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Catalytic asymmetric synthesis of planar-
chiral dianthranilides via (Dynamic) kinetic
resolution

Chun-Yan Guan1, Shuai Zou1, Can Luo1, Zhen-Yu Li1, Mingjie Huang1,
Lihua Huang1,2 , Xiao Xiao 3, Donghui Wei 1, Min-Can Wang1 &
Guang-Jian Mei 1,2

Chirality constitutes an inherent attribute of nature. The catalytic asymmetric
synthesis of molecules with central, axial, and helical chirality is a topic of
intense interest and is becoming a mature field of research. However, due to
the difficulty in synthesis and the lack of a prototype, less attention has been
given to planar chirality arising from the destruction of symmetry on a single
planar ring. Herein, we report the catalytic asymmetric synthesis of planar-
chiral dianthranilides, a unique class of tub-shaped eight-membered cyclic
dilactams. This protocol is enabled by cinchona alkaloid-catalyzed (dynamic)
kinetic resolution. Under mild conditions, various C2- or C1-symmetric planar-
chiral dianthranilides have been readily prepared in high yields with excellent
enantioselectivity. These dianthranilides can serve as an addition to the family
of planar-chiral molecules. Its synthetic value has been demonstrated by
kinetic resolution of racemic amines via acyl transfer, enantiodivergent
synthesis of the natural product eupolyphagin, and preliminary antitumor
activity studies.

Chirality, an inherent geometric property of any three-dimensional
object that cannot coincidewith itsmirror image, plays a crucial role in
a range of disciplines including chemistry,medicine,materials, and life
sciences (Fig. 1A)1. Central chirality, which is based on sp3 hybridized
stereogenic centers (X = C, Si, P, S, etc.) with four different groups,
constitutes the most common one. Conformational chirality, in addi-
tion, arises when a particular molecular conformation is sufficiently
stable. For instance, the restricted rotation of a σ‐bond leads to axial
chirality2–4, and steric repulsion between the terminal aromatic rings of
helicenoids results in helical chirality5,6. Currently, the catalytic asym-
metric synthesis ofmolecules with central, axial, and helical chirality is
a topicof intense interest and is becoming amaturefieldof research. In
sharp contrast, planar chirality arising from the destruction of sym-
metry on a single planar ring has received less attention7.
Metallocenes8–13, cyclophanes14–21, and some rigid cycloalkenes22–28 are

typical planar-chiral structures. With recognition of the importance of
planar chirality, particularly in chiral ligand/catalyst discovery29–33,
several catalytic enantioselective synthesis methods have been
developed34–39. This is the case for assembling planar-chiral ferrocenes
via enantioselective C−H activation by You, Zhou, and others40–45.
Despite these achievements, difficulties in synthesis and the lack of
prototypes have greatly limited the application of planar chirality, and
the catalytic asymmetric synthesis of planar-chiral compounds is still
in its infancy.

Dianthranilides, dibenzo[b,f][1,5]diazocine-diones, are a unique
class of eight-membered cyclic lactams (Fig. 1B)46. The secondary cis-
amide groups and the particular tricyclic ring system make dianthra-
nilide an attractive scaffold for use in supermolecule, materials
chemistry, and pharmaceuticals47–49. For example, the natural alkaloid
eupolyphagin exhibited a promising cytotoxic effect on cancer cell
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lines50. Analogous to rigid V-shaped Tröger′s base in structure and
geometry51, dianthranilide adopts a tub-shaped dominant conforma-
tion and therefore is a C2-symmetric planar-chiral molecule52,53. How-
ever, the unlockedflexible conformation allows fast interconversion of
the two enantiomers (S and R forms) at ambient temperature. As a
result, dianthranilides are usually racemic, and their catalytic asym-
metric synthesis poses a daunting challenge. To our knowledge, in
2017, Tan et al. reported the only example of enantioselective synth-
esis of a dianthranilide derivative54. Their strategy was to construct the
key axially chiral intermediate followed by the formation of an eight-
member lactam via axial-to-planar chirality transfer. Given their many
intriguing features and easy accessibility, dianthranilides could serve
as an additional prototype of planar-chiral molecules. Herein, we set
our goal to develop direct catalytic asymmetric methods to access
conformationally stable planar-chiral dianthranilideswith the ability to
achieve chiral induction via asymmetric catalysis. To obtain rigid
conformers, inhibiting boat-to-boat ring inversion is key55,56. We
assume that N-alkylated dianthranilides 3-5 aremore conformationally
stable and that their catalytic asymmetric synthesis could be enabled
by dynamic kinetic resolution (DKR) or kinetic resolution (KR)
(Fig. 1C)57–60.

