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Germline variation contributes to false
negatives in CRISPR-based experiments with
varying burden across ancestries

Sean A. Misek1,2,3, Aaron Fultineer1, Jeremie Kalfon 1, Javad Noorbakhsh1,
Isabella Boyle 1, Priyanka Roy1, Joshua Dempster 1, Lia Petronio1,
Katherine Huang1, Alham Saadat1, Thomas Green1, Adam Brown1,
John G. Doench 1, David E. Root 1, James M. McFarland 1,
Rameen Beroukhim 1,2,4 & Jesse S. Boehm 1,3,4

Reducing disparities is vital for equitable access to precision treatments in
cancer. Socioenvironmental factors are a major driver of disparities, but dif-
ferences in genetic variation likely also contribute. The impact of genetic
ancestry on prioritization of cancer targets in drug discovery pipelines has not
been systematically explored due to the absence of pre-clinical data at the
appropriate scale. Here, we analyze data from 611 genome-scale CRISPR/Cas9
viability experiments in human cell linemodels to identify ancestry-associated
genetic dependencies essential for cell survival. Surprisingly, we find thatmost
putative associations between ancestry and dependency arise from artifacts
related to germline variants. Our analysis suggests that for 1.2-2.5% of guides,
germline variants in sgRNA targeting sequences reduce cutting by the CRISPR/
Cas9 nuclease, disproportionately affecting cell models derived from indivi-
duals of recent African descent. We propose three approaches tomitigate this
experimental bias, enabling the scientific community to address these
disparities.

CRISPR is an increasingly important tool in biomedical research1 and
can be leveraged to identify genetic determinants of a range of phe-
notypes, including cancer cell fitness2. CRISPR-mediated genome
editing requires homology between a guide RNA and a genomic locus;
mismatches between these two sequences are expected to interfere
with editing efficiency3. While 99.9% of the human genome is identical
from one person to the next, the remaining 0.1% includes variants that
influence physical characteristics and health. The degree to which the
consensus reference genome used for guide design fully captures
human germline and ancestral diversity is improving4. However, cur-
rent CRISPR/Cas9 libraries were designed from reference genomes
that preceded the Pangenome reference and did not capture the
diversity of human variation3,5.

Recent advances in leveraging systematic CRISPR/Cas9 experi-
ments to map genes that are required for the survival of cancer cells
(herein referred to as cancer dependencies or gene dependencies)
across hundreds of cellular models provide new opportunities to
understand cancer targets and the molecular features of cancers that
drive sensitivity to response6,7. The Cancer Dependency Map8 repre-
sents the largest such resource and currently includes data from
genome-scale CRISPR/Cas9 gene essentiality screens across 1070
cancer cell lines reflecting 31 cancer lineages to detect essential genes
and their relationships with predictive molecular biomarkers. These
data have led to the discovery of multiple dependency-associated
somatic alterations including dependency on WRN in cell lines with
microsatellite instability9 and dependency on PRMT5 in cells with
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genomicMTAP deletions10, amongst others. While the role of germline
variation hasbeendemonstrated to contribute to drug sensitivity11, the
degree to which ancestry and germline variation contributes to gene
dependencies has not been systematically interrogated. In addition,
germline variation can cause mismatches between CRISPR guides and
the genome of a given cellular model, confounding associations
between germline genetics and cellular dependencies.

Here, we systematically interrogate the degree to which genetic
ancestry and germline variation contributes to cancer dependencies,
and the extent towhich this is due to sgRNAmismatcheswith germline
genotypes. Amajority of CRISPR/Cas9 guides in genome-scale libraries
are affected by this artifact, which disproportionally affects individuals
of recent African descent. We demonstrate the impact of this experi-
mental artifact on identification of genetic ancestry-associated
dependencies and highlight putative ancestry-dependency associa-
tions not resulting from this artifact. Finally, we highlight three
approaches to mitigate the impact of this experimental artifact in
CRISPR guide design.

Results
Identification of ancestry-associated genetic dependencies
We started by analyzing putative ancestry-associated cancer depen-
dencies using data from The Cancer Dependency Map (Fig. 1a). First,

we evaluated cell line genetic ancestry, considering the possibility of
ancestry admixture. While previous reports have evaluated cell line
genetic ancestry at genomescale12–16, we hypothesized that such global
assessments may preclude the discovery of regional germline asso-
ciations with dependencies. We therefore systematically cataloged
local ancestral haplotypes across the genomes of the 994 (out of 1829
total) cell line models in the Cancer Cell Line Encyclopedia collection
for which publicly available Affymetrix SNP6 germline variant data
have been analyzed14, leveraging germline variants from 10,345,968
SNPs genome-wide to infer local ancestry. Specifically, we divided the
genome into blocks comprising 0.2 centimorgans (with a median of
580SNPsper block) and characterized eachblock as deriving fromone
(homozygous) or two (heterozygous) of fivemajor continental genetic
ancestry groups: African (AFR), American (AMR), East Asian (EAS),
European (EUR), and South Asian (SAS) (Fig. 1b). In admixed indivi-
duals, individual blocks might derive from two of these ancestries,
reflecting both maternal and paternal contributions.

