
Article https://doi.org/10.1038/s41467-024-48908-8

Memristor-based adaptive neuromorphic
perception in unstructured environments

Shengbo Wang 1,9, Shuo Gao 1,9 , Chenyu Tang 2, Edoardo Occhipinti 3,
Cong Li1, Shurui Wang1, Jiaqi Wang1, Hubin Zhao 4, Guohua Hu 5,
Arokia Nathan6,7, Ravinder Dahiya 8 & Luigi Giuseppe Occhipinti 2

Efficient operation of control systems in robotics or autonomous driving tar-
geting real-world navigation scenarios requires perceptionmethods that allow
them to understand and adapt to unstructured environments with good
accuracy, adaptation, and generality, similar to humans. To address this need,
we present a memristor-based differential neuromorphic computing, per-
ceptual signal processing, and online adaptation method providing neuro-
morphic style adaptation to external sensory stimuli. The adaptation ability
and generality of this method are confirmed in two application scenarios:
object grasping and autonomous driving. In the former, a robot hand realizes
safe and stable grasping through fast ( ~ 1ms) adaptation based on the tactile
object features with a single memristor. In the latter, decision-making infor-
mation of 10 unstructured environments in autonomous driving is extracted
with an accuracy of 94% with a 40×25 memristor array. By mimicking human
low-level perception mechanisms, the electronic neuromorphic circuit-based
methodachieves real-time adaptation andhigh-level reactions to unstructured
environments.

Understanding sensory data efficiently to achieve human-like percep-
tion of the real world is pivotal for robotics1–6. With such capabilities,
robotics could truly transit from controlled environments such as
factories and laboratories into unstructured environments of home
and businesses that entail considerable ‘variability’ (Supplementary
Discussion 1 and 2). Traditionally, the adeptness of organisms within
unstructured environments has been attributed to the integration of
diverse types of physical information7–9. However, recent studies in life
sciences have revealed that themost commonmechanismhumans use
to understand unstructured environments is differential processing of
sensory information10–14. For a given stimulus, multiple types of
receptors and subsequent sensory neurons located in sensory ganglia

participate in differential processing, and they adjust their structure
and synapticweight on the features of external stimuli (Supplementary
Discussion 3). Specifically, by extracting the main stimulus features
embedded in the signal properties, these receptors and neurons can
rapidly form a complex set of intricate network-based perception
functions, such as environmental mapping, motion control tasks,
associative memory, etc. Memristors, a kind of neuromorphic
device15–20, not only integrate storage and computation capabilities but
also have the property of changing their information transmission
efficiency. These capabilities, often referred to as synapse-like
characteristics19–24, underscore the remarkable similarity between
memristors and synapses, i.e., the basic computational unit in biology.
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Such similarities make memristors the ideal fundamental device for
realizinghuman-like perception functionalities in robotics. To this end,
herein we present a memristor-based differential neuromorphic
computing, perceptual signal processing and online adaptation
method for robotics. Specifically, in this article we choose to term
‘differential neuromorphic computing’ any data manipulationmethod
involving multi-branch functions that emulate biological sensory
processing, where sensory stimuli are selectively perceived by recep-
tors and undergo different processing (pathways) supported by
diverse groups of neurons. The use of the word differential in this
context is not to be confused with differential (delta) encoding of
sensory data as employed say in dynamic vision sensors.

Unstructured information encompasses multidimensional and
multimodal features, which undergo the perceptual processing of
diverse receptors in biology6,25,26. This type of processing indicates the
need for designing different modulation methods for neuromorphic

computing. However, existing methods focus on keeping a memristor
to a fixed receptor (Fig. 1a, c and Supplementary Discussion 11), e.g.,
the memristor-based pressure nociceptor27–30 only processes pressure
inputs above a pre-set threshold. This kind of design omits useful
information in pressure amplitudes below this threshold, failing to
utilize the full spectrum of pressure data for understanding dynamic
inputs in a manner akin to human skin. A potential solution is to
operatemultiplememristors to process pressuredata across a broader
spectrum. However, given the high similarity between the memristor
and biological synapse, the memristor has the capability to replicate
diverse synaptic plasticity, thus effectively emulating the intrinsic
characteristics of different receptors and sensory neurons. Further-
more, distinct features of sensory data exhibit time domain indepen-
dence, implying that a memristor can adaptively switch to an
appropriate state to process each feature at a time slot. Drawing
inspiration from the sensory information processing model, our
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Fig. 1 | The proposed differential neuromorphic computing method.
a Comparison of our proposed differential processing method with biological
sensory processing methods and current neuromorphic processing methods.
b The specific implementation of the memristor-based differential processing

method. c The schematic of current methods. d The schematic of the differential
neuromorphic computing method, distinguishing our approach from existing
techniques.
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proposed differential neuromorphic computing method utilizes
memristors’ intrinsic multistate properties. It extracts features from
unstructured data and modulates the memristor state (Fig. 1d),
enhancing the adaptability of robotic systems for operation in
unstructured environments (Supplementary Discussion 4 to 6). This
approach exploits the bifurcations of the nonlinear state-space of the
memristor for providing neuromorphic style sensory adaptation to
environmental stimuli. We apply this method in two complex envir-
onments. Firstly, we address robot control for object grasping, and
secondly, we focus on object detection and reaction in autonomous
driving. In the former, we utilized a single Self-Directed Channel (SDC)
memristor, a type of chalcogenide-based electrochemical metalliza-
tion (ECM) device, to emulate nociceptors by achieving amplification
( > 720%) of hazardous stimuli, and adapting receptors by achieving
regulation ( < 50%) of mild stimuli, which play a key role in grasping
unknown objects. In the latter scenario, we process differentially
encoded visual motion information with a 40 × 25 memristor matrix
and achieve a commendable accuracy of 94% in extracting critical
information within each of 10 autonomous driving scenes, after com-
parison with human labeled results. These two experiments demon-
strate that the proposed method is general enough to work with
different types or number of memristors. Moreover, this method
shows thepotential to assist roboticswith a comprehensiveperceptual
capability akin to that of living organisms, enabling them to better
comprehend environmental information.