Results
Reaction development
To determine its feasibility, dianthranilide 1awas chosen as the model
substrate, andMorita–Baylis–Hillman (MBH) adduct 2awas selected as
the alkylating agent. To our delight, upon the catalysis of various
commercially available cinchona alkaloids, asymmetric dialkylation
readily occurred, allowing the formation of conformationally stable 3a
via DKR (Table 1). In the presence of cinchonidine (C1), the alkylation-
enabledDKRaffordedproduct3a in 45% yieldwith 18% ee (entry 1). The
solvent effect was then investigated, and acetonitrile was identified as
the solvent of choice (entries 2–4). Consequently, catalyst screening
was carried out in acetonitrile (entries 5–9). While all catalysts were
effective, quinine (C5) and quinidine (C6) were found to be most
effective in terms of yield and enantioselectivity (entries 8–9). Notably,
quinine and quinidine afforded different enantiomers of 3a.

Substrate scope
With the best conditions, the substrate scope of this DKR reaction was
subsequently studied (Fig. 2). First, the generality of the MBH adducts
was tested (3b−f). The excellent yields and ee values indicated that
various ester groupswerewell tolerated. Next, we turned our attention

N
H

H
N

NHHN

O

O

O O O O
NHHN

fast

C)

tub-shaped

dianthranilide

N

N

Me

Me

HO

N

ON
NH

eupolyphagin

V-shaped

B)

(S) (R)

O

O O
NHN

+ CO2R1
OBoc

2

DKR

NN
O O

CO2R1R1O2C

NN
O OR

CO2R1

alkylation

KR

+ (S)-4

(S)-3

(R)-5

N
H

N

O

OR

Ar2Ar1

Ar2 Ar1

Ar2

Ar2Ar1

Ar1

quinine

quinidine

X

central chirality

Ar

n

axial chirality helical chirality planar chirality

M

A)

(R = H)

(R ≠  H)

R

(±)-Tröer's base

(±)-1 or (±)-4

Fig. 1 | Enantioselective synthesis of planar-chiral dianthranilides. A Typical chiral element. B Planar-chiral dianthranilide. C DKR and KR (this work).
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to the scopeof accessing dianthranilides 1. The reactionwas applicable
to a range of symmetrically substituted dianthranilides, leading to the
formation of dialkylated products 3 g−v in generally excellent yields
and enantioselectivities. Neither the position (from the C3- to C6-
position) nor the electron nature (electron-donating or electron-
withdrawing) of the substituents had an obvious effect on this reac-
tion. In addition, di-substituted and phenyl-fused substrates were
employed, which delivered corresponding products 3w−y in excellent
yields and ee values. Unsymmetric dianthranilides are challenging
substrates forDKR, since intriguing regioisomersmaybe created in the
1st alkylation, thus affecting the enantioselectivity. Remarkably, when
unsymmetric dianthranilides were subjected, the reaction readily
occurred, giving the non-C2-symmetric products 3z and 3aa. Con-
sidering the consistently excellent enantioselectivity of both the C2-
and C1-symmetric products, it can be concluded that this cinchona
alkaloid-catalyzed alkylation had good face selectivity and was not
affected by steric hindrance. The absolute configurations of these
N-alkylated products were assigned on the basis of X-ray crystal-
lographic analysis of 3m.

To elucidate the reaction mechanism, control and kinetic
experiments were performed (Fig. 3). Under racemic conditions,
enantioenriched monoalkylation product 1a′ underwent a 2nd

N-alkylation reaction with the MBH adduct 2a to afford product 3a
with a constant ee (Fig. 3A). In addition, racemization experiments of
1a, 1a′ and 3a were conducted to investigate their configurational
stabilities (Fig. 3B). The low rotational barrier (23.3 kcal/mol) indicated
a dynamic interconversion in 1a. On the other hand, the monoalkyla-
tion product 1a′ was stable enough, with an inversion barrier of
28.2 kcal/mol, while thatof dialkylationproduct3awas 32.6 kcal/mol61.
Therefore, the monoalkylation product 1a′ should be the key inter-
mediate, and the 1st N-alkylation is the DKR and enantio-determining

step. In addition, kinetic studies were conducted to explore the reac-
tion pathway. As shown in Fig. 3C, the formation of dialkylation pro-
duct 3a was fast. While the ee of 3a was maintained at the same high
level, substrate 1a was always racemic. This further verified the pre-
vious speculation that dialkylation is a DKR process. Furthermore,
presynthesized racemic 1a′ was used under standard conditions
(Fig. 3D). Enantioenriched 3a was obtained initially, and its ee
decreased over time. The ee of substrate 1a increased over time. These
results indicated a distinct KR process. To demonstrate this concept,
the KR of racemic 1a′ was carried out (Fig. 3E). Under standard con-
ditions, racemic 1a′ reacted smoothly with 0.6 equivalents (eq.) of 2a.
The corresponding 3a was obtained in 49% yield with 95% ee, and 1a′
was recovered in 48% yield with 99% ee.

