (Table S5). Additionally, raster plot
visualization for comparison was provided in Fig. 4E, highlighting
similarity in the spiking activity between the best SNN and one
representative BNN.
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Fig. 4 | Example network configuration based on rostral forelimb area of
rat brain. The data represented corresponds to a dataset comprising the 6 best
Spiking Neural Network (SNN) among the 80 tested configurations and recordings
of 6 Biological Neural Networks (BNN). A Representation of the BNN modeling
according to a brain-like clustered network topology for the SNN. The network
configuration was exported from BiœmuS software. The rodent head was cropped
from the work of Servier (https://creativecommons.org/licenses/by/3.0/).
B Synaptic connectivity map showing the number of the synapses received per
neuron for the best configuration.CRadar plot comparing the fitting of the 80 SNN
configurations to BNNs in terms of Mean Firing Rate (MFR), Mean Bursting Rate
(MBR) and Burst Duration (BD). Highlighted in green are the 6 best SNNs (i.e. those

configurations maximizing the similarity to the BNN group). D Distribution of the
Mean Firing Rate (MFR), Mean Bursting Rate (MBR) and Burst Duration (BD) for the
best SNN (977 neurons) and the 6 BNNs (282 neurons). Data are summarized in
violin plots, where the outlines illustrate kernel probability density, i.e. the width of
the shaded area represents the proportion of the data located there. Inside, the box
plots (grey) where the horizontal lines denote the 25th and the 75th percentile
values, the central white line themedian value and the whiskers denote the 5th and
the 95th percentile values. p =0.9626 for MFR, p =0.7944 for MBR, p =0.7279 for
BDnon-parametricMann–WhitneyRank Sum test (two-sidedhypothesis test).E 30-
s raster plots of the best SNN compared to the spiking activity of a
representative BNN.
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Prototypes of biohybrid experiments
This section presents examples of biohybrid experiments using the
system to interact with commonly used recording interfaces. It aims to
show how different network configurations of the system from single
neuron to larger network can interact with biological counterpart,
whether in vitro or in vivo, through various interfaces.

A first demonstration case supporting the versatile integrability of
the system with existing solutions for biological interfacing is a closed-
loop stimulation between BiœmuS and the new generation of HD-MEA
(High-DensityMicroElectrodeArray)49 (Fig. 5A).HD-MEAwas selected for
this demonstration case as a promising recording device garneringmore
attention and becoming more widespread in closed-loop setups50,51.

Connected organoids were plated on HD-MEA to interact with an
artificial neural network and allow a clear delimitation between
recording and stimulation sites. Electrodes were configured to allow
activity recording on left and right organoids while allowing stimula-
tion of the right organoid based on an activity scan and stimulation
electrodes were manually selected among the ones exhibiting the
most activity (Fig. S16). A single organoid wasmodeled using BiœmuS
with a network of 1024 neurons emulated for 180 s. The closed-loop
was controlled by a Python application running on a ‘gateway’ com-
puter responsible for control, activity scan and stimulation, that will be
referred to as the closed-loop software. Spiking activity of BiœmuSwas
forwarded to the gateway computer using ZeroMQ over Ethernet and

BioemuS

KR260

HD-MEA

Maxwell One HD-MEA system

Host computer

Custom Python script

StimulationNetwork
burst?

Stimulation Network
burst?

BioemuS

RFA
S1

In-vivo stimulation

INTAN RHS

A

B

left organoid
right organoid

excitatory neuron
inhibitory neuron
stimulated neuronstimulation to HD-MEA

stimulation to BioemuS

Fig. 5 | Prototypes of biohybrid setups integrating BiœmuS. A Closed-loop
interaction between connected organoids plated on HD-MEA system and single
organoid emulated on BiœmuS. The network burst detected in the left organoid of
the connectoid triggers stimulation on exterior neurons of the emulated single
organoid on BiœmuS. The network burst detected in the activity of BiœmuS trig-
gers stimulationon the right organoidof the connectoid. Detection and stimulation
commands are carried out in different threads. Stimulation of BiœmuS is per-
formed using the external stimulation slot. BiœmuS stimulation triggers are shown
by blue triangles and stimulation to HD-MEA by red triangles. BiœmuS is running
for 180 s starting from 180 s and synchronizedwith HD-MEA activity from collected