At a global level, our results support previous observations14,16 that
existing cell lines are overwhelmingly derived from individuals of
either EURorEAS ancestry.We assigned apredominant ancestry to cell
lines that derived over 80% of their DNA from that ancestry group and
called those without a predominant ancestry Admixed. Of the 994 cell
lines profiled in this study, over 90% of them are predominantly EUR
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Fig. 1 | Identification of ancestry-associated genetic dependencies. a Schematic
describing the methodology for identifying ancestry-associated genetic depen-
dencies. b Local ancestry assignments for 994 cancer cell lines. The genomic
fraction corresponding to one of five major continental ancestry groups (African,
American, East Asian, European, or South Asian) is indicated. Cell lines whose
genome is comprised >80% of a single ancestry group are denoted as being of the
given ancestry group (African [n = 41], American [n =0], East Asian [n = 300], Eur-
opean [n = 607], South Asian [n = 4]), otherwise the cell line is denoted as being
Admixed [n = 42]. Raw data are described in Source Data 1B. c Statistical power for
detecting ancestry-associated dependencies for each ancestry group. Raw data are

described in Source Data 1C. d Associations between ancestry and Chronos scores.
For each gene, cell lines were binnedby local ancestry at the transcription start site.
The association between ancestry and dependency on the gene in question was
computed with linear regression with correction for cancer lineage as a covariate.
Associations with false discovery rate (FDR) q-values of <0.05 (dashed line) were
called as significant association between ancestry and dependency on the gene in
question. Raw data are described in Source Data 1D. e Total numbers of putatively
significant ancestry-associated genetic dependencies for each major ancestry
group. AFR African, AMR American, EAS East Asian, EUR European, SAS South
Asian. Raw data are described in Source Data 1E.
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(61%) or EAS (30%) (Fig. 1b, Source Data 1B). Only 41 (4%) of the cell
lines were predominantly AFR. When taking local ancestry into
account, the underrepresentation of AFR genetic ancestry was even
starker. Cell lines characterized as AFR had large contributions from
other (primarily European) ancestries; the average AFR genetic
ancestry fraction for AFR cell lines was only 89%. In contrast, the
average EUR and EAS ancestry fractions for EUR and EAS cell lines are
98.5% and 98.9%, respectively. Only four cell lines in this analysis were
primarily SAS. No cell lines had greater than 80% AMR genetic ances-
try, though AMR ancestry did comprise 16.3% of the genomes of
Admixed cell lines. These imbalances in cell line ancestry limited sta-
tistical power to detect ancestry-associateddependencies amongAMR
and SAS cell lines. They also pointed out limitations to crude con-
tinental descriptors: dividing cell lines to binary ancestry groups
without considering their local ancestry makeup would have resulted
in the misclassification of all the admixed cell lines profiled in this
analysis. Despite the stark imbalance across all continental ancestry
groups, we did maintain sufficient statistical power to detect putative
ancestry-associated dependencies associated with cell lines derived
from patients of AFR, EAS, or EUR descent (Fig. 1c, Source Data 1C).

We next evaluated whether gene dependencies could be dis-
covered that were significantly positively or negatively associated with
a single local ancestry at the transcription start site of the gene in
question. From the 16,384 genes profiled in this analysis, 49 gene
dependencies appeared to be associated with either AFR (n = 24), EAS
(n = 18), or EUR (n= 17) ancestry; surprisingly, we also detected gene
dependencies that are associated with AMR (n= 3) and SAS (n = 1)
ancestry, even though we lacked statistical power to reliably detect
such associations (Fig. 1d, e, Source Data 1D, Source Data 1E). Many of
these putative ancestry-dependency associations (13/49) had a reci-
procal relationship with ancestry: each was both positively associated
with either EUR or EAS ancestry and negatively associated with the
other. This is likely because91%of the cell lines included in our analysis
are either European or East Asian. The current dataset is comprised of
CRISPR screening data from two independently designed CRISPR
libraries. To evaluate the impact of library design, we also performed a
restricted analysis that included only cell lines screenedwith the Avana
library (n = 558 cell lines) and discovered 46 dependencies putatively
associated with ancestry, 34 of which were also discovered in the ori-
ginal pan-library analysis (Supplemental Fig. 1).