Considering that the excellent s-factor (s = 205) is comparable to
that of enzyme catalysis, this KR reaction is synthetically useful. In this
context, we prepared several mono-substituted dianthranilides and
subjected them to the KR. The results are summarized in Fig. 4. The
variation of theMBH adducts was tested. Various ester groups, such as
-CO2

tBu, -CO2Et, -CO2
nBu, -CO2

iBu, and -CO2Bn, were well tolerated,
affording alkylated products 5a−e and recovered 4a in good yields
with excellent ee. Furthermore, dianthranilides bearing substituents on
the phenyl ring were also compatible, but the enantioselectivity of
products 5 f−j decreased to some extent. The generality of the
N-substituents was then investigated. In addition to the substituted
benzyl groups (5k−m), allyl (5n), 2-ethoxy-2-oxoethyl (5o), and phenyl
(5p) groups were also applied. Notably, dianthranilide substrates fea-
turing acyl groups of N-substitutions had flexible conformations, thus
providing DKR results (5q & 5r).

Based on the above experimental results and previous reports on
asymmetric amide N-alkylations with MBH adducts62–65, a plausible
reaction mechanism and transition state have been proposed to

Table 1 | Reaction optimization

Entry[a] Cat. Solvent product Yield (%)[b] ee (%)[c]

1 C1 CH2Cl2 3a 45 18

2 C1 toluene 3a 50 10

3 C1 THF 3a 70 40

4 C1 CH3CN 3a 89 83

5 C2 CH3CN (ent)-3a 63 75

6 C3 CH3CN 3a 87 83

7 C4 CH3CN (ent)-3a 80 90

8 C5 CH3CN 3a 95 98

9 C6 CH3CN (ent)-3a 90 97
[a] Unless indicated otherwise, reaction conditions: 1a (0.05mmol), 2a (0.12mmol), and Cat. (10mol%) in a specified solvent (1mL) at room temperature (r.t.) for 6 h.
[b] Isolated yields.
[c] Determined by chiral HPLC analysis.
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elucidate the origin of the high stereoselectivity of these reactions
(Fig. 5). Taking the synthesis of dialkylation product (R)-3a as an
example, the catalyst quinidine (C6) reacts with MBH adduct 2a in an
SN2′ fashion to form the chiral adduct C6′, CO2, and tert-butoxide
anion. Then, the resulting C6′ distinguishes the two enantiomers of
substrate 1a by hydrogen-bonding interactions. The conformationally
matched (R)-1a forms a dominant hydrogen bonding network withC6′
via transition state TS-R. However, the same hydrogen bonding net-
work will cause additional steric hindrance for the mismatched (S)-1a
(TS-S). As a result, (R)-1a undergoes asymmetric N-alkylation

accompaniedby the regenerationof catalystC6, while (S)-1a racemizes
due to its low rotational barrier. In the case of excessive alkylation
reagents, the monoalkylated product 1a′ generated in situ will rapidly
undergo a second alkylation reaction, delivering dialkylation product
3a. The preliminary DFT calculations support our hypothesis, and this
transition state model is also applicable to the KR (see Supplementary
Figs. 242–244 and Source Data for details).

Finally, to highlight the synthetic utility, scaled-up DKR, and
KR experiments were conducted (Fig. 6A). Under standard condi-
tions, the DKR of racemic 1a furnished dialkylated product 3a in
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95% yield with 98% ee. Notably, one of these two allyl groups can be
selectively removed with NaOH, delivering monoalkylated inter-
mediate 1a′ with a maintained ee. Further, acylation with BzCl gave
product 6a, which was proven to be a potential chiral acylation
reagent in the subsequent investigations. Moreover, the KR of
racemic 4a readily occurred with a perfect s-factor, affording (S)-
4a and the (R)-5a with excellent enantioselectivity. More impor-
tantly, the dealkylation of (R)-5a can in turn generate (R)-4a. In this
way, the direct resolution of (±)-4a can be achieved, allowing
access to its two enantiomers with a single chiral catalyst. In
addition, these synthesized dianthranilides could serve as poten-
tial chiral reagents for acyl transfer (Fig. 6B). Direct acylation of 1a′
and 4a afforded compounds 6 with maintained ee values. Treat-
ment of 6with racemic 3,3-dimethylbutan-2-amine regenerated 1a′
and 4a with an excellent recycling rate of 95%. At the same time,
the KR of (±)-7 was achieved with moderate to good selectivity.
This preliminary attempt indicated that conformationally stable
planar-chiral dianthranilides could serve as a promising platform
for enantioselective synthesis. To further demonstrate the prac-
ticality of this protocol, the enantiodivergent synthesis of the
natural product eupolyphagin was accomplished (Fig. 6C). Start-
ing from the commercially available 2-iodo-6-methoxyaniline 9,
racemic intermediate 10 can be obtained in 5 steps according to
Tan’s procedures54. Then, the projected KR served as the key step

to afford the highly enantioenriched precursor (S)-10 and alkyla-
tion product (R)-11. Dealkylation of (R)-11 led to the (R)-10 pre-
cursor. Subsequent deprotection of the methyl group with BBr3
afforded the natural products (+)-eupolyphagin and (-)-eupoly-
phagin in good yields.