time stamps± 100ms. The raster plot is generated from python. The experiment
was replicated 3 times with similar results using different detection threshold. B In
vivo stimulation driven by BiœmuS spiking activity as a model of post stroke
rehabilitation via biomimetic neural pattern stimulation. The spiking activity of the
SNN triggers stimulation on an in vivo culture using the INTAN RHS2116 headstage.
Electrode arrays were placed in the rostral forelimb area (RFA) and in the primary
somatosensory area (S1) in the brain of adult Long-Evans rats. The experiment was
replicated 5 times and the entire dataset has been analyzed with no discrimination
among animals in17. Thenetworkconfiguration andactionpotentialswere exported
from Biœmus software.
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stimulation was sent using ZeroMQon the external stimulation port of
BiœmuS. A stimulation was sent to the HD-MEA when a network burst
occurs on BiœmuS.

The closed-loop software controlling both systems records
activity of HD-MEA before and after the closed-loop for 180 s while
collecting time stamps of stimulation triggers. This experiment
showcases the potential of BiœmuS to operate as a tool to study the
impact of adaptive stimulation on a culture following the principles of
electroceutics, while highlighting its ability to adapt to a standard
biophysical interface. The benefit of the user-defined model through
customizable Python scripts to adapt to a specific application is also
showcased here by assigning XY coordinates to neurons to take
advantage of the spatial resolution provided by the HD-MEA.

The results obtained show that the closed-loop successfully trig-
gers stimulation to both systems, however evaluating latencies and
handling stimulation artifacts are limitations of the experiment setup.
Precise synchronization of both systems would require additional
development such as adding Precision Timing Protocol (PTP) to syn-
chronize both system clocks or better characterization of the latency
induced by the HD-MEA API as the latencies of BiœmuS already have
been characterized (Figs. S18, S21, S22 S23). As observed in Fig. 5A,
stimulation artifacts are captured by the Maxlab Software, hence
potentially inducing uncontrolled escalation as artifacts are con-
sidered as spiking activity.

A second type of interactionwith the living thanks to the real-time
behavior of BiœmuS is to drive an open-loop in vivo stimulation by the
SNN17 as shown in Fig. 5B. Thisopen-loop stimulationwas applied to rat
brains as a neuromorphic-based open-loop set-up for neuroprosthetic
applications with the ultimate goal to be exploited in post-stroke
rehabilitation studies6,7. The spikes from neurons emulated by Biœ-
muS become inputs to the INTAN RHS recording/stimulation unit to
trigger stimulation in S1 (somatosensory area), to mimic the Activity
Dependent Stimulation (ADS) paradigm in which spikes from RFA
trigger stimulation in S152,53.

The spontaneous behavior of the neurons is tuned to obtain slow
or fast activities by tuning the parameters of the equation ruling the
synaptic noise17. In this setup, the latency between spike detection in
the SNN and stimulation is less than a millisecond.

Performances
The low-cost platform targeted is the AMDXilinx Kria KR260 Robotics
Starter Kit carrier board embedding the K26 SOMbyAMDXilinx (Zynq
Ultrascale+ MPSoC architecture). This entry level platform is capable
of running 1024 neuronswith 6 conductance-based currents for a total
of 220 conductance-based synapses running in hard real-time with a
time step of 31.25μs. The system can also run on AMD Xilinx Kria
KR260 Vision Starter Kit carrier board with for only restriction the
number of PMODs, preventing concurrent use of DAC waveforms and
Wi-Fi spikemonitoring. The system is also compatible with Petalinux, a
lighter operating system for AMD Xilinx targets facilitating tuning of
the Linux kernel to enable functionalities such as pre-emptive
scheduling.

While most of the memory available is used, less than 50% of the
computing capacity (Logic and Digital Signal Processing slices) of the
board is used by the system (Fig. 6). As the design is implemented on
an entry level target, the projection of the resources utilization on
larger targets suggests the possibility to run several calculation cores
in parallel (Fig. 6) as well as allowing faster emulation. The porting of
the computation core is greatly facilitated by the use of High Level
Synthesis design for computation modules allowing faster generation
of optimized hardware for a given target.