Germline variants in ancestry-associated dependencies
We hypothesized that some of these associations between ancestry
and dependencies were due to genetic differences in germline
sequences. We therefore searched among SNP loci for dependency
quantitative trait loci (hereafter referred to as d-QTLs) that could
explain the putative differences in dependencies between ancestries.
Specifically, we looked genome-wide to identify SNPs that are asso-
ciated with each genetic dependency and unveiled the strongest
association for such dependency, labeling such SNP as a putative
d-QTL. We further prioritized SNPs as bona fide d-QTLs if they crossed
genome-scale significance after correction for multiple hypothesis
testing (FDR <0.05). We detected 33 such associations across the 49
dependencies (Fig. 2a, Source Data 2AB). Among these SNPs, 25 (76%)
were also associatedwith ancestry (Fig. 2b, SourceData 2AB),whichwe
defined as having a differential minor allele frequency greater than 0.2
across two or more ancestry groups. In 29/49 cases the most sig-
nificant SNPs for each gene were within 1Mb from the transcription
start site of the dependency gene (Fig. 2c, Source Data 2C), and SNPs
that were within 1Mb of the TSS had a stronger association with the
dependency on the gene in question. Taken together, these data
suggest that specific germline variants may influence a subset of
ancestry-associated genetic dependencies.

Across The Cancer Dependency Map, gene expression has been
previously observed to be the strongest predictor of gene

dependencies8. However, we found that the d-QTL SNP was associated
with expression of the dependency gene in only 4/32 (15%) of cases
(q < 0.05) (Fig. 2d, SourceData 2D). Furthermore, deeper evaluation of
one putative positive association, specifically between
chr9:21986219:C:T and CDKN2B expression unearthed an artifact
related to SNP6 genotyping of samples with loss of heterozygosity at
the CDKN2B locus (Supplementary Fig. 2). Similar artifacts were not
observed with other genes. Thus, in aggregate, these data suggest that
in most cases, d-QTLs are not modulating the expression levels of
associated genes. Overall, for all ancestry-associated dependencies,
30/49 (61%) had expression levels below five reads per million, indi-
cating that these genes are weakly expressed or not expressed in a
majority of the profiled cell lines (Fig. 2e, Source Data 2E). The finding
that so many genes that appeared to underlie ancestry-associated
genetic dependencies were only weakly expressed further suggests
that the variations in response to CRISPR/Cas9 targeting of many of
these genes might reflect something other than true biological dif-
ferences in gene dependency, such as a technical artifact.

SNP mismatches in sgRNA targeting sequences
We therefore considered the possibility that many of these putative
differences in cell line responses might be due to differences in the
efficiency with which these sgRNAs were able to induce double strand
breaks. Indeed, we found that across the 29 putative ancestry-
associated dependencies with identified proximal d-QTLs, the
d-QTLs for 11 (38%) were either germline variants in one ormore of the
sgRNAs targeting the relevant gene, or in linkage disequilibrium with
such a variant. Only one of the putative ancestry-associated depen-
dencies without an identified proximal d-QTL had such germline var-
iants (Supplemental Fig. 3). Mismatches between a CRISPR/Cas9
sgRNA and the target genome preclude guide binding and subsequent
genome editing in some circumstances17,18, and the frequency of this
variation can differ across ancestry groups19,20. CRISPR/Cas9-mediated
double strand breaks negatively impact cell viability, and can lead to
cell death independent of the genomic locus that is targeted by
Cas921–24.

These observations support the hypothesis that variation
between CRISPR/Cas9 guide and target sequences may explain a
substantial fraction of putative genetic ancestry-associated depen-
dency predictions. To comprehensively assess this, we deconstructed
the consensus gene dependency scores25, which aggregate signals
acrossmultiple sgRNAs, into 183 individual sgRNA scores across the 49
dependencies. We then tested the hypothesis that germline SNPs in
targeting sequences influenced the differential effects between
ancestry groups. As expected, we found that differences in sgRNA
depletion between EAS and EUR cell lines was greater for guides with
SNPs than for guideswithout SNPs (p < 10−7

, Fisher’s exact test) (Fig. 3a,
Source Data 3A). Indeed, this association extended past ancestry-
associated variants. Across all sgRNAs in the Avana portion of the
present dataset, 3209 (4.36%) have a SNV in their targeting sequence in
at least 10 cell lines (Fig. 3b, SourceData 3B). Among these, 56% show a
significant association between the presence of a variant and guide
dependency (Supplementary Fig. 4). These guides account for 2.45%of
all sgRNAs in The Cancer Dependency Map dataset.

Next, we hypothesized that the aforementioned analysis sub-
stantively undercounted the true magnitude of the artifact because
SNP6 genotyping arrays do not detect all genetic variants, especially
those that are very rare or are more specific for non-European ances-
tries. Indeed, in 297 cell lines, 25–30% of variants were detected
exclusively by WGS but not by SNP6 genotyping arrays. Strikingly, cell
lines from AFR individuals had more such variants missed by SNP6
than cell lines from any other ancestry group (Supplemental Figs. 5, 6).
To understand the true magnitude of how many guides are affected,
we leveraged WES/WGS variant calls to identify mismatches in tar-
geting locations for Avana guides (see Data Availability). Across all
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genes profiled in The Cancer Dependency Map dataset 4918 have a
mismatch (in at least one cell line) in one guide, 6178 have such mis-
matches in two guides, 3923 have such mismatches in three guides,
and 1112 have such mismatches in all four guides (Fig. 3c, Source Data
3C). In aggregate, this artifact impacts 89% of genes targeted by Avana
guides. Despite this concerning statistic, reassuringly, most CRISPR
screening libraries contain multiple guides targeting each gene,
blunting the overall impact of this experimental artifact if computa-
tional methods appropriately aggregate signals into multi-guide gene
scores. However, residual artifactual signal may remain as we still
detectedgene-level associations (after computational gene-level signal
aggregation across multiple guides) between SNPs and genetic
dependencies, even when only one (out of four total guides) for the
given gene was affected (Supplemental Fig. 7).