Results
Tactile perception
Realizing safe and stable manipulation of unknown objects by robotic
hands is tricky but highly needed31–35. Unlike lab and factory settings,
an unknown object may exhibit sharp or slippery attributes. The for-
mer potentially damages the contacting end, and the latter places a
heavy burden on the sensing and computing modules when keeping
the object balanced between stabilization and deformation. To
address this issue, the proposed memristor-based differential neuro-
morphic computing method has been implemented into the sensing
and control system of a robotic hand to highlight its non-linear
adaptation feature as required to achieve intricate and nuanced tactile
perception, illustrated in Fig. 2a. Specifically, this method is utilized
to emulate multiple essential tactile receptors and sensory neurons
in tactile stimuli perception, including nociceptors, fast-adapting,
and slow-adapting receptors, along with their respective neural
pathways.

Here, a piezoresistive force sensing architecture (more details in
Fig. S1) is assembled for receiving pressure amplitudes, and a self-
directed channel effect-based multilayered nonvolatile memristor
(KNOWM Inc.) is selected for differential neuromorphic computing (as
depicted in Fig. S2). The structure, hysteresis curves, and electrical
characteristics under pulse testing of the memristor are given in
Fig. 2b–e, respectively. The piezoresistive layers and the memristor
offer short-term and long-term force information, respectively, based
on which the attributes of an object are first extracted by a status
acquisition block and then utilized to generate the corresponding
modulation schemes for the memristor. The sensory feature extrac-
tion and modulation scheme selection are both conducted in a field
programmable gate array (FPGA) platform, as shown in Fig. 2a. Based
on the aims of modulation methods, the schemes can be further
classified into 3 groups, allowing the memristor to stay at high
( > 250k), middle ( ~ 170k) and low ( < 100k) resistance levels. This
arrangement facilitates the adaptive, normalization, and nociception
perception of external stimuli, aligning with 3 types of biological
perception behaviors, i.e., adaptation, recovery and nociception
(Fig. S6, S7 and Supplementary Discussion 7). The corresponding
memristor conductance change (adaptation, recovery and nocicep-
tion) can be found in Fig. 2a. The nociception refers to the

amplification processing of strong pressure, the adaptation refers to
the adaptation processing of mild pressure (the behavioral adaptation
of the tactile system analogous to mechanoreceptors), and the
recovery indicates resetting the memristor to its initial state, akin to
the sensitivity reset of the biological receptor sensitivity after remov-
ing external stimuli. The detailed mapping relationship between
attributes and modulation methods is given in the Supplementary
Table 1.

The three mimicked biological functionalities are experimentally
validated, by studying the change in force induced electrical signals
with and without neuromorphic computing. Here, the neuromorphic
computing module tunes the adjustment factor of a voltage amplifier
block, whose input is the status of the piezoresistive film. After the
magnitude of a force ismeasured, an associatedmodulation scheme is
selected and then applied to the memristor. The resistance of the
memristor is then changed and used as an indicator of the amplifica-
tion factor. The final yielded voltage outputs illustrate the biological
perception behaviors. The experimental results in Fig. 2f demonstrate
the responses of this tactile system to hazardous stimuli, with a more
than 170% amplification of the hazard signal through applying positive
encoding pulses to the memristor. In contrast, when perceiving mild
tactile stimuli (Fig. 2h), the memristor is modulated by the negative
encoding pulses, achieving a more than 50% attenuation of the mild
signal. The curve trends in Fig. 2f, h are similar to the biological
response strengths in Fig. 2g. For biological nociceptors, the sensitivity
to external sensory stimuli increases when exposed to dangerous sti-
muli, resulting in a continuously increasing response strength; in
contrast, the adapting receptors adapt to external tactile stimuli by
gradually reducing their sensitivity when the feature of stimuli is mild,
resulting in a decreasing response strength.

When considering the unstructured information processing in the
real world, it often becomes necessary to performmultiple processing
iterations of the aforementioned functions. For better adaptation to
dynamic changes in hazardous scenarios, we mimic the time window
processing mechanism in organisms, thereby distinguishing between
sudden threats and persistent threats29,36. Specifically, during the
encoding process, we additionally consider the state of thememristor.
When its state falls a predefined threshold (100 kΩ in this case), the
switch in the modulation scheme occurs (Fig. S24). This threshold
value 100 kΩ is pre-programmed into the FPGA-based logic circuit,
serving as a trigger for modulation scheme adjustments. Conse-
quently, there is an increase in both the amplitude and the pulse duty
cycle of the positive pulses (as shown in Fig. 2i), achieving the func-
tionality of sensitized processing for external stimulus information.
Further details about the threshold value selection are provided in
Supplementary Table 1. In our work, a > 720% amplification of tactile
stimuli is offered (Fig. 2j), exceeding the state-of-the-art works27,30,37.
Regarding the adaptation function, the adaptive speed (themagnitude
of the attenuation of response strength over time) is of
significance38–40. Here, we implement two adaptation speeds by
adjusting the pulse duty cycle and amplitude of encoding pulses as
shown in Fig. 2k, l. The developed method is then used in object
grasping tasks, to extract and learn the main characteristics of objects
for safe and stable manipulation (conceptually depicted in Fig. 3a).