The average latency observed to send spikes through ZeroMQ is
typically under 500μs (Fig. S23). The average latency observed for
spike monitoring through Wi-Fi using ESP32 is between 0.792ms and
2.098ms (Fig. S21) depending on the data collection interval. The
different paths of monitoring implemented allow finding compro-
mises between throughput, latency and data integrity, providing a
great flexibility in adapting to user requirements. Overall system
power consumption is 6.50W with 3.42W associated with the calcula-
tion core (Fig. S20).

Discussion
In this paper, we introduce BiœmuS, a low-cost, embedded, flexible
and real-time biomimetic tool, which allows to perform biohybrid
experiments for real-time emulation of living systems.

Our embedded system offers a real-time, cost-effective and user-
friendly solution for closed-loop applications, addressing accessibility
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Fig. 6 | Hardware resource utilization.Utilization formainmodules implemented
on AMD Xilinx KR260 Robotic Starter Kit and projected on high-end evaluation
boards from AMD Xilinx (Versal Premium Series VPK120 and VPK180 Evaluation

Kits and Virtex UltraScale+ VCU118 Evaluation Kit). Logic; LUT and Flip-Flops.
Memory; total memory implemented as BRAM and URAM. DSP; number of Digital
Signal Processing (DSP) slices.
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challenges prevalent in current high-performance alternatives. Unlike
server-based infrastructures or complex systems like TrueNorth,
SpiNNaker and BrainScaleS-2, which can be expensive and difficult to
integrate into experimental setups, our solution prioritizes simplicity
and accessibility. Notably, even software alternatives like Brian or
NEURON, despite GPU acceleration, frequently struggle to achieve the
low latencies necessary for closed-loop application.

Thanks to its straightforward setup facilitatedbyPython scripts, the
system becomes easily accessible to neuroscientists, ensuring they can
efficiently utilize its capabilitieswithoutbeingoverwhelmedby technical
difficulties. Additionally, thanks to the generic Ubuntu operating system
handling communication, the system is capable of implementing a
variety of complex protocols such as USB 3.0, USB 2.0 or Ethernet while
maximizing software compatibility. Thus, our solution greatly facilitates
integration, overcoming the usual drawback of time-consuming and
technically intricate programming associated with low-level FPGA
development.While non real-timeoperating systemsasUbuntu induce a
discernible and fluctuating latency, using PL driven interrupt and AXI
DMA allows obtaining relatively low latency about the tens of micro-
secondswhere the biological time is defined to onemillisecond. A trade-
off between latency and compatibility/versatility can be found by using
solutions such as data sent directly by PL through expansion PMODs or
ESP32, real-timeoperating systemor running the applicationon the real-
time cores of the chip. Nonetheless, direct monitoring on the PL that
drastically reduces the latency remains possible using the various con-
nectors of the board such as PMOD interface, GPIO or SFP.

On the current target, themainbottleneck lies in thememoryusage
essentially allocated for synapses weights and premultiplied rate tables
for ion channel states. Since the current target is using a preceding
architecture, more efficient architectures of memory can be found in
recent larger targets such as High Bandwidth Memory (HBM) that inte-
grates DRAM directly into the FPGA package, thus providing drastically
higher depth and bandwidth. Latest AMD Xilinx chips also incorporate
adaptive SoCs that provide significantly higher computation power
(Fig. 6), notably with native floating-point DSP and AI engine while still
embedding a Zynq for setup and control. Hence porting a similar
architecture of SNN on these targets would significantly increase per-
formances and create a promising alternative to standard GPU.

While the use of a complex neuron model limits the number of
neurons that can be implemented, our system derives several benefits
from this approach in various aspects. The use of the Hodgkin-Huxley
(HH) model significantly facilitates interaction with neuroscientists, as
it relates to biophysical parameters, unlike the simpler Leaky Integrate-
and-Fire (LIF) or Izhikevichmodel. The system notably proved that the
network is able to maximize fitting for specific parameters as high-
lighted by the rat brain network configurations or to replicate biolo-
gical dynamics such as burst synchronisation between connected
organoids. Even using generic parameters of FS and RS cortical neu-
rons from38 and less neurons that the biological counterpart, network
configurations maximizing fitting for specific biomarkers could be
obtained by tuning the parameters of the network. Hence, the system
can be suited for closed-loop experiments focusing on certain bio-
markers, as in17, where the primary focus is the MFR.