Single nucleotidemismatches in an sgRNA targeting sequencecan
prevent guide binding and the cutting activity of Cas9, with some
positions on the sgRNA being less tolerant to mismatches than
others3,19. These mismatches can result from both germline and
somatic alterations, with germline variants being up to 1000× more
frequent than somatic alterations (Fig. 3d, Source Data 3D). Mis-
matches in the sgRNA targeting sequence that are closer to the

protospacer adjacentmotif (PAM)are less tolerated than those that are
further3. We therefore hypothesized that SNP mismatches in sgRNA
targeting sequences should impact guide dependency as a function of
their distance from the PAM. To test this hypothesis, we compared the
location of each SNP mismatch to the magnitude of the difference in
dependency between cell lines with and without it. Indeed, mis-
matches closer to the PAM had a greater impact than those that were
further. For example, mismatches in the position farthest from the
PAM were not associated with guide dependency (p = 0.15), whereas
mismatches in the position closest to the PAM were strongly asso-
ciatedwith guidedependency (p <0.001) (Fig. 3e, SourceData 3E). The
impact of mismatches on guide depletion are also significantly corre-
lated with the known impact of mismatches on guide cutting activity3

(Supplementary Fig. 8). In almost all cases, mismatches were protec-
tive against the cutting activity of the guide, further suggesting that
variation in the sgRNA targeting sequence precludes Cas9-mediated
genome editing (Supplementary Fig. 4).

Evaluation of sgRNA mismatches across ancestry groups
We found ancestry-associated statistical bias in CRISPR guide design
across all genetic ancestry groups, cell models, and CRISPR guide
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libraries that we evaluated. However, without explicitly accounting for
ancestry effects, individuals of predominantly African descent are
most affected because people of recent African descent are the most
genetically diverse of any continent26. This is exemplifiedwhen sgRNAs
aredesignedwithout considering humangermline variation. Tomodel
this, we chose a random autosomal set of 1,000,000 loci with a
canonical NGG PAM site and corresponding protospacer. We limited

the selection of these genomic loci to only those that are in protein-
coding exons, since most CRISPR-based experiments target coding
regions and genomic variability is lower in coding regions than non-
coding regions. We collected SNP genotyping data from all 4120
gnomAD samples with individualized genotyping data, then mapped
these SNPs to these regions. We found that 62.3% of these sgRNAs
contained a targeting sequence SNP in at least one individual, and a
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sample that map to Avana guides is plotted on the x-axis. In the boxplot, the box
includes the second and third data quartiles divided by amedian line, and whiskers
represent the first and fourth quartiles. Boxplot summary values are described in
SourceData 3Db.Rawdata are described in SourceData 3D. eGuideswere stratified
by the position of mismatches within the sgRNA targeting sequence and the
association between the SNV and the guide depletion scorewas computed for each
sgRNA in the Avana library (black boxes). P-valueswere computedwith two-sided t-
tests between cell lines with and without each SNV. The impact of mismatches on
guide activity fromDoenchet al.3 is indicated in blue circles. In the boxplot, the box
includes the second and third data quartiles divided by amedian line, and whiskers
represent the first and fourth quartiles. Boxplot summary values are described in
Source Data 3Eb. Raw data are described in Source Data 3E.
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median of 1.80% of guides were affected in each individual (Fig. 4a,
Source Data 4A). Individuals of African descent, however, were most
affected by this artifact (2.17% in AFR, vs 1.78% in all other ancestry
groups).

Multiple factors need to be optimized during the CRISPR sgRNA
design process, includingmaximizing the likelihood that the guidewill
introduce the intended cut, minimizing the likelihood that the guide
will introduce non-specific cuts at additional genomic loci, and mini-
mizing the likelihood of mismatch between the sgRNA and its target
due to human variation. For this latter factor, our results strongly
suggest that differences in variant frequencies across populations
should be accounted for, to ensure equal efficacy across populations.