In task 1, an irregular object consisting of a cube and a cone is 3D
printed. During the grasping process, the robot might encounter the
sharp point that leads to painful pressures and poses a potential
danger. It needs the help of a nociceptor to quickly perceive the hazard
stimulus caused by the sharp point and then changes the grasping
strategy (Supplementary Discussion 10), as conceptually depicted in
Fig. 3b, in which the resistance information of the piezoresistive film
and the memristor during the entire grasping task is shown. At 2.2 s,
the piezoresistive sensor attached to the robotic hand experiences a
significant force due to contact with the sharp point, resulting in
decreased resistance. In this case, the pressure conforms to hazardous
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characteristics, and the memristor is modulated into the amplification
state (low resistance). At 8.2 s, thememristor resistance falls below the
threshold of 35 kΩ, and the pressure stimulus is amplified by 500%.
This indicates that the robot has been in contact with the sharp point,
triggering the pain reflex. Based on this pain experience, the robot
changes its grasping position and hand gesture. Specifically, the
grasping position of the robot is adjusted to an appropriate position to
expect the subsequent safe contact between 8.2 and 14.4 s.

Subsequently, the robot handmoves again at 14.4 s andmakes contact
with theobject at 16.1 s. By 17.4 s, thepressureperceivedby the contact
point stabilizes, and the memristor is modulated into the high-
resistance state, achieving safe and stable grasping.

Similarly, in task 2, a soap is used to represent slippery objects.
The instability of tactile information during the slipping process leads
to spikes in piezoresistive film incorporated with the memristance
resistance change, prompting the robot to increase the gripping force
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to ensure stability. As illustrated in Fig. 3c, during the grasp attempt of
the soap, the gripping force stabilizes at 3.8 s, with the memristor
switching to a high-resistance state. By 18 s, the adaptation level to
external tactile information reaches 75%. At 18.5 s, an external infer-
ence causes the object to slip, leading to changes in gripping force and
resulting in a spike in the memristor resistance. Upon detecting a
slip event onset, the robot prompts an increase of the gripping force
to prevent the object from slipping further. This timely increase
in contact force prevents the object from falling, and the memristor
is modulated into a normal perception state (stable middle resistance

state), successfully achieving stable grasping of a slippery object.
To our knowledge, this represents the first time that a memristor-
based approach has been successfully employed for local slip detec-
tion and consequent adjustment of the actuator force in robotic
grasping tasks.

At present, the processing and execution time of the proposed
method is 1ms, which can strongly support safe and stable operations
for robots41–44. The operation time can be further improved when
better memristive devices that respond in nanoseconds (ns) or
microseconds (μs) are employed45–48.

Fig. 2 | Utilizing differentiation processing method to process tactile infor-
mation and mimic multiple receptors. a Schematic diagram of the comprehen-
sive pipeline designed to process tactile sensory stimuli. This approach initially
captures immediate tactile interactions through the resistance changes in a pie-
zoresistive film, employing Analog-to-Digital Converters (ADC) and Digital-to-
Analog Converters (DAC) and the required information exchange interface. Con-
currently, it archives historical sensory data from the memristor state, leveraging
the memory properties of a memristor. Subsequently, sensory features are
extracted from both the current state of the piezoresistive film and the memristor
to select a memristive adaptive modulation scheme, driving the nociception,
recovery, or adaptation process, based on thememristor conductance change. The
entire sensory data acquisition, feature extraction, and modulation scheme selec-
tion process are managed through the FPGA control platform. Note that the

memristor is detected and modulated under the cooperation of the encoder and
memristor-based process modules within the hardware setup. Additionally, a
communication module is established for transferring information to external PC
devices alongside a specifically designed interface for manipulator control. b The
device structure of the self-directedmemristor. c TheU-I test ofmemristors. In this
test, a 500mV peak-to-peak sine wave is applied to the memristor and the 10kΩ
fixed-value resistor. d Electrical characterization of memristors using positive
pulses. e Electrical characterization of memristors using negative pulses.
f Amplification processing of hazardous stimuli. g Corresponding biological pro-
cessing functions. h Adaptation processing of mild stimuli. i Sensitization proces-
sing achieved through further differentiation. j Quantitative evaluation of the
sensitization function. k Realization of adaptation at different speeds. l The adap-
tive rate.
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Visual perception
In previous tactile information processing, attributes based on force
strength were used to understand environmental knowledge. In con-
trast, visual frequency-based attributes are more important for
autonomous driving, as they imply the relative position change of
surrounding objects to the car49–51 and are vital for real-time decision
making52–54. For instance, the sudden appearance of pedestrians or
vehicles can lead to life-threatening collisions. Thus, shortening the
attribute extraction time of moving objects is important. In addition,
the moving direction of the object can further help to make good
decisions55,56. To this end, the proposed differential neuromorphic
method is employed to acquire and process visual frequency-based
attributes (Supplementary Discussion 13). Drawing an analog to the
frequency processing difference between cone and rod cells in biolo-
gical vision perception-where cone cells excel in capturing rapidly
changing visual stimuli-this method retrieves fast information akin to
cone cells, and produces neural excitation tomaintain fast information
for a while (Supplementary Discussion 8).