The open-loop in vivo biohybrid experiment promoted the use of
BiœmuS as a tool to investigate stroke rehabilitation with an electro-
ceutic approach by providing stimulation following a biomimetic
neural pattern. The preliminary results presented in17, that show effi-
ciency to increase the firing activity of both RFA and S1 compared to
the pre-stimulation condition thanks to the neural biomimetic stimu-
lation pattern, suggest that the biomimetic SNN contribute to improve
the rehabilitation. These results support the hypothesis suggesting
that a neural biomimetic patternmore effectively entrains the network
in response to stereotyped stimulation,making the population tend to
bemore responsive to incoming electrical stimuli, which is in line with

recent human studies54. Hence, driving stimulation from a connected
network instead of a single stochastic neuron with BiœmuS would
allow further investigation of that hypothesis and more globally of
stroke rehabilitation in an electroceutic approach by providing
activity-dependent stimulation.

The current experimental setup for the closed-loop biohybrid
experiment with the HD-MEA shows certain limitations. Nonetheless,
thanks to the architecture of BiœmuS that runs a commercial Linux,
solutions including more specific design directly controlling and
transferring the data from the HD-MEA to the hardware part for real-
time processing could be considered. Furthermore, this experimental
setup benefits from a facilitated tuning of the stimulation patterns or
protocols by changing the parameters of the different configuration
files. The HD-MEA setup could be extended to implement closed-loop
electroceutical interventions, emulating the dynamics of neurological
disorders like Parkinson’s or ALS, ultimately aiming to restore normal
biological function.

The system has proven its ease of integration demonstrated by
the biohybrid experiments conducted on some of the most wide-
spread biophysical interface with low-level communication protocol
(pulse on digital output) as well as complex communication protocols
(Wi-Fi and Ethernet). The ease of use and flexibility also have been
particularly promoted by the examples of network configurations
showing examples of different complex networks created from cus-
tomizable Python scripts (Figs. 3, 4). The experiment in Fig. 5A also
highlighted this feature by interfacing the BiœmuS to a biophysical
interface using only Python scripts. While the accurate modeling of
large network dynamics is constrained by the number of implemented
neurons, the real-time processing capability of the SNN, coupled with
interconnections at various latencies and throughputs, makes it a
valuable tool for closed-loop setups.

The presented applications demonstrate the flexibility of BiœmuS
in adapting to the study of various biological processes, including the
potential for neuroprostheses replacement through closed-loop
in vitro stimulation driven by BiœmuS (Fig. 5A) and post-stroke reha-
bilitation through in vivo stimulation (Fig. 5B).

Methods
SNN modeling
The neurons composing the network are modeled using the Hodgkin-
Huxley paradigm37, the most biomimetic model considering the bio-
physical meaningfulness as an essential criterion55. The biophysically
meaningful nature of themodel being essential to relate parameters of
the models to biology. The model of cortical neuron implemented is
based on the Pospischil model38 that features 6 conductance-based
currents allowing emulation of 4 classes of cortical neurons being “fast
spiking” (FS), “regular spiking” (RS), “intrinsically bursting” (IB) and
“low-threshold spike” (LTS). A current mimicking intrinsic noise
observed in the brain following an Ornstein-Uhlenbeck process39,40 is
injected to reproduce spontaneous activity by triggering action
potentials on a biomimetic basis.

The different conductance-based synaptic receptors aremodeled
using the biologically meaningful Destexhe model41 allowing emula-
tion of AMPAR, NMDAR, GABAAR and GABABR.

The noise seeds are generated by the PS and sent through AXI
LITE to the noise generator thus allowing true random seeds as well as
fixed seeds for debugging.