Indeed, accounting for human variation in sgRNA design without
explicitly accounting for differences in genetic variation across
populations does not eliminate the statistical bias against individuals
of African ancestry. We mapped germline variants from gnomAD to
sgRNA targeting sequences from six genome-scale CRISPR libraries
(Avana3, Calabrese27, Dolcetto27, GeCKOv25,28, MinLibCas929, TKOv330,
and HSANGERV31) (Fig. 4a, Source Data 4A). Among these seven
libraries, five (Avana, Calabrese, Dolcetto, GeCKOv2, and MinLibCas9)
were designed without attempting to avoid SNP loci in sgRNA target-
ing sequences. The other two (TKOv3 and HSANGERV) excluded
sgRNAs targeting loci with a SNP listed in the db38 and Ensembl 1000
genomes databases, respectively. As might be expected, the five
libraries that did not account for SNP variants had the greatest fraction
of guides with mismatches due to human variation, especially in indi-
viduals of African descent (Fig. 4a, Source Data 4A). However, all
libraries had highermismatch rates in African individuals compared to
other ancestry groups. Indeed, the ratio between failure rates in Afri-
can individuals and other populations was surprisingly constant across
all six libraries, ranging from 1.21 to 1.71 (Fig. 4b, Source Data 4B). The
absolute failure ratewashighest in theCalabrese andDolcettoCRISPRi
libraries (Fig. 4a, Source Data 4A), likely because these guides map to
non-coding regions of the genome.

Although the absolute number of affected CRISPR guides in each
individual is small (a median of 0.16–3.80% across the seven libraries),
the impact of this artifact at the gene and cohort level can be large. The
results above demonstrate that 89% of guides are impacted across the
present dataset of 611 cell lines. When we evaluated the biological
impact of this artifact, we found that in the Avana library, for example,
10–36 genes (median = 20) in the COSMIC Cancer Gene Census32, are
in fact affected by this artifact in each individual (Fig. 4c, Source Data
4C). Many such impacted genes, including ACVR1, EGFR, TET2, and
MET, play important roles in cancer as oncogenes or tumor sup-
pressors (Fig. 4d, Source Data 4D).

Accounting for ancestry-associated human genetic variation
should drive changes in CRISPR library design. We sought to under-
stand the impact of ancestry bias correction on CRISPR library design
by performing in silico design of an improved genome-scale CRISPR/
Cas9 library (herein referred to as Ancestry bias-corrected library), as
described in Methods. Specifically, we avoided designing guides in
regions with high levels of genomic variability in a general population
or specifically in theAfricanpopulation (with a less strict threshold, see
Methods). To benchmark how these restrictions affect guide quality,
we performed two analyses. In the first analysis, we designed four
guides for each gene anddetermined the number of geneswith at least
one guide targeting a variable genomic locus (Supplementary Fig. 9).
In the second analysis, we computed the on-target score, a metric for
the likelihood of on-target genome editing by a CRISPR sgRNA, for all
genes and for genes with at least one guide targeting a variable
genomic locus. Removing guides that have variants with a minor allele
frequency of 0.1 (10% of the alleles in the population) resulted in a 1-2%
decrease in overall guide quality (Supplementary Fig. 10). Overall,
these analyses suggest that ancestry aware approaches to library
design can be implemented without sacrificing reagent quality.

We corrected for this artifact in the CRISPR screening data in The
Cancer Dependency Map to reduce the impact of sgRNA mismatches
on the gene-level dependency scores (see Methods section). The cor-
rected version of this dataset was included in the 22Q2 Dependency
Map release. To understand the impact of this correction on the
Dependency Map, we computed differential dependence for all genes
pre- and post-correction. Interestingly, we identified 2223 genes with a
significant difference in dependency scores following correction,
although in almost all cases the magnitude of the difference is small
(Supplementary Fig. 11). Using this corrected dataset, we revisited the
original idea of identifying ancestry-associated gene dependencies.
Excitingly, this analysis revealed 33 ancestry-associated dependencies
after artifact correction (Fig. 4e, Source Data 4E) suggesting bona fide
signals remain to be evaluated further.

Discussion
The analytical pipeline used to compute Cancer Dependency Map
gene dependency scores leverages a version of the Chronos25 algo-
rithm that we have now designed to be ancestry-aware. Correcting for
genetic variation in sgRNA target sequences will likely be necessary for
other similar algorithms including MAGeCK33 and BAGEL34. Moreover,
this artifact does not just affect large-scale CRISPR libraries; rather, it
affects all CRISPR-based experiments. We have therefore also devel-
oped a web-based tool (www.ancestrygarden.org) that facilitates the
discovery of sgRNA sequences that have high mismatch rates across
ancestry groups both for the CRISPR libraries profiled in this study and
for custom user-input sgRNA sequences.

We recognize that our classification schema for ancestry used
herein has certain limitations. Specifically, while we use computational
methods that derive continental ancestry groupings to highlight the
importance of using diverse reference genomes for developing
molecular tools, such continental labels can unintentionally conflate
problematic uses of race and human genetic variation. A multi-
dimensional and continuous conceptualization of ancestry can resolve
some of these issues35–37. However, there is a lack of consensus on
optimal ways to describe and visualize human genetic variation that
are both precise and prevent harm to all people, including groups that
have been negatively impacted by racist categorizations. Most indivi-
duals have mixed ancestries and global ancestries cross-classify
continents35–37. Despite accounting for admixture in the present ana-
lysis, genomic loci were still classified into binary ancestries, under-
counting diversity within ancestry groups. This is especially
problematic for individuals of recent African descent, which in the
present study we refer to as AFR, given the degree of genetic diversity
in the African continent anddiaspora. These genomic-defined ancestry
groups are subject to evolutionary changes, as well ancestry-specific
allele frequencies used to define these ancestry groups. These binary
ancestry classifications will change as diversity in genetic reference
databases improves and future evaluations of the sort presented here
will be helpful.