Moreover, we selected a few products (3a, 3 f, 3 g, 3 h, 3j, 3m, 3p
and 3q for DKR; 5a, 5e, 5 f, 5 g, 5 h, 5n and 5o for KR) for anticancer
activity evaluation of cell viability via the CTG assay for A2780 (ovarian
cancer), HeLa (cervical carcinoma), HT-29 (colon cancer), LoVo (colon
cancer), MV-4-11 (acute monocytic leukemia), and U87-MG (astro-
cytoma) human cancer cell lines (see the Supplementary Table 16 for
details). Compounds 3a (A2780 cells, IC50 = 13.89μM; HeLa cells,
IC50 = 37.28μM; HT-29 cells, IC50 = 28.41μM; LoVo cells,
IC50 = 36.25μM; MV-4-11 cells, IC50 = 21.00μM; U87-MG cells,
IC50 = 47.68μM), 3q (A2780 cells, IC50 = 16.24μM; Hela cells,
IC50 = 61.51μM; HT-29 cells, IC50 = 54.07μM; LoVo cells,
IC50 = 53.60μM; MV-4-11 cells, IC50 = 38.79μM; U87-MG cells,
IC50 = 109.33μM), and 5 g (A2780 cells, IC50 = 10.58μM; HeLa cells,
IC50 = 16.80μM; HT-29 cells, IC50 = 15.06μM; LoVo cells,
IC50 = 14.75μM; MV-4-11 cells, IC50 = 14.27μM; U87-MG cells,
IC50 = 25.43μM) exhibited significant and broad anticancer potency
(Fig. 6D). Consequently, these planar-chiral dianthranilides have the
potential to become lead anticancer compounds. Further structure-
activity relationship-studies are ongoing in our laboratory.

Fig. 3 | Mechanism consideration and kinetic resolution. A Ee maintenance experiment. B Racemization experiment. C, D Kinetic experiments. E Kinetic resolution.
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In conclusion, we have accomplished the catalytic enantiose-
lective synthesis of planar-chiral dianthranilides. In contrast to the
well-studied central, axial, and helical chirality, less attention has
been paid to planar chirality due to the difficulty in synthesis and

the lack of a prototype. Herein, we report a highly efficient
(dynamic) kinetic resolution protocol for the synthesis of tub-
shaped dianthranilides, which serve as an addition to the family of
planar-chiral molecules. Under the catalysis of cinchona alkaloids,
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various C2- or C1-symmetric planar-chiral dianthranilides have been
readily prepared in high yields and with excellent enantioselec-
tivities. The preliminary attempt at the kinetic resolution of racemic
phenylethylamine via acyl transfer demonstrated that con-
formationally stable planar-chiral dianthranilides can serve as a
promising platform for enantioselective synthesis. Using this
method, the enantiodivergent synthesis of the natural product
eupolyphagin was accomplished. Further applications and other
related investigations along this line are ongoing and will be
reported in due course.

Methods
General procedure for DKR
Substrate 1 (0.10mmol) and catalyst C5 (10mol%) were dissolved in
CH3CN, andMBHester 2 (0.24mmol)was added. The reactionmixture
was stirred for 6 h at room temperature. The solvent was removed in
vacuo and the crude product was separated by flash column chro-
matography on silica gel (petroleum ether/ethyl acetate = 4:1) to
afford 3.

General procedure for KR
Substrate 4 (0.10mmol) and catalyst C6 (10mol%) were dissolved in
CH3CN, andMBHester2 (0.06mmol)was added. The reactionmixture
was stirred for 6 h at room temperature. The solvent was removed in
vacuo and the crude product was separated by flash column chro-
matography on silica gel (petroleum ether/ethyl acetate = 3:1 – 1:1) to
afford recovered (S)-4 and (R)-5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data relating to the characterization of
products, experimental protocols, and computational studies are
available within the article and its Supplementary Information. The
data for the crystal structure3m reported in this paperweredeposited
at the Cambridge Crystallographic Data Center (CCDC) under the
deposition number CCDC 2271258. Copies of the data can be obtained
free of charge via www.ccdc.cam.ac.uk/data_request/cif. Further data
supporting the findings of this study are available from the corre-
sponding author upon request. Source data are provided with
this paper.
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