The computation of ion channel states is based on ‘premultiplied’
HHrate function tables similarly to56, allowing computationof eachHH
variable from a single multiply and add from table values looked-up
based on the membrane voltage (Eq. (1)). This method eliminates the
FPGA-specific limitations for complex mathematical functions such as
division and exponential. A trade-off between accuracy and resource
utilization can be balanced with the size of memory implemented to
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store the rate function tables (Fig. S6).

xn+ 1 = r1ðVnÞ× xn + r2ðVnÞ ð1Þ

where, xn+1 and xn are respectively the new and current value of the ion
channel state, Vn is themembrane voltage at previous time step, r1 and
r2 are the ion rate tables decoded from the membrane voltage.

Applied to common equations of ion channel states, the pre-
multiplied tables can correspond to Eqs. (2), (3) and Eqs. (4), (5).

r1ðV Þ= 1� dt × ðαxðV Þ+βxðV ÞÞ ð2Þ

r2ðV Þ=dt ×αxðV Þ ð3Þ

r1ðV Þ= 1�
dt

tauxðV Þ
ð4Þ

r2ðV Þ=
dt × x1ðV Þ
tauxðV Þ

ð5Þ

where, r1 and r2 are the pre-computed rate table for ion channel states
decoded from the membrane voltage, dt the time step in ms,
taux, x∞, αx and βx the equation of the ion channel state depending
on the formalism used.

The step and range of the tables are tunable fromsoftware but the
generic rate table size is fixed in hardware to 2048 (1 BRAM) that
provides a good compromise between accuracy and resource usage.
The default range is set to −76mV to 52mV that covers the amplitude
range for the preset neurons. Temporal discretization using a small
time step compared to the dynamics is chosen to allow numerical
solving using the Euler-Maruyama’s method.

FPGA design
In PL part, the computation core is clocked at 400MHz, the AXI
communication to PS at 200MHz and external components on PMOD
connectors such as DAC and ESP32 at 50 MHz. The use of multiple
clocks is justified by hardware limitations of components and blocks,
multiple clocking allows all parts of the design to work close to their
maximum to maximize performances. Crossing clock domain is han-
dled by dual clock BRAM and FIFO for most critical signals, the
remaining signals are either handled by double flip-flops or extended.
The computation core is fully pipelined.

Computation of ion channels states and currents are encoded
using 32-bit floating-point. It grants good stability and accuracy to the
computation of ion channels that are critical parts of the neuron
dynamics. Since ion currents can have different dynamics potentially
smaller in comparison to other currents, floating-point coding is more
suited for most computation and especially for multiplications
(Fig. S10). Calculation of the current sum and Euler Murayama’s
method are encoded using 32-bit fixed-point. Large fixed-point coding
for sum operations allows to save resources and computation latency
compared to floating-point, while guaranteeing consistent accuracy.
The synaptic noise and synapses that have less critical accuracy or
performwell with fixed-point coding are computed with 25 and 18 bits
fixed-point encoding to fit the ranges of DSP slices. The injected sti-
mulation current only involved in the final sum is coded using 32-bit
fixed-point. Synaptic weight is coded on 14 bits and can be multiplied
by a factor specified in software to mimic a larger network behavior.

The numerical solver used is the Euler-Maruyama with a small
time step compared to the system dynamics to guaranty stability
(31.25μs)36. Tomaximize performances and limit resources usage, DSP
of the boards were inferred using macros for most operations. The
model is validated using Python implementation emulating both pre-
multiplied rates and fixed-point coding.

System monitoring and control
The PS part is running the Canonical Ubuntu 22.04 for ZynqMP
architecture. The main application controlling the SNN is coded and
compiled in C++11. Setup from the PS to the PL is implemented by AXI
LITE controlled through /dev/mem in the C++ application.

Communication between the PL to PS is implemented using AXI
DMA controlled by the the C++ application using the dma_proxy driver
provided by AMDXilinx. The application implements a thread for each
AXI DMA channel and cyclic buffers for AXI DMA transfers.

The Ethernet communication implements ZeroMQ Push-Pull
messaging pattern with a different port for each data (spikes, wave-
forms, and external stimulation) that can be set from the JSON
configuration file.