Herein, we highlight a critical flaw in current CRISPR guide design
practices, andwedemonstrate the impact this artifacthas ondiscovery
of genetic dependencies in cancer. Earlier work also found that genetic
variation within CRISPR/Cas9 sgRNA targeting sequences19, particu-
larly at therapeutically relevant loci20, impacts sgRNA binding. How-
ever, until recently it was not possible to systematically understand the
impact of this artifact on cancer target discovery. Furthermore,
although the potential for this artifact was described over five years
ago19,20, most sgRNA design platforms still do not correct for it. With
the present report, we hope to further raise awareness of this impor-
tant issue and propose and implement a series of solutions to help the
scientific community mitigate it.

We previously found that ancestry-associated artifacts can fre-
quently arise in descriptive genomic data38,39; herewefind that this also
extends to functional genomic data. These findings highlight how
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Fig. 4 | CRISPR guide mismatches disproportionately affect individuals of
recent African descent. a The fraction of guides affected by genetic variants
(horizontal axis) across individuals in the gnomAD dataset (vertical axis) for indi-
viduals of recent African descent (orange) or all other ancestry groups (gray). The
gnomAD dataset was filtered to include only samples with individual-level geno-
types and variants within each individual were mapped to sgRNA targeting
sequences from 1,000,000 random guide-targeting loci (top), seven common
genome-scale CRISPR libraries (middle), or a custom library designed as part of this
study (bottom). Raw data are described in Source Data 4A. b The ratio between
fraction of guides affected for African individuals compared to individuals from
other ancestry groups from a. Raw data are described in Source Data 4B. c The
number of Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene
Census (CGC) Tier 1 genes affected in each individual (x-axis) by variants within

Avana guides for that gene, against the number of individuals so affected (vertical
axis). Raw data are described in Source Data 4C. d Affected Avana guides for five
randomly selected gnomAD samples from one of seven ancestry groups. Genes in
which at least one guide has amismatch in its targeting sequence are indicatedwith
blue squares. Only genes annotated as oncogenes or tumor suppressor genes in the
COSMIC CGS Tier 1 gene list were included. The numbers below the plot indicate
the percentage of genes and samples affectedwithin each ancestrygroup.Rawdata
are described in Source Data 4D. e Ancestry-associated dependencies (computed
as described in Fig. 1d) pre- and post- correction (x- and y-axes, respectively) for
variationwithinguide targeting sequences (seeMethods). Redpoints are those that
are statistically significant in both the pre-correction and post-correction datasets.
Raw data are described in Source Data 4E.
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widespread such ancestry-associated artifacts are across cancer
research, often in ways that are invisible to researchers. The causes of
cancer disparities are complex and multifactorial, but prejudicial bia-
ses in basic and pre-clinical research can form an important compo-
nent. If we hope to make cancer outcomes equitable it is imperative
that all forms of ancestry-associated statistical, experimental, and
prejudicial biases are eliminated from cancer research.

Methods
Processing SNP6 genotyping calls
Publicly available SNP6 birdseed files14 for 994 CCLE cell lines were
converted to VCF files with BirdseedToVCF.py (see Code Avail-
ability section). The resulting VCF files for each individual sample
were merged with bcftools (v1.16) to create a combined VCF file
with all samples. Themerged VCF file was split into 23 VCF files that
contain variants from only a single autosome or chromosome X.
Genotype calls were phased with Eagle (v2.4) and missing geno-
types were imputed with Minimac4 (v1.6.6) using the TOPMed
reference panel40. The resultingVCFfilesweremerged to generate a
single VCF file that contains all phased and imputed variants across
all 994 cell lines.

Local ancestry inference
Local ancestry was inferred for 994 CCLE cell lines with RFMix v241.
Imputed SNP6 variant calls for all 994 CCLE cell lines were filtered to
include only variants that were detected in at least one of the 2504
unrelated samples profiled as part of the 1000 genomes project. Both
the CCLE and the 1000 genomes datasets were segmented into iden-
tical genomic blocks with a minimum window size of 0.2 cM. Ancestry
assignments were computed for each block and were assigned to one
of fivemajor ancestry groups (African, American, East Asian, European,
or South Asian) using the 1000genomes samples as a known reference
for ancestry assignments.

To generate global ancestry assignment for cancer cell lines, the
ancestry fraction within each chromosome was average across all
chromosomes in each cell line. All chromosomes were equally weigh-
ted. Cell lineswhose genomes are>80%of a single ancestry groupwere
assigned as being predominantly that ancestry group, otherwise the
cell line was assigned as being admixed.