In the implementation, a driving recorder of 1920 × 900 resolu-
tion and a 25 × 40 memristor array are used. During the processing
procedure shown in Fig. 4a, the gray CMOS image from the recorder is
compressed by averaging a matrix of m×n into one pixel (in this set
parameters, m and n equals 48 and 36, respectively) based on image
spatial redundancy theory57. Next, filtering circuits for pre-process
extracts the visual information changes within two adjacent frames.
Then, the computing function select module, based on the analog
computing circuit and the control switch, divides the light intensity
changes into fast and slow categories based on a comparison to a pre-
set threshold, resulting in the different encoding functions Ei. Speci-
fically, if the change exceeds this threshold, the visual stimuli in this
pixel are classified as fast; otherwise, it is considered slow. Subse-
quently, the fast and slow visual attributes are encoded into electrical
pulses Vf and Vs to modulate the memristor into low- and high-
resistance states, respectively. Here, slow visual information is taken to
release the memristor from a low-resistance state to a high-resistance
state. As the change in resistance is analog, its value within this period
reflects the moving orientation of the object, achieving a neural exci-
tation effect. In scenarios involving moving objects, the light intensity
changes correlate to the relative moving speed of an object to the
observing car. Therefore, the predefined threshold effectively estab-
lishes the speed boundary for categorizing themovement of an object
as either relatively fast or slow, furthermodulating thememristor state
differently.

In the experiments, the driving operations are divided into
designed driving and free driving scenarios. In the former, slowdriving
takes place on a closed road segment, and a pedestrian runs across the
road from different sides (left and right), distances (near, medium and
far) and speeds (walking and running), aiming to examine the detec-
tion ability of the method in 3 widely occurring danger scenarios for
autonomous driving as shown in Fig. 4b: 1. Pedestrian running across
the road (moment 1); 2. Nearby pedestrian walks across the road
(moment 2); 3. The walking pedestrian (moment 3) suddenly runs to
another orientation (moment 4). Figure 4c displays 3 representative
scenarios during a pedestrian’s moving path given in Fig. 4b. The yel-
low box in Fig. 4c is the example m by n pixel area that is first com-
pressed to a single pixel through aggregating the analog voltage
outputs from the m×n pixel region, and the aggregated visual infor-
mation of this compressed pixel is processed by a memristor in the
25×40 memristor array. The light intensity changes of the pixel are
shown in Fig. 4d. Beforemoment 1, no pedestrian enters, and the slight
light intensity change is solely due to the vehicle movements. Upon
reaching moment 1, the pedestrian runs into the area from a medium
distance, resulting in strong light intensity change, triggering the
extraction and encoding module to generate a positive modulation
voltage pulse, thus modulating the corresponding memristor into a

low-resistance state. After the pedestrian leaves the area, the corre-
sponding memristors enter the neural excitation status and finally
return to the high resistance status because the scene information
changes slowly. Atmoment 2, the pedestrian walks into the yellow box
area, giving rise to a strong light intensity change again. Note that
although the pedestrian is in a slow-motion mode, the distance
between the vehicle and pedestrian is short, hence showing the same
effect as a pedestrian running from far. At moment 3, the pedestrian
enters the detection area from far, and the slow movement char-
acteristics generate a negative voltage pulse that maintains the mem-
ristor in a high-resistance state. Atmoment 4, the suddenmovementof
the pedestrian strongly changes the light intensity, hence reducing the
resistance value of thememristor. However, due to the distance of the
pedestrian and the fact that he has already entered the area before the
sudden run, the amplitude of the positive pulse generated by the high-
frequency feature is smaller compared to the previous more danger-
ous moments (moments 1 and 2). For this reason, the resistance value
of the memristor does not reach to its lowest resistance state. Overall,
the 3 danger scenarios are successfully detected.

When the above processingmethod is applied to the whole image
area, global attributes are gathered through the memristor array, and
reflected in terms of the memristor array resistance. Figure 4e–g is 3
examples taken from daytime and evening, together with their corre-
sponding differential neuromorphic computing results; the fast-
running pedestrian is accurately captured, and afterimages are gen-
erated, implying the orientation. Observing the whole image, the
memristor state information, even in a single frame, not only distinctly
emphasizes rapid changes but also maintains historical change infor-
mation (Fig. S25). These capabilities provide cleaner and more
actionable data for further high-level processing, such as deducing the
direction of movement through afterimages, predicting future loca-
tions, and other decision-making processes crucial for navigating
dynamic environments.