The interval of data collection can be set from the JSON config-
uration file from 1 ms to 255 ms for spike collection via DMA, from
3.125ms to 15ms for the waveforms collections. The Wi-Fi connection
is using UDP protocol and the data collection interval can be set from
2ms to 20ms. The spikes can be saved and stored using different
formats. Sending formats are either binary encoded (one bit per neu-
ron) or as a cumulative sum for each neuron. Saving formats are either
binary encoded or comma separated.

The data collection interval for the spikes andwaveforms through
the DMA can impact the load of the application, especially with non
binary streams that create dependence with the activity of the net-
work. A small interval will generatemore frequent write infile or frame
sending thus increasing the CPU load. The limit corresponds to a data
collection interval smaller than the writing or sending time of the
frame therefore blocking the software in a thread.

The data collection interval for Wi-Fi forwarding is limited by the
hardware and latency of theWi-Fi protocol so as high intervals generate
too large buffers and too small interval may generate packet losses.

DMA-based monitoring can run local saving and Ethernet for-
warding concurrently inmost cases with large data collections interval
but may dysfunction on small intervals due to processor perfor-
mances. Spikes and waveforms monitoring through DMA can run
concurrently in separate threads but may also dysfunction on small
data collection intervals due to processor performances.

Wi-Fi, DAC and DMA-based monitoring can run concurrently
without impact on performances. Bash scripts are used to compile the
software, update the firmware and launch the application.

An external stimulation controlled via Ethernet over ZeroMQ
allows to send a stimulation of a given time to a given neuron by
passing the stimulation duration for each neuron to the PL using the
AXI DMA (Fig. S4).

Network configuration
Connected cortical organoids. The “single” physically separates the
organoids to prevent connection. The “connected organoids”, or
connectoid, places organoids millimeters apart while constraining the
interconnection to a channel of 150μm width46,47. The emulation
model implements cortical neurons using FS and RS types connected
by AMPAR and GABAAR.

The synaptic connection rules for the synaptic connections inside
organoids are ruled by Eq. (6) that favors connection to neurons close
to each other normalised by the diameter of organoid. The connec-
tions between organoids are ruled by Eq. (7), relying on the location of
neurons in the organoid to promote connections in the exterior ring.

psingle =pmax × 1�
dnpre ,npost

rorg

 !
ð6Þ

pconnectoid =pmax ×
1
2
×

dnpre ,orgpre

rorgpre

+
dnpost ,orgpost

rorgpost

 !
ð7Þ
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where pmax is the maximum probability of connection, d is the dis-
tance, r the radius, npre and npost the pre-synaptic and post-synaptic
neurons, orgpre and orgpost the center of the pre-synaptic and post-
synaptic organoids.

The recordings were performed using the MED64 system (Alpha
MED Scientific) and electrical signals were recorded at 37 °C at
20,000Hz sampling rate. The recording noisewas eliminated by band-
pass filter between 0.1 and 10,000Hz during the measurement, then
filtered offlinewith a band-passfilter (300–3000Hz) for spike analysis.
Spikes were considered using a threshold of ±5 σ, where σ represents
the standard deviation of the baseline noise during quiescent periods.
The characterization of the firing activity was conducted using Python.
The analysis focused on Inter-Spike Interval (ISI, ms), Mean Firing Rate
(MFR, spikes/s), Inter-burst interval (IBI,ms) andburst length (ms). The
burst detectionwas performed according to57 using the stringmethod
(i.e. a max inter-spike interval of 100ms and 5ms asminimumnumber
of intra-burst spikes).

Rat Rostral forelimb area. A total of six adult, male, Long-Evans rats
(weight: 300–400g, age: 2–4months; Charles River Laboratories,
Calco, LC, Italy) were used in this study. The experiments were con-
ducted at the Animal Facility of the Italian Institute of Technology (IIT)
in Genova, Italy, with prior authorization granted by the Italian Min-
istry of Health and Animal Care (Italy: authorization n. 509/2020-PR).
For detailed surgical procedures, please refer to58.

Recording of wide-band signals from the rostral forelimb area
(RFA) and primary somatosensory area (S1) were carried out using 16-
channel microelectrode arrays (MEAs) (A4 × 4–5mm-100-125-703-A16,
NeuroNexus) connected to Intan RHS headstages. These MEAs were
part of a bidirectional electrophysiology interface system equipped
with 16 stimulation/amplifier channels linked to the probes.