Identification of ancestry-associated genetic dependencies
We identified ancestry-associated genetic dependencies for all genes
that were profiled in the Cancer Dependency Map dataset. First, for
each individual cell line, we mapped the transcription start site of all
genes to local ancestry blocks and assigned each gene to one of five
major ancestry groups based upon the maximal ancestry fraction
within that local ancestry block. For each gene, cell lines were binned
by the ancestry assignment at that genetic locus. The association
between genetic dependency scores and ancestry was computed by
linear regression with inclusion of cancer lineage as a covariate (pub-
licly available on the Cancer Dependency Map portal) and correction
for multiple comparisons with the Benjamini-Hochberg False Dis-
covery Rate method42. This analysis was restricted to only the 611 cell
lines with both SNP6 genotyping and CRISPR screening data.

Power calculations
For each cell line, the ancestry assignment was computed at the tran-
scription start site of all genes profiled in The Cancer Dependency
Map. Sample sizes n = 26 (AFR), n = 6 (AMR), n = 203 (EAS), n = 373
(EUR), n = 4 (SAS) were determined by computing, on average, the
number of times in which a gene was assigned that ancestry group.
Random distributions of Chronos scores, whose differences range
from 0 to 1, in intervals of 0.01, were generated for all five ancestry
groups. Statistical significance for one ancestry group vs all others was
computed with linear regression with correction for cancer lineage.

This processwas repeated 1000 times for each simulated difference in
Chronos scores.

Computing gene dependency scores
Gene dependency scores are routinely generated aspart of ongoing bi-
annual Cancer Dependency Map data releases. Quantitative gene-
effect scores were computed using the combined datasets from the
BroadAchilles (Avana library3) and Sanger SCORE (KY library31)25. In the
Avana library, 74,687 guides were tiled across 17,787 genes with 4
guides per gene. In the KY library, 101,094 guides (in the KY V1.1
library) were tiled across 17,349 genes with 5–10 guides per gene. Both
libraries included a subset of guides which target intergenic regions.
Guides for both libraries were independently designed3,27. Guide-level
depletion scores underwent quality control and filtering steps25 and
lists of filtered and retained guides are included on the Can-
cer Dependency Map portal.

Computing dependency QTLs (dQTLs)
Post-imputation SNP genotypes were filtered to only include those
with minor allele frequencies >1% across all CCLE cell lines. Associa-
tions were computed between all SNPs and all ancestry-associated
dependencies using a linear model with correction for cancer lineage
(see Data Availability). Associations for each gene were corrected for
multiple comparisons using the Benjamini–Yekutieli procedure43.
SNPs with an FDR <0.05 were considered to be statistically significant.
For all genes with at least one significant dQTL, the variant with the
lowest FDR was considered to be the marker dQTL for downstream
analysis.

Computing ancestry association for dQTLs
CCLE cell lines were subset to only include those in which genome-
scale CRISPR screening has been performed, and those that are of
predominantly African, East Asian, European, or Admixed ancestry.
The allele frequency of eachmarker dQTLwas computed for AFR, EAS,
EUR, and Admixed cell lines individually, and across all cell lines.

Identification of proximal and distal dQTLs
RefGene Transcription start site (TSS) positions for all genes were
downloaded from the UCSC genome browser table viewer (geno-
me.ucsc.edu). The distance between each dQTL and the TSS of the
gene in question was computed. Distances less than one megabase
were considered to be proximal, and distances greater than 1 mega-
base or those that are on a different chromosome were considered to
be distal.

Analysis of eQTLs
For each dQTL variant, CCLE cell lines were stratified into two cate-
gories, based upon presence (heterozygous alternate or homozygous
alternate) or absence (homozygous reference) of each variant in
question. The association between the genotype for each variant and
gene expression (RNA-Seq) of the associated genetic dependency was
computed using linear regression with correction for cell lineage as a
covariate. This analysis was restricted to only include the subset of cell
lines with both SNP6 genotyping and CRISPR screening data to main-
tain consistency with other analyses in this study.

Mapping variants to sgRNA targeting sequence
This analysis was performed using both the subset of CCLE cell lines
that were used to identify ancestry-associated dependencies and
using the individual genotyping data for the HGDP + 1000-genomes
call sets44. For analysis of CCLE cell lines, variants weremapped to the
targeting sequences of all guides used in the Avana library. For
analysis of the HGDP + 1000-genomes samples, variants were map-
ped to the targeting sequences of guides included in the Avana,
Calabrese, Dolectto, GeCKOv2, MinLibCas9, TKOv3, and HSANGERV
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libraries or to one million randomly selected sgRNA targeting
sequences. See Data Availability statement for genomic loci of the
targeting sequences for each library. Randomly selected sgRNA tar-
geting sequences were selected by identifying all (NGG) PAM sites in
coding regions. Guide targeting sequences were defined as the PAM
site plus the 20 nucleotides on the 5’ end of the PAM site. An identical
methodwas used formapping germline and somatic variants from 32
tumor types profiled in TCGA to targeting sequences of guides in the
Avana library.