In free-driving experiments, we collected over 100 h of video data
in various lighting and weather conditions, as conceptually shown in
the middle part of Fig. 5. Ten representative scenarios containing
important decision-making associated information for autonomous
driving, such as taillight, nearby cars and lane lines, are given as
examples in Fig. 5. From the differential neurocomputing processed
results, it is clear that the information is successfully retrieved.We then
further invite 10 senior drivers to locate dangerous objects they
believe are important to safe driving in 10 short videos containing the
10 images given in Fig. 5. Their results are offered as the yellow regions
in the processed results, and we can learn that human decisions
overlapwith the proposedmethod. For all 10 videos, the overlap rate is
more than 94%. The difference arises from the process of important
information labeling. The judgment criterionofmanual labeling, based
on senior drivers’ driving/riding experience, tends to prioritize targets
(such as pedestrians and cars) that are likely to cause traffic accidents.
In contrast, the criterion of our memristor-assisted visual perception
method is based on objective motion situation, which is of greater
significance for timely decision-making, assigning relatively stationary
or slow-moving objects low priority on current driving. Therefore,
when both empirical and objective moving targets are present, a per-
son tends to label empirical targets. However, at times, such as when
driving with a vehicle traveling at a relatively close speed nearby, the
road marking line is more important and can reflect the yawing con-
dition of driving (Fig. 5b). In most cases the empirical and objective
moving targets are the sameobject, but there are exceptions such as in
Fig. 5h, leading to a 6% bias in the detection results. The detailed
working performance can be found in Fig. S13 to S19.

Compared with dynamic vision camera, our memristor-assisted
approach faces the inherent limitations of frame-based image pro-
cessing, such as a reduced performance under low-light conditions
and a narrower dynamic range, while offering the ability to directly
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generate afterimages that contain crucial temporal information,
thanks to the local processing implemented via the memristor-based
architecture (Supplementary Discussion 14).

Discussion
In this study,weproposeamemristor-assistedperceptionmethod that
exploits both the synapse-like characteristics ofmemristors, and a bio-
inspired workflow design enabling robotics to effectively adapt and
operate in unstructured environments. This innovative approach uti-
lizes key insights derived from biological analogies to enhance the
adaptability and dexterity of neuromorphic computing. Compared to
conventional technologies, this memristor-assisted method exhibits
higher adaptability and efficiency. However, there are some limitations
that need to be addressed for practical real-world application.

Key insights from biological analogies
Biological perception benefits from the synergy among various
receptors and sensory neurons. For example, different types of tactile
mechanoreceptors and their corresponding neurons enable the pro-
cessing of a wide range of pressure stimuli, each with unique char-
acteristics. In the memristive implementation, the above complex
synergy process is folded into two computational phases: feature
extraction and the processing of corresponding voltage stimuli based
on the identified features using memristors. Specifically, our method
employs the nonlinear state space of the memristor alongside an
adaptive memristive modulation scheme that adjusts its electrical
characteristics based on specific features of sensory stimuli. This
design enables amemristor to acquire amultifaceted understandingof
the surroundings, exploiting the full computational potential of
memristors. The memristor state serves as a nexus for integrating
historical stimulus data and current sensory data; this state not only
adjusts to evolving environmental conditions to provide neuro-
morphic style adaptation but also offers valuable references in
decision-making. Through mimicking biological perception mechan-
isms, the proposed method of use of a memristive device for

neuromorphic processing is more general and versatile than currently
known uses of memristors in literature. The detailed comparison can
be found in Supplementary Table 3.

Comparison with conventional technologies
Differential neuromorphic computing, as a memristor-assisted per-
ception method, holds the potential to enhance subsequent decision-
making and control processes. Compared with conventional technol-
ogies, both the PID control approach and the proposed differential
neuromorphic computing share a fundamental principle of smartly
adjusting outputs in response to feedback, they diverge significantly in
the data manipulation process (Supplementary Discussion 12 and
Fig. S26); our method leverages the nonlinear characteristics of the
memristor and a dynamic selection scheme to execute more complex
datamanipulation than linear coefficient-based error correction in PID.
Additionally, the intrinsic memory function of memristors in our sys-
tem enables real-time adaptation to changing environments. This
represents a significant advantage compared to the static parameter
configuration of PID systems. To perform similar adaptive control
functions in tactile experiments, the von Neumann architecture fol-
lows a multi-step process involving several data movements: 1. Input
data about the piezoresistive film state is transferred to the system
memory via an I/O interface. 2. This sensory data is then moved from
the memory to the cache. 3. Subsequently, it is forwarded to the
Arithmetic Logic Unit (ALU) and waits for processing.4. Historical
tactile information is also transferred from the memory to the cache
unless it is already present. 5. This historical data is forwarded to the
ALU. 6. ALU calculates the current sensory and historical data and
returns the updated historical data to the cache. In contrast, our
memristor-based approach simplifies this process, reducing it to three
primary steps: 1. ADC reads data from the piezoresistive film. 2. ADC
reads the current state of the memristor, which represents the his-
torical tactile stimuli. 3. DAC, controlled by FPGA logic, updates the
memristor state based on the inputs. This process reduces the costs of
operation and enhances data processing efficiency.
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Fig. 5 | Generalization capability of visual differentiation processingmethod in
unstructured environments. a Pedestrian detection. b Road signs detection.
c Overtaking detection. d Front vehicle detection. e Shadow detection. f Taillight