All the preprocessing analyses of the in-vivo recordings, up to
their spike sorting, were performed in MATLAB (The MathWorks,
Natick, MA, USA). The ePhys data underwent preprocessing via a
customMATLAB pipeline, including a 4th order elliptic bandpass filter
(300–3000Hz) to eliminate low-frequency components. A power-
based spike detection algorithm known as Stationary Wavelet-based
Teager Energy Operator (SWTTEO)59 was employed to identify spikes
from the filtered data. The SWTTEO involved two levels of Stationary
Wavelet Transform (SWT) paired with the use of the Teager Energy
Operator (TEO). The TEO outputs were smoothed, summed, and their
combination was thresholded. Subsequently, multiunits were sorted
using a mixture of skew-t distributions on PCA-extracted features,
following the approach outlined in60.

The characterization of the firing activity of both the biological
and artificial neural networks was performed using Python. The ana-
lysis focused on several biomarkers including Mean Firing Rate (MFR,
spikes/s), Mean Bursting Rate (MBR, bursts/min) and Burst Duration
(BD). The burst detection was performed according to57 using the
string method (i.e. a max inter-spike interval of 100ms and 5ms as
minimum number of intra-burst spikes).

The comparison with biological networks was graded as the
absolute values of differences normalized considering the maximum
and minimum values of each biomarker among all configurations,
following Eq. (8):

Grade= 1� jdif f i,mj �minðjdif f mjÞ
maxðjdif f i,mj �minðjdif f mjÞÞ

ð8Þ

where diffi,m is the i-th difference between the m-th biomarker of the
i-th BiœmuS network configuration and the target value of the same
biomarker of the biological network. To evaluate statistically sig-
nificant differences, among the two conditions (SNN group vs BNN
group) we adopted the non-parametric Mann–Whitney U-test Figure.
P-values were set at 0.005.

Biohybrid experiments
Closed-loop biomimetically driven stimulation on HD-MEA. The bi-
directional communication between BiœmuS and the HD-MEA system
is ensured by Python scripts running on a gateway computer that will
be referred to as the closed-loop application. The HD-MEA was con-
figured to record from channels both from left and right organoid
based on an activity scan and to select stimulation electrodes on the
right organoid (Fig. S16). The HD-MEA is the MaxOne chip of MaxWell
Biosystems AG49.

The spiking activity of the HD-MEA and BiœmuS were collected
at a period of 1 ms. The spikes received from BiœmuS on the host
computer are analysed to detect the occurrence of a network burst.
The network burst detection is computed using a sliding window of
the total activity of the network over a period of 10ms. Upon burst
detection, a stimulation consisting of a 500 μs pulse of amplitude
500 mV sent to the HD-MEA using custom Python script derived
from manufacturer’s templates. The stimulation was chosen
according to the values used in the work50 that proved efficacy on a
similar setup.

The spikes received from the HD-MEA triggered stimulation on
BiœmuS upon detection of a network burst. The network burst of the
HD-MEA activity was calculated from a sliding window on 250ms of
activity. The stimulation was sent through Ethernet over ZeroMQ to
the external stimulation port of BiœmuS to trigger a stimulation of
duration 3.120 ms and amplitude 0.03mA/cm2 to neurons on the
exterior ring of the organoid.

The network burst latency was estimated to be inferior to 10μs in
most cases (Fig. S18). The closed-loop application ran a thread for each
task of receiving spikes from HD-MEA, receiving spikes from BiœmuS,
sending stimulation to Maxwell and sending stimulation to BiœmuS.

The activity recording of the HD-MEA was controlled by the
closed-loop application. The closed-loop application sent a first sti-
mulation trigger to BiœmuS to start the SNN in the same time as
enabling the closed-loop. The activity of the HD-MEA was analyzed
using the script provided by the manufacturer. The spiking activity of
BiœmuS was recorded on-board. An interface executed in another
thread was displaying the summed activity of both networks along
with thresholds for visual control.