Inferring positional impact of guide mismatches
The position of each mismatch was identified for all variants and all
guides profiled in The Cancer Dependency Map. Across all guides, cell
lines were binned into those with a mismatch in any guide (targeting
any gene) in eachposition. The association between amismatch in that
guide position and dependence on the gene targeted by the guide in
question was computed using a Wilcoxon test without correction for
multiple hypothesis testing. These data were compared to ground
truth data3 wherein a library of guides with mismatches at each posi-
tion were designed and screened to infer the importance of each
position on guide fidelity.

Correcting for ancestry bias in The Cancer Dependency Map
We first identified all mismatches between the targeting sequences
of guides in the Avana library and the genomic sequences in each
individual cell line. Guides with mismatches were excluded only
for cell lines with a mismatch when calculating the gene-level
dependency (Chronos) score. While this method will reduce the
impact of mismatches on false negatives in CRISPR screens, one
caveat is that the rate of impacted guides is higher in cell lines
with AFR genetic ancestry. This results in a higher rate of elimi-
nated guides in cell lines with AFR genetic ancestry than in cell
lines from other genetic ancestry groups.

Designing an ancestry-agnostic CRISPR library. First, we leveraged
the CRISPR sgRNA design tool CRISPick3,27 to provide a ranked
ordering of sgRNAs with the highest expected cutting rates for each
gene while minimizing off-target effects. We then selected the four
best sgRNAs for each gene that excluded SNPs with high frequencies
(1% population frequency). We imposed the additional restriction that
the mismatch frequency within guides may not be present at greater
than a 2.5 times rate in AFR individuals than in non-AFR individuals.We
found that these were the four CRISPick top-ranked sgRNAs for only
2222 (11.5%) of genes. This process resulted in similar rates of mis-
matches inAfrican individuals (median0.23%) as in individuals of other
ancestry groups (also 0.23%) (Fig. 4a).

Cell line sources
The cell line metadata source is described in the Data Availability
statement. Cell line metadata was downloaded from the DepMap
portal (depmap.org). We analyzed publicly available data from these
cell lines as part of this study and did not perform cell line authenti-
cation. Cell lines which underwent DepMap profiling were authenti-
cated, at the time of screening, with either STR profiling or SNP
fingerprinting. The cell line source is listed in the ‘SourceDetail’ col-
umn, information for cell lines with ambiguous authentication results
is listed in the ‘PublicComments’ column.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The input and intermediate data for figure generation are deposited on
github (https://github.com/beroukhim-lab/ancestry_manuscript_code)

or on figshare (https://figshare.com/projects/Germline_variation_
contributes_to_false_negatives_in_CRISPR-based_experiments_with_
varying_burden_across_ancestries/202215). The DepMap data was
accessed from the DepMap web portal (depmap.org) and download
links are provided in the github README file (https://github.com/
beroukhim-lab/ancestry_manuscript_code). The gnomAD (v3.1.2) data-
sets were downloaded from the gnomAD website (gnomad.broadin-
stitute.org). The CCLE SNP6 genotyping files were downloaded from14.
DepMapWES/WGSdatawere downloaded from theDepMapwebportal
(depmap.org). The list of COSIC (v98) genes was downloaded from the
COSMIC data portal (cancer.sanger.ac.uk.cosmic). TCGA somatic
mutation MAF files were accessed from the GDC Data Portal (https://
portal.gdc.cancer.gov) and germline mutations were accessed from a
previously published study45. The publicly available CRISPR guide effi-
cacy data from Doench et al.3 are included as supplemental data in the
associated manuscript (https://www.nature.com/articles/nbt.3437#
Sec24). The publicly available CRISPR guide map data from Sanson
et al.27 are included as supplemental data in the associated manuscript
(https://www.nature.com/articles/s41467-018-07901-8#Sec26). The
publicly available data gnomAD genotyping data fromKoenig et al.44 are
available on the gnomAD website (gnomad.broadinstitute.org). The
publicly available TCGA germline variant data used in this study are
available on the ISB cancer genome cloud and can be accessed with the
following procedure (https://gdc.cancer.gov/about-data/publications/
PanCanAtlas-Germline-AWG)45. Guide map matrices for Avana, Calabr-
ese, Custom, Dolcetto, Gecko, Sanger, and TKO libraries are available on
figshare (https://figshare.com/projects/Germline_variation_contributes_
to_false_negatives_in_CRISPR-based_experiments_with_varying_burden_
across_ancestries/202215). Cell line metadata for DepMap cell lines was
downloaded from the DepMap data portal (see https://github.com/
beroukhim-lab/ancestry_manuscript_code). The remaining source data
are available within the Article, Supplementary Information, or Source
Data file. Source data are provided with this paper.

Code availability
All code used in this manuscript for data analysis or for figure gen-
eration are deposited on Github (https://github.com/beroukhim-lab/
ancestry_manuscript_code).
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