detection. g Reflective objects detection. h Warning light detection. i Special
marking recognition. j Strong light detection at night.
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Limitations for practical use
In real-world settings, robotic tactile systems are required to elaborate
large amounts of tactile data and respond as quickly as possible, taking
less than 100ms, similar to human tactile systems58,59. The current
state-of-the-art robotics tactile technologies are capable of elaborating
sudden changes in force, such as slip detection, at millisecond levels
(from500μs to 50ms)59–62, and the response timeof our tactile system
has also reached this detection level. For the visual processing, sup-
pose a vehicle travels 40 km per hour in an urban area and wants
control effective for every 1m. In that case, the requirement translates
amaximumallowable response timeof 90ms for the entire processing
pipeline, which includes sensors, operating systems, middleware, and
applications such as object detection, prediction, and vehicle
control63,64. When incorporating our proposed memristor-assisted
method with conventional camera systems, the additional time delay
includes the delay from filter circuits (less than 1ms) and the switching
time for thememristor device, which ranges from nanoseconds (ns) to
even picoseconds (ps)21,65–67. Compared to the required overall
response time of the pipeline, these additions are negligible, demon-
strating the potential of our method application in real-world driving
scenarios68. Although our memristor-based perception method
meets the response time requirement for described scenarios, our
approach faces several challenges that need to be addressed for
real-world applications. Apart from the common issues such as
variability in device performance and the nonlinear dynamics of
memristive responses, our approach needs to overcome the following
challenges:

Automatic modulation scheme and control algorithm
Currently, the modulation voltage applied to memristors is preset
based on the external sensory feature, and the control algorithm is
based on hard threshold comparison. This setting lacks the flexibility
required for diverse real-world environments where sensory inputs
and required responses can vary significantly. Therefore, it is crucial to
develop a more automatic memristive modulation method along with
a control algorithm that can dynamically adjust based on varying
application scenarios.

Scalable parallel circuit design
As our method potentially involves controlling a large number of
memristors, designing scalable parallel circuits that maintain signal
synchronization across extensive memristors poses a significant
engineering challenge. Effective practical circuit design must ensure
the synchronization and speed of signal processing simultaneously.

In conclusion, this method marks a significant advancement in
harnessing inherent characteristicsofmemristors leveraging functions
that in nature lead to perception abilities and support intelligent
behaviors through rapid non-linear adaptation features. Due to the
small size of memristive devices, the possibility of having high-density
memristors over large areas and flexible substrates, and their similarity
with the fundamental biological perception mechanisms, the pre-
sentedmethod has the potential to enable robotics to possess sensory
capabilities on a scale comparable to humans when combined with
diverse sensors (Supplementary Discussion 9), allowing them to sense
and adapt to the environment efficiently (as depicted in Fig. S20, S21).

Methods
Material selection of the memristor
The differential neuromorphic computing method is universally
applicable across memristors, regardless of their underlying switching
mechanisms, making it a versatile solution for neuromorphic com-
puting applications. This universal ability is evidenced by the material
selection, i.e., a commercially available memristor in tactile sensing
experiments and a well-recognized simulation model for visual infor-
mation processing.

Electrical measurements
Electrical measurements were conducted with a RIGOL DG4062
function/arbitrary waveform generator and MSO1074 oscilloscope.
For the memristor U-I test in Fig. 2c, a 10 kΩ resistor was connected in
series with the memristor. A 10Hz, 500mV sine wave was applied
across both components. The voltage across the memristor and
resistor was recorded by separate oscilloscope channels to calculate
thememristor’s current. The oscilloscope was set to normal triggering
mode. During the pulse tests shown in Fig. 2d, e, the setup remained
unchanged, and voltage pulses were applied with the oscilloscope,
capturing the resulting voltages in single mode.

Control circuit of the memristor
The control circuit of thememristor is designed around anoperational
amplifier, which is pivotal in achieving precise modulation of the
memristor state. Utilizing this design, thememristor state information
can be observed based on the output voltage of this circuit. Detailed
schematics and tests of this circuit are documented in Figs. S3, S5.

Tactile processing system
In our tactile system, we process external tactile information by
treating the memristor as a synapse, and the modulation of the
memristor is dynamically controlled through a multi-branch function
V(·) dependent on current sensory features f(t) and memristor resis-
tance M(x), facilitated by the FPGA. The tactile response strength is
determined by the product of the stimulus input and the memristor
conductance (stimulus input divided by the memristor resistance).

For hazardous stimuli, when current pressure surpasses a pre-
defined value, matching the criteria for dangerous features, positive
voltage pulses are generated to increase the memristor conductance.
This process aligns with the ‘threshold’ function of biological noci-
ceptors, as demonstrated in the following formula:

ν tð Þ= νnoc f or r tð Þ � rd , tsta < t < tend
ν tð Þ=0 otherwise

ð1Þ

Where v(t) represents the voltage stimuli applied to thememristor, and
only if the pressure stimulus meets the hazard characteristics rd is a
voltage pulse with amplitude vnoc and duration from tsta to tend is
generated. For continuous hazardous stimuli, the memristor con-
ductance gradually increases under sustained positive voltage stimuli,
achieving ‘no adaptation’ to dangerous stimuli. The process can be
represented as follows:

dx
dt

= f ðx, ν tð ÞÞ<0 ð2Þ

where x represents the memristor state. To realize the ‘sensitization’
function, we draw inspiration from biology, considering information
across various time scales. When the stimulus matches hazardous
features, and the memristor conductance surpasses a set threshold, it
suggests long-term exposure to danger. Consequently, the amplitude
of the positive voltage applied to thememristor is increased to amplify
the response to hazardous stimuli further. Upon stimulus removal,
recovery pulses are generated to reset the memristor to its initial
resistance, achieving the ‘recovery’ function.