The electrode configuration of the HD-MEA was exported from
the software. The XY configuration of neurons, network configuration
and stimulated neurons of BiœmuS were exported from the Python
scripts. Detection of bursts and spikes triggering stimulation for both
HD-MEA and BiœmuS were reconstructed from the time stamps col-
lected. The synchronization of both activities was done from time
stamp collections with a certainty of 100ms based on the fluctuating
latency to start the recording of the HD-MEA activity.

Organoid cultures. The use of human iPS cells was approved by the
Institute of Industrial Science, The University of Tokyo and cells were
handled in accordance with approved protocols. Human iPS cells were
obtained from the Riken Cell Bank (409B2, HPS0076) and maintained
on ESC-qualifiedMatrigel-coated 12-well plates inmTeSR plusmedium
(STEMCELL Technologies) and passaged every 5–7 days using ReLeSR
reagent (STEMCELL Technologies). Cortical connectoids were gener-
ated using previously reported protocol44. Briefly, hiPSCs were dis-
sociated using TrypLE Express and 10,000 cells per well were seeded
into U-bottom ultra-low attachment 96 well plate (Prime surface,
Sumitomo bakelite) in mTeSR plus supplemented with 10μM of
Y-23632. 24h later, media was replaced with neural induction media
(NIM), consisting of DMEM-F12 with HEPES, 15% (v/v) knockout serum
replacement, 1% (v/v) minimal essential media non-essential amino
acids (MEM-NEAA), and 1% (v/v) Glutamax, supplemented with 100 nM
LDN-193189, 10μM SB431542, and 5% (v/v) heat-inactivated FBS. On
day 2, NIM was replaced without the supplement of FBS and changed
every other day until day 10.
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From day 10 to 18, culture medium was replaced and changed
every other day with neural differentiationmedia 1 (NDM1), consisting
of 1:1 mixture of DMEM/F12 with HEPES and Neurobasal medium, 0.5%
(v/v) N2 supplement, 1% (v/v) B27 supplementwithout vitaminA, 1% (v/
v) Glutamax, 0.5% (v/v) MEM-NEAA, 0.25 mg/ml human insulin solu-
tion, and 1% (v/v) Penicillin/Streptomycin/Amphotericin (PSA) (Sigma,
A5955). On day 18, culture medium was replaced with neural differ-
entiation media 2(NDM2), consisting of Neurobasal medium, 0.5% (v/
v) N2 supplement, 1% (v/v) B27 supplement with vitamin A, 1% (v/v)
Glutamax, 0.5% (v/v) MEM-NEAA, 0.25 mg/ml human insulin solution,
200 mM ascorbic acid, and 1% (v/v) PSA, supplemented with 20 ng/ml
brain derived neurotrophic factor (BDNF). On day 28, culture media
was replaced with Neural Maintenance Media (NMM) consisting of
NeurobasalMedium, supplementedwith 2% (v/v) B27 supplementwith
vitamin A, 1% (v/v) Glutamax, 1% (v/v) PSA and 20 ng/ml BDNF.

Cortical organoids were subjected to connectoid formation after
at least 28 days in culture. Here, a custom-made microfluidic device
containing two holes which are connected through a narrow channel
were bonded on a CMOS-based HD-MEA (MaxOne+, Maxwell Biosys-
tems). Microchannel of the microfluidic device was coated with 2%
Matrigel (Corning) in DMEM/F12 for 1 h at room temperature (RT).
Next, coating solution is replacedwith NMMand anorganoid is placed
into each of the holes. Cells were kept at 37 °C and 5% CO2 and half
media change was performed every 3–4 days for the duration of cell
culture.

Data availability
All data that support thefindings of this paper arepresentedwithin the
paper and the SupplementaryMaterials. Additional data related to this
papermaybe requested from the authors.Data on animal experiments
are available under restricted access which can be obtained by con-
tacting the authors.

Code availability
The code related to BiœmuS is available at https://github.com/
Ceramic-Blue-Tim/bioemus and includes analysis and acquisition
scripts. Due to proprietary ownership, we do not provide open access
to the code related to the HD-MEA closed-loop experiment, access
request will be evaluated on a case-by-case basis.
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