The mild stimuli are processed similarly; the characteristics of
external tactile are analyzed, and if the mild criteria are met, negative
voltage pulses are generated to reduce the memristor conductance,
achieving the ‘adaptation’ function. This method allows the emulation
of both rapidly and slowly adapting receptors by modifying the fea-
tures (amplitude and width) of negative pulses to adjust the ‘adapta-
tion’ speed. Upon removal of stimuli or mismatching the mild criteria,
the memristor resets to its initial resistance.
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To achieve the above tactile processing, we employ the FPGA
platform to collect pressure data, generate modulation schemes, and
upload data. In every control cycle, the system initially detects the
current pressure information using the pressure sensor. Subsequently,
the FPGA generates an appropriate modulation scheme based on the
obtained pressure data and the current state of the memristor. Fol-
lowing this, a digital-to-analog converter applies the modulation vol-
tage to the memristor. Finally, the system uploads the data of the
memristor state and pressure information. The detailed descriptions
and schematics are provided in Fig. 6a and S4. More detailed infor-
mation about mimicking the biological tactile system can be found in
Supplementary Discussion 7.

The detection logic for slip events
Slip events, triggered by external disturbances, are characterized by
abrupt decreasing changes in the previously stable contact force.
Traditional methods for extracting such features involve recording
historical contact forces and analyzing them with current interaction
forces59,69. For example69, slip detection can be accomplished by
examining the frequency change based on the historical contact force
Fh and the current force Fc; the frequency change can be determined
using the following formula:

Δf = f Fc

� �� f Fh

� � ð3Þ

where f is a function mapping observing force points to the fre-
quency information. In the memristive implementation, we have
developed a detection logic only based on the current memristor
state and contact force change to identify such slip events. This
method leverages the memristor state as a cumulative record of the
features of historical contact force Fh in differential neuromorphic
computing to enhance detection efficiency. Specifically, when the
memristor is in a high-resistance state (>225 kΩ) due to the
modulation scheme during stable force contact and the piezo-
resistive film changes drastically, resembling a spike (increases above
350kΩ froma last point below 250kΩ), a slip event is inferred to have

occurred. This design allows for the direct interpretation of slip
events from the single readout of the current memristor state and
piezoresistive film state change without substantial data historical
storage and analysis, significantly enhancing processing efficiency.
Note that these threshold value selections result from careful hand-
tuning based on the memristor’s characteristics and the object’s
contact characteristics.

Robot experiment
In robot experiments, the FPGA platform is utilized to generate the
control commands. Upon activation of the control algorithm, the
FPGA sends a command to the DH gripper, triggering the appropriate
reflex response timely. These commands are communicated via the
Modbus protocol, using the RS485 interface standard. Each command
includes a slave number, function code, operation register, operand,
and a CRC check code for verification. Once the DH gripper receives a
command, it adjusts its gripping force and position to execute the
reflex action.

Visual processing system
To implement large-scale memristor-based visual differential com-
puting, we employ the SPICE simulation platform. The voltage
threshold adaptive memristor (VTEAM) model, selected for its versa-
tility, serves as the fundamental computation unit. Detailed informa-
tion about the electrical characteristics of this model is available in
Fig. S11. In visual information processing, images captured by a CMOS
sensor in driving settings are converted into analog voltage inputs for
the visual differential processing system. Subsequently, these pieces of
time-discrete visual information are transformed into continuous
voltage data. These voltage profiles are then processed by the
memristor-based visual system through SPICE simulation, mimicking
the data processing manner after direct integration with the CMOS
sensor. The visual process system consists of four main components:
filters, analog computing circuit, control switch, andmemristor-based
computing circuit. Further details of this circuitry are provided in
Fig. 6b, c.

Analog Visual
Stimuli

Filters Analog Computing
Circuit

Control
Switch

Memristor-based
Computing Circuit

fun (2)

fun (1)

fun (3)
Visual
Stimuli

Intensity
Change

Different Modulation
Voltage

Startup Initialization

Detect
Piezoresistive Film

Wait Switch

Detect Memristor

Differential Computing

Wait Switch

Fig. 6 |Methodused to stimulatememristors in tactile and visual experiments.
a Control schemes in tactile differential processing. The system initiates by enter-
ing the initialization phase, where it performs an initial power-on reset on the
device. Afterward, the system proceeds to the normal working cycle. Within each
working cycle, the system first employs a DAC and an ADC to detect the resistance
value of the piezoresistivefilm. It thenwaits for the systemanalog switch to activate
when read is completed. Subsequently, it detects the resistance value of the
memristor through thememristor read andwrite control circuit. Once the status of
both readings are complete, the DAC circuits generate the corresponding mod-
ulation voltage. This voltage is then used to modulate the resistance value of the
memristor, achieving the differential processing of pressure information. b Circuit

design of the visual differential process system. In this simulation, the external
visual stimuli captured by the CMOS in-vehicle camera are utilized as the input
signal for the system in the form of analog voltage signals. The visual information
between two frames undergoes linear changes at a fixed time interval. Subse-
quently, the changes in visual information are extracted using filters. The extracted
information is then translated into different modulation voltages through the
analog operation circuit. Finally, the modulation voltage is applied to the mem-
ristor using the read and write control circuit. c Observed visual stimuli, intensity
change extracted by the filter circuits and differentmodulation voltages applied to
the memristor.
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In visual information processing, analog filters first extract chan-
ges in light intensity, categorizing them into high and low frequencies.
High-frequency light information is essential for real-time decision
making, while low-frequency corresponds to slowly moving or sta-
tionary objects. To process the visual informationdifferently, the high-
frequency and low-frequency information are transformed into posi-
tive and negative pulses, respectively. The relationship can be repre-
sented as:

ν tð Þ=m× f light +b>0 f light � f high
ν tð Þ=n× f light + c <0 f light � f low

ð4Þ

Where flight is the frequency information of the light intensity, fhigh and
flow represent high-frequency and low-frequency change features,
respectively, and the remaining parameters are constant coefficients.
When the memristor exhibits a low-resistance state, it has effectively
perceived high-frequency stimuli from the external environment.
Conversely, when the memristor is in a high-resistance state, it
suggests that the changes in light intensity within that area have been
slow. More details can be found in Supplementary Discussion 8.

Technical explanation of the demonstrated visual processing
methods
Yellow box: This represents an example case of visual information
processing, consisting of a region spanning m×n pixels within the
original image. After being compressed, this region transforms into a
single pixel point. Subsequently, this compressed point is subject to
processing via a memristor, employing a one-to-one approach.

Preprocessing steps: The process involves utilizing filter circuits
to extract the change in light intensity ΔL, within the compressed
pixel point.

Methods of identification: The light intensity changeΔLwithin the
compressedpixel point serves as the criterion for classification. Should
ΔL surpass the predefined threshold Lth, the visual information in this
point is categorized as fast. Otherwise, it is classified as slow. This
process is implemented by a voltage comparison circuit.

Interpretation of states: For a compressed point categorized as
‘fast,’ the modulation voltage for the memristor is formulated as:

Vf = Ef ΔLð Þ, ΔL> Lth ð5Þ

Otherwise, for a point considered ‘slow,’ the voltage is expressed
as:

Vs = Es ΔLð Þ,ΔL≤ Lth ð6Þ

Speed boundaries: The demarcation of states is reliant on the
threshold Lth, which establishes the speed boundary for categorizing
the movement of an object as either relatively fast or slow.

Constructing components of differential neuromorphic
computing
Leveraging the bifurcation of memristor states alongside environ-
mental sensory features, differential neuromorphic computing pro-
vides robotics with fine-grained adaptive sensing capabilities in a way
that draws parallels to howperceptionworks in biology. This approach
can be conceptually described as a cooperation of sensory, signal
encoding, and neuromorphic operation modules (Fig. 1b). The first
module can be of the desired sensor type according to mimicked
biological sensory. It operates by converting a physical stimulus into
electrical information and can be described as:

Pi tð Þ=Ri siðtÞ
� � ð7Þ

where s(t) denotes the physical stimulus, R is the response function of
the sensor, and p(t) is output the outputted electrical signal for each i-
th channel/memristor.

The signal encoding module extracts features from p(t) and then
creates the associated memristive encoding schemes to process sen-
sor information in different manners. The created encoding scheme is
applied to the memristor in the neuromorphic operation module, and
the changed resistive values indicate the properties of the suffered
stimuli. Through the three steps above, different features are properly
processed by the predesigned differential modulation methods for
memristors, yielding a multifeature differentiation-based compre-
hensive understanding of environmental knowledge. The entire pro-
cess corresponds to organisms’ differential information perception
capability in stimuli reception, transduction and processing70, as
expressed below:

f i tð Þ= Fi ðpi tð ÞÞ
νi tð Þ=Vi f i tð Þ,Mi xi t � 1ð Þ� �� �

dxi

dt
=Ci xi, νi

� �
ð8Þ

where F is the extracting function, f(t) is the current extracted fea-
tures calculated by F, x(t-1) is the memristor state after the previous
modulation (at the time step t-1), M is the eigenvalue calculation
function whose input variable is the memristor state x(t-1), there-
fore M(x(t-1)) is the scalar related to the memristor state, which is
used to determine the appropriate modulation schemes, V is the
piecewise memristive encoding scheme (condition function)
responsible for generating current modulation signals v(t), dx/dt is
the derivative of the memristor state variable, and C is the state
derivative function related to the memristor mechanism, current
state and external modulation voltage for each i-th channel/
memristor.

Notably, in our tactile experiments, the scalar used to determine
to the memristive modulation schemes is the memristor resistance,
thus M(x(t-1)) refers to the observed memristor resistance value after
the last modulation. V is a condition function based on current sti-
mulus strength f(t) and memristor resistance value M(x(t-1)) to gen-
erate themodulation voltages v(t), as shown in Supplementary Table 1.
In visual experiments, the memristor state is not used to stimulate the
memristor, and V is a condition function based on the current fre-
quency of light stimuli flight as below:

ν tð Þ=m× f light +b >0 f light � f high
ν tð Þ=n × f light + c<0 f light � f low

ð9Þ

Where fhigh and flow represent high-frequency and low-frequency
change features, respectively, and the remaining parameters are
constant coefficients.

As explained, the proposed method provides a human-like infor-
mation processing pipeline, which extracts key features of undergoing
stimuli in real-time, opening the possibility for intelligent machines to
operate in unstructured environments efficiently.

Data availability
All data supporting this study and its findings are available within the
article, its Supplementary Information and associated files. The source
data underlying Figs. 2c–e, f, h, i–l, 3b, c, 4d are available in Figshare
under accession code https://doi.org/10.6084/m9.figshare.25375696.

Code availability
All the necessary codes used in the tactile experiments and visual
experiments and their descriptions are available in https://github.com/
RTCartist/Differential-Neuromorphic-Computing.
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